心理科学进展 ›› 2021, Vol. 29 ›› Issue (4): 697-706.doi: 10.3724/SP.J.1042.2021.00697
收稿日期:
2020-03-10
出版日期:
2021-04-15
发布日期:
2021-02-22
基金资助:
YE Chaoqun, LIN Yuhong, LIU Chunlei()
Received:
2020-03-10
Online:
2021-04-15
Published:
2021-02-22
摘要:
创造力究竟是怎么产生的, 目前尚未得出一致的结论。神经电生理技术因其高时间分辨率, 可以准确地揭示创造力产生进程中的神经振荡机制, 从而帮助人们更深刻地理解创造力的本质。近年来的研究发现, 单节律alpha神经振荡会随着创造力的增加而增强, 这反映了创造力产生过程中的内部信息加工需求增加、自上而下的抑制控制增强。同时, 多频段神经振荡交叉节律耦合体现了创造性产生过程中额叶、颞叶和顶叶等多脑区之间信息交流的动态变化。未来研究应该以整合理论框架为基础, 结合多层次多方法的研究工具, 引进更生态化的数理计算方法, 并利用计算神经科学建模来预测个体创造力发展趋势, 从而全面深刻地认识创造力的本质。
中图分类号:
叶超群, 林郁泓, 刘春雷. (2021). 创造力产生过程中的神经振荡机制. 心理科学进展 , 29(4), 697-706.
YE Chaoqun, LIN Yuhong, LIU Chunlei. (2021). Neural oscillation mechanism of creativity. Advances in Psychological Science, 29(4), 697-706.
[1] | 陈群林. (2017). 预测创造性的脑影像指标体系的研究 (博士学位论文). 西南大学, 重庆. |
[2] | 刘春雷, 王敏, 张庆林. (2009). 创造性思维的脑机制. 心理科学进展, 17(1),106-111. |
[3] | 沈汪兵, 刘昌, 陈晶晶. (2010). 创造力的脑结构与脑功能基础. 心理科学进展, 18(9),1420-1429. |
[4] |
Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2020). Predicting response originality through brain activity: An analysis of changes in EEG alpha power during the generation of alternative ideas. Neuroimage, 207,116385.
URL pmid: 31765803 |
[5] |
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214(2),143-156.
URL pmid: 20488210 |
[6] |
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4),170-177.
URL pmid: 15050513 |
[7] | Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4),177-185. |
[8] |
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2),87-95.
URL pmid: 26553223 |
[9] | Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6(4),309-319. |
[10] |
Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., ... Neubauer, A. C. (2014). Creating metaphors: The neural basis of figurative language production. Neuroimage, 90,99-106.
URL pmid: 24384149 |
[11] |
Benedek, M., Bergner, S., Konen, T., Fink, A., & Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49(12),3505-3511.
URL pmid: 21925520 |
[12] |
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences,53(4),480-485.
URL pmid: 22945970 |
[13] | Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. Neuroimage, 88,125-133. |
[14] | Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6(3),273-281. |
[15] | Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick's model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. Journal of Creative Behavior, 47(4),273-289. |
[16] | Bhattacharya, J., & Petsche, H. (2005). Drawing on mind's canvas: Differences in cortical integration patterns between artists and non-artists. Human Brain Mapping, 26(1),1-14. |
[17] |
Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20),1969-1974.
URL pmid: 23041197 |
[18] |
Boot, N., Baas, M., Muhlfeld, E., de Dreu, C.K. W., & van Gaal, S., (2017). Widespread neural oscillations in the delta band dissociate rule convergence from rule divergence during creative idea generation. Neuropsychologia, 104,8-17.
doi: 10.1016/j.neuropsychologia.2017.07.033 URL pmid: 28774832 |
[19] |
Brinkman, L., Stolk, A., Dijkerman, H. C., de Lange, F. P., & Toni, I. (2014). Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. Journal of Neuroscience, 34(44),14783-14792.
doi: 10.1523/JNEUROSCI.2039-14.2014 URL pmid: 25355230 |
[20] |
Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679),1926-1929.
URL pmid: 15218136 |
[21] | Camarda, A., Salvia, E., Vidal, J., Weil, B., Poirel, N., Houde, O., ... Cassotti, M. (2018). Neural basis of functional fixedness during creative idea generation: An EEG study. Neuropsychologia, 118,4-12. |
[22] |
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8),414-421.
doi: 10.1016/j.tics.2014.04.012 URL pmid: 24835663 |
[23] |
Csicsvari, J., Jamieson, B., Wise, K. D., & Buzsaki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron, 37(2),311-322.
