心理科学进展 ›› 2022, Vol. 30 ›› Issue (8): 1818-1831.doi: 10.3724/SP.J.1042.2022.01818
收稿日期:
2021-07-07
出版日期:
2022-08-15
发布日期:
2022-06-23
通讯作者:
李量
E-mail:liangli@pku.edu.cn
基金资助:
CHEN Liangjie, LIU Lei, GE Zhongshu, YANG Xiaodong, LI Liang()
Received:
2021-07-07
Online:
2022-08-15
Published:
2022-06-23
Contact:
LI Liang
E-mail:liangli@pku.edu.cn
摘要:
言语理解是听者接受外部语音输入并且获得意义的心理过程。日常交流中, 听觉言语理解受多尺度节律信息的影响, 常见有韵律结构节律、语境节律、和说话者身体语言节律三方面外部节律。它们改变听者在言语理解中的音素判别、词汇感知以及言语可懂度等过程。内部节律表现为大脑内神经振荡, 其能够表征外部言语输入在不同时间尺度下的层级特征。外部节律性刺激与内部神经活动的神经夹带能够优化大脑对言语刺激的处理, 并受到听者自上而下的认知过程的调节进一步增强目标言语的内在表征。我们认为它可能是实现内外节律相互联系并共同影响言语理解的关键机制。对内外节律及其联系机制的揭示能够为理解言语这种在多层级时间尺度上具有结构规律的复杂序列提供了一个研究窗口。
中图分类号:
陈梁杰, 刘雷, 葛钟书, 杨晓东, 李量. (2022). 节律在听觉言语理解中的作用. 心理科学进展 , 30(8), 1818-1831.
CHEN Liangjie, LIU Lei, GE Zhongshu, YANG Xiaodong, LI Liang. (2022). The role of rhythm in auditory speech understanding. Advances in Psychological Science, 30(8), 1818-1831.
[1] | 方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. (2021). 口语句子的韵律边界: 窥探言语理解的秘窗. 心理科学进展, 29(3), 425-437. https://dx.doi.org/10.3724/SP.J.1042.2021.00425 |
[2] | 杨玉芳. (2021). 语言理解——认知过程和神经基础. 科学出版社. |
[3] | 殷融. (2020). “动手不动口”: 手部动作与语言进化的关系. 心理科学进展, 28(7), 1141-1155. https://doi.org/10.3724/SP.J.1042.2020.01141 |
[4] | 于泽, 韩玉昌, 任桂琴. (2010). 韵律在语言加工中的作用及其神经机制. 心理科学进展, 18(3), 420-425. |
[5] |
Abbs J. H., Gracco V. L., & Cole K. J. (1984). Control of multimovement coordination: Sensorimotor mechanisms in speech motor programming. Journal of Motor Behavior, 16(2), 195-231. https://doi.org/10.1080/00222895.1984.10735318
URL pmid: 14713665 |
[6] |
Ahissar E., Nagarajan S., Ahissar M., Protopapas A., Mahncke H., & Merzenich M. M. (2001). Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13367-13372. https://doi.org/10.1073/pnas.201400998
URL pmid: 11698688 |
[7] |
Arnal L. H., & Giraud A.-L. (2012). Cortical oscillations and sensory predictions. Trends in Cognitive Sciences, 16(7), 390-398. https://doi.org/10.1016/j.tics.2012.05.003
doi: 10.1016/j.tics.2012.05.003 URL pmid: 22682813 |
[8] |
Baese-Berk M. M., Heffner C. C., Dilley L. C., Pitt M. A., Morrill T. H., & McAuley J. D. (2014). Long-term temporal tracking of speech rate affects spoken-word recognition. Psychological Science, 25(8), 1546-1553. https://doi.org/10.1177/0956797614533705
doi: 10.1177/0956797614533705 URL pmid: 24907119 |
[9] |
Baltus A., & Herrman C. S. (2016). The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review. Brain Research, 1640, 243-250. https://doi.org/10.1016/j.brainres.2015.09.030
doi: 10.1016/j.brainres.2015.09.030 URL pmid: 26453287 |
[10] |
Bishop G. H. (1933). Cyclic changes in excitability of the optic pathway of the rabbit. American Journal of Physiology, 103(1), 213-224. https://doi.org/10.1152/ajplegacy.1932.103.1.213
doi: 10.1152/ajplegacy.1932.103.1.213 URL |
[11] |
Bosker H. R. (2017). Accounting for rate-dependent category boundary shifts in speech perception. Attention Perception & Psychophysics, 79(1), 333-343. https://doi.org/10.3758/ s13414-016-1206-4
doi: 10.3758/s13414-016-1206-4 URL |
[12] |
Bosker H. R., & Ghitza O. (2018). Entrained theta oscillations guide perception of subsequent speech: behavioural evidence from rate normalisation. Language Cognition and Neuroscience, 33(8), 955-967. https://doi.org/10.1080/23273798.2018.1439179
doi: 10.1080/23273798.2018.1439179 URL |
[13] | Bosker H. R., & Peeters D. (2021). Beat gestures influence which speech sounds you hear. Proceedings of the Royal Society B-Biological Sciences, 288(1943). https://doi.org/10.1098/rspb.2020.2419 |
[14] |
Bosker H. R., Peeters D., & Holler J. (2020). How visual cues to speech rate influence speech perception. Quarterly Journal of Experimental Psychology, 73(10), 1523-1536. https://doi.org/10.1177/1747021820914564
doi: 10.1177/1747021820914564 URL |
[15] |
Bosker H. R., Sjerps M. J., & Reinisch E. (2020). Temporal contrast effects in human speech perception are immune to selective attention. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-62613-8
doi: 10.1038/s41598-019-56847-4 URL |
[16] |
Bourguignon M., de Tiege X., Op de Beeck M., Ligot N., Paquier P., van Bogaert P.,... Jousmaki V. (2013). The pace of prosodic phrasing couples the listener's cortex to the reader's voice. Human Brain Mapping, 34(2), 314-326. https://doi.org/10.1002/hbm.21442
doi: 10.1002/hbm.21442 URL pmid: 22392861 |
[17] | Breska A., & Deouell L. Y. (2017). Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment. Plos Biology, 15(2), e2001665. https://doi.org/10.1371/journal.pbio.2001665 |
[18] | Bridwell D. A., Henderson S., Sorge M., Plis S., & Calhoun V. D. (2018). Relationships between alpha oscillations during speech preparation and the listener N400 ERP to the produced speech. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-31038-9 |
[19] |
Brodbeck C., Hong L. E., & Simon J. Z. (2018). Rapid transformation from auditory to linguistic representations of continuous speech. Current Biology, 28(24), 3976-3983. https://doi.org/10.1016/j.cub.2018.10.042
doi: 10.1016/j.cub.2018.10.042 URL |
[20] |
Broderick M. P., Anderson A. J., Di Liberto G. M., Crosse M. J., & Lalor E. C. (2018). Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech. Current Biology, 28(5), 803-809. https://doi.org/10.1016/j.cub.2018.01.080
doi: S0960-9822(18)30146-5 URL pmid: 29478856 |
[21] |
Broderick M. P., Anderson A. J., & Lalor E. C. (2019). Semantic context enhances the early auditory encoding of natural speech. The Journal of Neuroscience, 39(38), 7564-7575. https://doi.org/10.1523/jneurosci.0584-19.2019
doi: 10.1523/JNEUROSCI.0584-19.2019 URL |
[22] |
Browman C. P., & Goldstein L. (1992). Articulatory phonology: An overview. Phonetica, 49(3-4), 155-180. https://doi.org/10.1159/000261913
URL pmid: 1488456 |
[23] |
Brown M., Salverda A. P., Dilley L. C., & Tanenhaus M. K. (2011). Expectations from preceding prosody influence segmentation in online sentence processing. Psychonomic Bulletin & Review, 18(6), 1189-1196. https://doi.org/10.3758/s13423-011-0167-9
doi: 10.3758/s13423-011-0167-9 URL |
[24] |
Buzsaki G., & Draguhn A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926-1929. https://doi.org/10.1126/science.1099745
doi: 10.1126/science.1099745 URL |
[25] |
Calderone D. J., Lakatos P., Butler P. D., & Castellanos F. X. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. Trends in Cognitive Sciences, 18(6), 300-309. https://doi.org/10.1016/j.tics.2014.02.005
doi: 10.1016/j.tics.2014.02.005 URL pmid: 24630166 |
[26] |
Cason N., & Schön D. (2012). Rhythmic priming enhances the phonological processing of speech. Neuropsychologia, 50(11), 2652-2658. https://doi.org/10.1016/j.neuropsychologia.2012.07.018
doi: 10.1016/j.neuropsychologia.2012.07.018 URL pmid: 22828660 |
[27] |
Cho T., Whalen D. H., & Docherty G. (2019). Voice onset time and beyond: Exploring laryngeal contrast in 19 languages. Journal of Phonetics, 72, 52-65. https://doi.org/10.1016/j.wocn.2018.11.002