URL pmid: 12546825 |
[24] |
de Pesters, A., Coon, W. G., Brunner, P., Gunduz, A., Ritaccio, A. L., Brunet, N. M., ... Schalk, G. (2016). Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non- human primate. Neuroimage, 134,122-131.
URL pmid: 27057960 |
[25] |
Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Consciousness and Cognition, 12(2),231-256.
URL pmid: 12763007 |
[26] |
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5),822-848.
doi: 10.1037/a0019749 URL pmid: 20804237 |
[27] |
Dougherty, K., Cox, M. A., Ninomiya, T., Leopold, D. A., & Maier, A. (2017). Ongoing alpha activity in V1 regulates visually driven spiking responses. Cerebral Cortex, 27(2),1113-1124.
URL pmid: 26656725 |
[28] |
Erickson, B., Truelove-Hill, M., Oh, Y., Anderson, J., Zhang, F. Z., & Kounios, J. (2018). Resting-state brain oscillations predict trait-like cognitive styles. Neuropsychologia, 120,1-8.
URL pmid: 30261163 |
[29] |
Fink, A., & Benedek, M. (2014). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews, 44,111-123.
doi: 10.1016/j.neubiorev.2012.12.002 URL pmid: 23246442 |
[30] |
Fink, A., Benedek, M., Grabner, R. H., Staudt, B., & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42(1),68-76.
URL pmid: 17434417 |
[31] | Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23(8),2241-2246. |
[32] |
Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., ... Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30(3),734-748.
URL pmid: 18266217 |
[33] |
Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neuroimage, 46(3),854-862.
URL pmid: 19269335 |
[34] |
Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and originality from the neuroscientific perspective. Personality and Individual Differences, 44(1),299-310.
doi: 10.1016/j.paid.2007.08.010 URL |
[35] |
Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82(3),233-239.
URL pmid: 21930162 |
[36] | Fink, A., Weiss, E. M., Schwarzl, U., Weber, H., de Assuncao, V. L., Rominger, C., ... Papousek, I. (2017). Creative ways to well-being: Reappraisal inventiveness in the context of anger-evoking situations. Cognitive Affective & Behavioral Neuroscience, 17(1),94-105. |
[37] |
Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10),474-480.
URL pmid: 16150631 |
[38] |
Friston, K. J., Bastos, A. M., Pinotsis, D., & Litvak, V. (2015). LFP and oscillations—what do they tell us? Current Opinion in Neurobiology, 31,1-6.
URL pmid: 25079053 |
[39] | Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: Strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98(4),611-625. |
[40] |
Grabner, R. H., Krenn, J., Fink, A., Arendasy, M., & Benedek, M. (2018). Effects of alpha and gamma transcranial alternating current stimulation (tACS) on verbal creativity and intelligence test performance. Neuropsychologia, 118,91-98.
URL pmid: 29100950 |
[41] |
Gregoriou, G. G., Gotts, S. J., Zhou, H. H., & Desimone, R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931),1207-1210.
URL pmid: 19478185 |
[42] | Guilford, J. P. (1950). Creativity. American Psychologist, 5(9),444-454. |
[43] |
Haegens, S., Nacher, V., Luna, R., Romo, R., & Jensen, O. (2011). Alpha-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National Academy of Sciences of the United States of America, 108(48),19377-19382.
URL pmid: 22084106 |
[44] |
Herrmann, C. S., Munk, M. H., & Engel, A. K. (2004). Cognitive functions of gamma-band activity: Memory match and utilization. Trends in Cognitive Sciences, 8(8),347-355.
URL pmid: 15335461 |
[45] |
Herrmann, C. S., Struber, D., Helfrich, R. F., & Engel, A. K. (2016). EEG oscillations: From correlation to causality. International Journal of Psychophysiology, 103,12-21.
URL pmid: 25659527 |
[46] |
Ivancovsky, T., Kleinmintz, O., Lee, J., Kurman, J., & Shamay-Tsoory, S. G. (2018). The neural underpinnings of cross-cultural differences in creativity. Human Brain Mapping, 39(11),4493-4508.
doi: 10.1002/hbm.24288 URL pmid: 29974553 |
[47] |
Jauk, E., Benedek, M., & Neubauer, A. C. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84(2),219-225.