doi: 10.1016/j.wocn.2018.11.002 URL |
[28] | Christiansen M. H., & Chater N. (2015). The now-or-Never bottleneck: A fundamental constraint on language. Behavioral and Brain Sciences, 39, E62. https://doi.org/10.1017/s0140525x1500031x |
[29] |
Dauer R. M. (1983). Stress-timing and syllable-timing reanalyzed. Journal of Phonetics, 11(1), 51-62. https://doi.org/10.1016/s0095-4470(19)30776-4
doi: 10.1016/S0095-4470(19)30776-4 URL |
[30] | Dellwo V. (2006). Rhythm and speech rate:A variation coefficient for deltaC. In P. Karnowski & I. Szigeti (Eds.), Language and language processing: Proceedings of the 38th linguistic colloquium (pp. 231-241). Frankfurt/Main: Peter Lang. |
[31] | Dellwo V., & Wagner P. (2003). Relations between language rhythm and speech rate. International Congress of Phonetic Sciences (pp. 471-474), Barcelona/Spain. |
[32] |
Di Liberto G. M., Wong D., Melnik G. A., & de Cheveigne A. (2019). Low-frequency cortical responses to natural speech reflect probabilistic phonotactics. Neuroimage, 196, 237-247. https://doi.org/10.1016/j.neuroimage.2019.04.037
doi: 10.1016/j.neuroimage.2019.04.037 URL |
[33] |
Dilley L. C., Mattys S. L., & Vinke L. (2010). Potent prosody: Comparing the effects of distal prosody, proximal prosody, and semantic context on word segmentation. Journal of Memory and Language, 63(3), 274-294. https://doi.org/10.1016/j.jml.2010.06.003
doi: 10.1016/j.jml.2010.06.003 URL |
[34] |
Dilley L. C., & McAuley J. D. (2008). Distal prosodic context affects word segmentation and lexical processing. Journal of Memory and Language, 59(3), 294-311. https://doi.org/10.1016/j.jml.2008.06.006
doi: 10.1016/j.jml.2008.06.006 URL |
[35] |
Dilley L. C., & Pitt M. A. (2010). Altering context speech rate can cause words to appear or disappear. Psychological Science, 21(11), 1664-1670. https://doi.org/10.1177/0956797610384743
doi: 10.1177/0956797610384743 URL pmid: 20876883 |
[36] |
Ding N., & He H. (2016). Rhythm of silence. Trends in Cognitive Sciences, 20(2), 82-84. https://doi.org/10.1016/j.tics.2015.12.006
doi: S1364-6613(15)00311-3 URL pmid: 26747701 |
[37] | Ding N., Melloni L., Yang A., Wang Y., Zhang W., & Poeppel D. (2017). Characterizing neural entrainment to hierarchical linguistic units using electroencephalography (EEG). Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00481 |
[38] |
Ding N., Melloni L., Zhang H., Tian X., & Poeppel D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164. https://doi.org/10.1038/nn.4186
doi: 10.1038/nn.4186 URL pmid: 26642090 |
[39] |
Ding N., Patel A. D., Chen L., Butler H., Luo C., & Poeppel D. (2017). Temporal modulations in speech and music. Neuroscience and Biobehavioral Reviews, 81, 181-187. https://doi.org/10.1016/j.neubiorev.2017.02.011
doi: S0149-7634(16)30566-8 URL pmid: 28212857 |
[40] |
Ding N., & Simon J. Z. (2012). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of Neurophysiology, 107(1), 78-89. https://doi.org/10.1152/jn.00297.2011
doi: 10.1152/jn.00297.2011 URL pmid: 21975452 |
[41] |
Doelling K. B., Arnal L. H., Ghitza O., & Poeppel D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. Neuroimage, 85, 761-768. https://doi.org/10.1016/j.neuroimage.2013.06.035
doi: 10.1016/j.neuroimage.2013.06.035 URL |
[42] | Doelling K. B., & Assaneo M. F. (2021). Neural oscillations are a start toward understanding brain activity rather than the end. PLOS Biology, 19(5), e3001234. https://doi.org/10.1371/journal.pbio.3001234 |