URL pmid: 22390860 |
[48] |
Jensen, O., & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 11(7),267-269.
doi: 10.1016/j.tics.2007.05.003 URL pmid: 17548233 |
[49] |
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4),E97.
doi: 10.1371/journal.pbio.0020095 URL pmid: 15024404 |
[50] |
Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1),63-88.
URL pmid: 16887192 |
[51] |
Kraus, B., Cadle, C., & Simon-Dack, S. (2019). EEG alpha activity is moderated by the serial order effect during divergent thinking. Biological Psychology, 145,84-95.
URL pmid: 30999009 |
[52] |
Lechinger, J., Wielek, T., Blume, C., Pichler, G., Michitsch, G., Donis, J., ... Schabus, M. (2016). Event-related EEG power modulations and phase connectivity indicate the focus of attention in an auditory own name paradigm. Journal of Neurology, 263(8),1530-1543.
URL pmid: 27216625 |
[53] |
Luft, C.D. B., Zioga, I., Banissy, M. J., & Bhattacharya, J. (2019). Spontaneous visual imagery during meditation for creating visual art: An EEG and brain stimulation case study. Frontiers in Psychology, 10,210.
URL pmid: 30853922 |
[54] |
Luft, C.D. B., Zioga, I., Thompson, N. M., Banissy, M. J., & Bhattacharya, J. (2018). Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations. Proceedings of the National Academy of Sciences of the United States of America, 115(52),E12144-E12152.
URL pmid: 30541891 |
[55] |
Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Frehlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67,74-82.
URL pmid: 25913062 |
[56] | Martindale, C. (1999). Biological bases of creativity. Cambridge, U.K.: Cambridge University Press. |
[57] |
Martindale, C., & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6(3),157-167.
URL pmid: 667239 |
[58] | Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69(3),220-232. |
[59] | Melloni, M., Lopez, V., & Ibanez, A. (2014). Empathy and contextual social cognition. Cognitive Affective & Behavioral Neuroscience, 14(1),407-425. |
[60] | Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44(2),341-369. |
[61] |
Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in Neurosciences, 30(4),150-158.
URL pmid: 17307258 |
[62] |
Pfurtscheller, G., & da Silva, F. H. L. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11),1842-1857.
URL pmid: 10576479 |
[63] |
Prent, N., & Smit, D.J. A. (2020). The dynamics of resting-state alpha oscillations predict individual differences in creativity. Neuropsychologia, 142,107456.
doi: 10.1016/j.neuropsychologia.2020.107456 URL pmid: 32283066 |
[64] |
Razumnikova, O. M. (2007). Creativity related cortex activity in the remote associates task. Brain Research Bulletin, 73(1-3),96-102.
URL pmid: 17499631 |
[65] | Rominger, C., Papousek, I., Perchtold, C. M., Benedek, M., Weiss, E. M., Schwerdtfeger, A., & Fink, A. (2019). Creativity is associated with a characteristic U-shaped function of alpha power changes accompanied by an early increase in functional coupling. Cognitive Affective & Behavioral Neuroscience, 19(4),1012-1021. |
[66] |
Rosen, D. S., Oh, Y., Erickson, D., Zhang, F., Kim, Y. E., & Kounios, J. (2020). Dual-process contributions to creativity in jazz improvisations: An SPM-EEG study. Neuroimage, 213,116632.
URL pmid: 32114150 |
[67] | Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24(1),66-75. |
[68] | Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1),92-96. |
[69] |
Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22),2985-2990.
URL pmid: 26526370 |
[70] | Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26(2),148-155. |
[71] |
Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Frontiers in Human Neuroscience, 8,310.
URL pmid: 24860485 |
[72] |
Shi, L., Beaty, R. E., Chen, Q., Sun, J., Wei, D., Yang, W., & Qiu, J. (2019). Brain entropy is associated with divergent thinking. Cerebral Cortex, 30(2),708-717.
doi: 10.1093/cercor/bhz120 URL pmid: 31233102 |
[73] | Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J., & Jarvis, E. D., (2006). Computational inference of neural information flow networks. Plos Computational Biology, 2(11),1436-1449. |
[74] |
Solomon, E. A., Kragel, J. E., Sperling, M. R., Sharan, A., Worrell, G., Kucewicz, M., ... Stein, J. M. (2017). Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition. Nature Communications, 8(1),1704.
URL pmid: 29167419 |
[75] | Sternberg, R. J. (1996). Striving for creativity. Science (New York, N.Y.), 272(5270),1857-1858. |
[76] |
Sun, J. Z., Liu, Z. W., Rolls, E. T., Chen, Q. L., Yao, Y., Yang, W. J., ... Qiu, J. (2019). Verbal creativity correlates with the temporal variability of brain networks during the resting state. Cerebral Cortex, 29(3),1047-1058.
URL pmid: 29415253 |
[77] |
Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4),151-162.
URL pmid: 10322469 |
[78] |
Tiesinga, P., Fellous, J. M., & Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits. Nature Reviews Neuroscience, 9(2),97-109.
doi: 10.1038/nrn2315 URL pmid: 18200026 |
[79] |
Ueno, K., Takahashi, T., Takahashi, K., Mizukami, K., Tanaka, Y., & Wada, Y. (2015). Neurophysiological basis of creativity in healthy elderly people: A multiscale entropy approach. Clinical Neurophysiology, 126(3),524-531.
URL pmid: 25066939 |
[80] |
Wang, M., Hao, N., Ku, Y., Grabner, R. H., & Fink, A. (2017). Neural correlates of serial order effect in verbal divergent thinking. Neuropsychologia, 99,92-100.
URL pmid: 28259772 |
[81] |
Wang, X., Duan, H., Kan, Y., Wang, B., Qi, S., & Hu, W. (2019). The creative thinking cognitive process influenced by acute stress in humans: An electroencephalography study. Stress, 22(4),472-481.
URL pmid: 31023110 |
[82] |
Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90(3),1195-1268.
URL pmid: 20664082 |
[83] | Watson, B. O., Ding, M. X., & Buzsaki, G. (2018). Temporal coupling of field potentials and action potentials in the neocortex. European Journal of Neuroscience, 48(7),2482-2497. |
[84] | Wokke, M. E., Padding, L., & Ridderinkhof, K. R. (2019). Creative brains show reduced mid frontal theta. bioRxiv ,370-494. |
[85] |
Zabelina, D. L., & Ganis, G. (2018). Creativity and cognitive control: Behavioral and ERP evidence that divergent thinking, but not real-life creative achievement, relates to better cognitive control. Neuropsychologia, 118,20-28.
URL pmid: 29447843 |
[86] |
Zhou, Z., Hu, L., Sun, C., Li, M., Guo, F., & Zhao, Q. (2019). The effect of Zhongyong thinking on remote association thinking: An EEG study. Frontiers in Psychology, 10,207.
doi: 10.3389/fpsyg.2019.00207 URL pmid: 30833914 |
[1] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[2] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[3] | 陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. 节律在听觉言语理解中的作用[J]. 心理科学进展, 2022, 30(8): 1818-1831. |
[4] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[5] | 姚海娟, 王琦, 李兆卿. 情绪调节中的认知重评创造力[J]. 心理科学进展, 2022, 30(3): 601-612. |
[6] | 李子逸, 张泽, 张莹, 罗劲. 创造性思维的酝酿效应[J]. 心理科学进展, 2022, 30(2): 291-307. |
[7] | 尹俊婷, 王冠, 罗俊龙. 威胁对创造力的影响:认知与情绪双加工路径[J]. 心理科学进展, 2021, 29(5): 815-826. |
[8] | 张亚坤, 陈宁, 陈龙安, 施建农. 让智慧插上创造的翅膀:创造动力系统的激活及其条件[J]. 心理科学进展, 2021, 29(4): 707-722. |
[9] | 方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. 口语句子的韵律边界:窥探言语理解的秘窗[J]. 心理科学进展, 2021, 29(3): 425-437. |
[10] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[11] | 王博韬, 魏萍. 道德情绪:探寻道德与创造力关系的新视角[J]. 心理科学进展, 2021, 29(2): 268-275. |
[12] | 张舜, 杨晓蕾, 任佳文, 张景焕. 多巴胺相关基因甲基化、家庭环境与创造力的关系[J]. 心理科学进展, 2021, 29(11): 1911-1919. |
[13] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[14] | 李铭泽, 叶慧莉, 张光磊. 自恋型领导对团队创造力形成过程的多视角研究[J]. 心理科学进展, 2020, 28(9): 1437-1453. |
[15] | 黄崇蓉, 胡瑜. 组织内信任与创造力的关系:元分析的证据[J]. 心理科学进展, 2020, 28(7): 1118-1132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||