[43] |
Farbood M. M., Marcus G., & Poeppel D. (2013). Temporal dynamics and the identification of musical key. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 911-918. https://doi.org/10.1037/a0031087
doi: 10.1037/a0031087 URL |
[44] | Feher K. D., Nakataki M., & Morishima Y. (2017). Phase- dependent modulation of signal transmission in cortical networks through tACS-induced neural oscillations. Frontiers in Human Neuroscience, 11, 1-13. https://doi.org/10.3389/fnhum.2017.00471 |
[45] |
Fiedler L., Wöstmann M., Herbst S. K., & Obleser J. (2019). Late cortical tracking of ignored speech facilitates neural selectivity in acoustically challenging conditions. Neuroimage, 186, 33-42. https://doi.org/10.1016/j.neuroimage.2018.10.057
doi: S1053-8119(18)32029-9 URL pmid: 30367953 |
[46] |
Fuglsang S. A., Dau T., & Hjortkjaer J. (2017). Noise-robust cortical tracking of attended speech in real-world acoustic scenes. Neuroimage, 156, 435-444. https://doi.org/10.1016/j.neuroimage.2017.04.026
doi: S1053-8119(17)30318-X URL pmid: 28412441 |
[47] | Fujii S., & Wan C. Y. (2014). The role of rhythm in speech and language rehabilitation: The SEP hypothesis. Frontiers in Human Neuroscience, 8, 1-15. https://doi.org/10.3389/fnhum.2014.00777 |
[48] |
Ghazanfar A. A., & Takahashi D. Y. (2014). The evolution of speech: Vision, rhythm, cooperation. Trends in Cognitive Sciences, 18(10), 543-553.
doi: 10.1016/j.tics.2014.06.004 URL pmid: 25048821 |
[49] |
Ghitza O., & Greenberg S. (2009). On the possible role of brain rhythms in speech perception: Intelligibility of time- compressed speech with periodic and aperiodic insertions of silence. Phonetica, 66(1-2), 113-126. https://doi.org/10.1159/000208934
doi: 10.1159/000208934 URL pmid: 19390234 |
[50] |
Giraud A.-L., & Poeppel D. (2012). Cortical oscillations and speech processing: Emerging computational principles and operations. Nature Neuroscience, 15(4), 511-517. https://doi.org/10.1038/nn.3063
doi: 10.1038/nn.3063 URL |
[51] |
Golumbic E. M. Z., Ding N., Bickel S., Lakatos P., Schevon C. A., McKhann G. M.,... Schroeder C. E. (2013). Mechanisms underlying selective neuronal tracking of attended speech at a "Cocktail Party". Neuron, 77(5), 980-991. https://doi.org/10.1016/j.neuron.2012.12.037
doi: 10.1016/j.neuron.2012.12.037 URL pmid: 23473326 |
[52] |
Haegens S., & Golumbic E. Z. (2018). Rhythmic facilitation of sensory processing: A critical review. Neuroscience and Biobehavioral Reviews, 86, 150-165. https://doi.org/10.1016/j.neubiorev.2017.12.002
doi: S0149-7634(17)30500-6 URL pmid: 29223770 |
[53] |
Helfrich R. F., Breska A., & Knight R. T. (2019). Neural entrainment and network resonance in support of top-down guided attention. Current Opinion in Psychology, 29, 82-89. https://doi.org/10.1016/j.copsyc.2018.12.016
doi: 10.1016/j.copsyc.2018.12.016 URL |
[54] | Henry M. J., Herrmann B., & Obleser J. (2014). Entrained neural oscillations in multiple frequency bands comodulate behavior. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14935-14940. https://doi.org/10.1073/pnas.1408741111 |
[55] |
Holler J., & Levinson S. C. (2019). Multimodal language processing in human communication. Trends in Cognitive Sciences, 23(8), 639-652. https://doi.org/10.1016/j.tics.2019.05.006
doi: 10.1016/j.tics.2019.05.006 URL |
[56] |
Iani F., & Bucciarelli M. (2017). Mechanisms underlying the beneficial effect of a speaker's gestures on the listener. Journal of Memory and Language, 96, 110-121. https://doi.org/10.1016/j.jml.2017.05.004
doi: 10.1016/j.jml.2017.05.004 URL |
[57] | Jadoul Y., Ravignani A., Thompson B., Filippi P., & de Boer B. (2016). Seeking temporal predictability in speech: Comparing statistical approaches on 18 world languages. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00586 |
[58] |
Jensen O., Bonnefond M., & VanRullen R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206. https://doi.org/10.1016/j.tics.2012.03.002
doi: 10.1016/j.tics.2012.03.002 URL pmid: 22436764 |
[59] | Kayser C. (2019). Evidence for the rhythmic perceptual sampling of auditory scenes. Frontiers in Human Neuroscience, 13, https://doi.org/10.3389/fnhum.2019.00249 |
[60] |
Kayser C., Wilson C., Safaai H., Sakata S., & Panzeri S. (2015). Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing. Journal of Neuroscience, 35(20), 7750-7762. https://doi.org/10.1523/jneurosci.0268-15.2015
doi: 10.1523/JNEUROSCI.0268-15.2015 URL |
[61] | Keshavarzi M., & Reichenbach T. (2020). Transcranial alternating current stimulation with the theta-band portion of the temporally-aligned speech envelope improves speech- in-noise comprehension. Frontiers in Human Neuroscience, 14, https://doi.org/10.3389/fnhum.2020.00187 |
[62] |
Knudsen E. I. (2018). Neural circuits that mediate selective attention: A comparative perspective. Trends in Neurosciences, 41(11), 789-805. https://doi.org/10.1016/j.tins.2018.06.006
doi: S0166-2236(18)30167-X URL pmid: 30075867 |
[63] |
Kösem A., Bosker H. R., Takashima A., Meyer A., Jensen O., & Hagoort P. (2018). Neural entrainment determines the words we hear. Current Biology, 28(18), 2867-2875. https://doi.org/10.1016/j.cub.2018.07.023
doi: S0960-9822(18)30922-9 URL pmid: 30197083 |
[64] |
Kösem A., & van Wassenhove V. (2017). Distinct contributions of low- and high-frequency neural oscillations to speech comprehension. Language Cognition and Neuroscience, 32(5), 536-544. https://doi.org/10.1080/23273798.2016.1238495
doi: 10.1080/23273798.2016.1238495 URL |
[65] |
Kotz S. A., Ravignani A., & Fitch W. T. (2018). The evolution of rhythm processing. Trends in Cognitive Sciences, 22(10), 896-910. https://doi.org/10.1016/j.tics.2018.08.002
doi: S1364-6613(18)30191-8 URL pmid: 30266149 |
[66] |
Kotz S. A., & Schmidt-Kassow M. (2015). Basal ganglia contribution to rule expectancy and temporal predictability in speech. Cortex, 68, 48-60. https://doi.org/10.1016/j.cortex.2015.02.021
doi: 10.1016/j.cortex.2015.02.021 URL |
[67] |
Kotz S. A., & Schwartze M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392-399. https://doi.org/10.1016/j.tics.2010.06.005
doi: 10.1016/j.tics.2010.06.005 URL |
[68] | Ladefoged P. (1975). A Course in Phonetics. New York: Harcourt Brace Jovanovich College. |
[69] |
Lakatos P., Chen C.-M., O'Connell M. N., Mills A., & Schroeder C. E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron, 53(2), 279-292. https://doi.org/10.1016/j.neuron.2006.12.011
URL pmid: 17224408 |
[70] |
Lakatos P., Gross J., & Thut G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), 890-905. https://doi.org/10.1016/j.cub.2019.07.075
doi: S0960-9822(19)30955-8 URL pmid: 31550478 |
[71] |
Lakatos P., Musacchia G., O'Connel M. N., Falchier A. Y., Javitt D. C., & Schroeder C. E. (2013). The spectrotemporal filter mechanism of auditory selective attention. Neuron, 77(4), 750-761. https://doi.org/10.1016/j.neuron.2012.11.034
doi: 10.1016/j.neuron.2012.11.034 URL pmid: 23439126 |
[72] |
Lakatos P., O'Connell M. N., Barczak A., Mills A., Javitt D. C., & Schroeder C. E. (2009). The leading sense: Supramodal control of neurophysiological context by attention. Neuron, 64(3), 419-430. https://doi.org/10.1016/j.neuron.2009.10.014
doi: 10.1016/j.neuron.2009.10.014 URL pmid: 19914189 |
[73] |
Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., & Schroeder C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904-1911. https://doi.org/10.1152/jn.00263.2005
URL pmid: 15901760 |
[74] |
Lavie N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology- Human Perception and Performance, 21(3), 451-468. https://doi.org/10.1037/0096-1523.21.3.451
doi: 10.1037/0096-1523.21.3.451 URL |
[75] |
Lerner Y., Honey C. J., Silbert L. J., & Hasson U. (2011). Topographic mapping of a hierarchy of temporal receptive Windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915. https://doi.org/10.1523/jneurosci.3684-10.2011
doi: 10.1523/JNEUROSCI.3684-10.2011 URL pmid: 21414912 |
[76] |
Ling L. E., Grabe E., & Nolan F. (2000). Quantitative characterizations of speech rhythm: Syllable-timing in Singapore English. Language and Speech, 43, 377-401. https://doi.org/10.1177/00238309000430040301
URL pmid: 11419223 |
[77] |
Li W., & Yang Y. (2009). Perception of prosodic hierarchical boundaries in mandarin Chinese sentences. Neuroscience, 158(4), 1416-1425. https://doi.org/10.1016/j.neuroscience.2008.10.065
doi: 10.1016/j.neuroscience.2008.10.065 URL pmid: 19111906 |
[78] |
Li W., & Yang Y. (2010). Perception of chinese poem and its electrophysiological effects. Neuroscience, 168(3), 757-768. https://doi.org/10.1016/j.neuroscience.2010.03.069
doi: 10.1016/j.neuroscience.2010.03.069 URL pmid: 20382205 |
[79] |
Li W., Zhang H., Zheng Z., & Li X. (2019). Prosodic phrase priming during listening to Chinese ambiguous phrases in different experimental tasks. Journal of Neurolinguistics, 51, 135-150. https://doi.org/10.1016/j.jneuroling.2019.02.003
doi: 10.1016/j.jneuroling.2019.02.003 URL |
[80] |
Li X., & Ren G. (2012). How and when accentuation influences temporally selective attention and subsequent semantic processing during on-line spoken language comprehension: An ERP study. Neuropsychologia, 50(8), 1882-1894. https://doi.org/10.1016/j.neuropsychologia.2012.04.013
doi: 10.1016/j.neuropsychologia.2012.04.013 URL |
[81] |
Li X., Shao X., Xia J., & Xu X. (2019). The cognitive and neural oscillatory mechanisms underlying the facilitating effect of rhythm regularity on speech comprehension. Journal of Neurolinguistics, 49, 155-167. https://doi.org/10.1016/j.jneuroling.2018.05.004
doi: 10.1016/j.jneuroling.2018.05.004 URL |
[82] |
Luo H., & Poeppel D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54(6), 1001-1010. https://doi.org/10.1016/j.neuron.2007.06.004
doi: 10.1016/j.neuron.2007.06.004 URL |
[83] | Luo Y., Duan Y., & Zhou X. (2015). Processing rhythmic pattern during Chinese sentence reading: An eye movement study. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01881 |
[84] |
Luo Y., & Zhou X. (2010). ERP evidence for the online processing of rhythmic pattern during Chinese sentence reading. NeuroImage, 49(3), 2836-2849. https://doi.org/10.1016/j.neuroimage.2009.10.008
doi: 10.1016/j.neuroimage.2009.10.008 URL |
[85] |
Makov S., Sharon O., Ding N., Ben-Shachar M., Nir Y., & Golumbic E. Z. (2017). Sleep disrupts high-level speech parsing despite significant basic auditory processing. Journal of Neuroscience, 37(32), 7772-7781. https://doi.org/10.1523/jneurosci.0168-17.2017
doi: 10.1523/JNEUROSCI.0168-17.2017 URL |
[86] |
Maslowski M., Meyer A. S., & Bosker H. R. (2019). How the tracking of habitual rate influences speech perception. Journal of Experimental Psychology: Learning Memory and Cognition, 45(1), 128-138. https://doi.org/10.1037/xlm0000579
doi: 10.1037/xlm0000579 URL |
[87] |
Mathewson K. E., Fabiani M., Gratton G., Beck D. M., & Lleras A. (2010). Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment. Cognition, 115(1), 186-191. https://doi.org/10.1016/j.cognition.2009.11.010
doi: 10.1016/j.cognition.2009.11.010 URL pmid: 20035933 |
[88] |
Mesgarani N., & Chang E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485(7397), 233-236. https://doi.org/10.1038/nature11020
doi: 10.1038/nature11020 URL |
[89] | Morillon B., & Baillet S. (2017). Motor origin of temporal predictions in auditory attention. Proceedings of the National Academy of Sciences of the United States of America, 114(42), 8913-8921. https://doi.org/10.1073/pnas.1705373114 |
[90] | Morillon B., Schroeder C. E., & Wyart V. (2014). Motor contributions to the temporal precision of auditory attention. Nature Communications, 5, 1-9. https://doi.org/10.1038/ncomms6255 |
[91] | Morris D. J., & Klerke S. (2016). Machine classification of P1-N1-P2 responses elicited with a gated syllable. The Journal of the Acoustical Society of America, 140(4), 3155-3155. https://doi.org/10.1121/1.4969899 |
[92] | Müller C., Cienki A., Fricke E., Ladewig S. H., McNeill D., & Tessendorf S. (2013). Body-language-communication:. In An international handbook on multimodality in human interaction (pp. 131-232). De Gruyter Mouton. |
[93] | Nooteboom S. (1997). The prosody of speech:Melody and rhythm. In W. J. Hardcastle & J. Laver (Eds.), The Handbook of the phonetic sciences (pp. 640-673). Blackwell Publishers. |
[94] |
Obleser J., & Kayser C. (2019). Neural entrainment and attentional selection in the listening brain. Trends in Cognitive Sciences, 23(11), 913-926. https://doi.org/10.1016/j.tics.2019.08.004
doi: S1364-6613(19)30205-0 URL pmid: 31606386 |
[95] |
O'Brien, G. E., Gijbels, L., & Yeatman, J. D. (2020). Context effects on phoneme categorization in children with dyslexia. Journal of the Acoustical Society of America, 148(4), 2209-2222. https://doi.org/10.1121/10.0002181
doi: 10.1121/10.0002181 URL |
[96] |
Park H., Ince R. A. A., Schyns P. G., Thut G., & Gross J. (2015). Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners. Current Biology, 25(12), 1649-1653. https://doi.org/10.1016/j.cub.2015.04.049
doi: 10.1016/j.cub.2015.04.049 URL |
[97] | Park H., Kayser C., Thut G., & Gross J. (2016). Lip movements entrain the observers’ low-frequency brain oscillations to facilitate speech intelligibility. eLife, 5. https://doi.org/10.7554/elife.14521 |
[98] | Peelle J. E., & Davis M. H. (2012). Neural oscillations carry speech rhythm through to comprehension. Frontiers in Psychology, 3, https://doi.org/10.3389/fpsyg.2012.00320 |
[99] |
Phillips D., Vigneault-MacLean B., Boehnke S., & Hall S. (2003). Acoustic Hemifields in the spatial release from masking of speech by noise. Journal of the American Academy of Audiology, 14(9), 518-524. https://doi.org/10.3766/jaaa.14.9.7
URL pmid: 14708840 |
[100] | Pike K. L. (1945). The Intonation of American English, University of Michigan Press. |
[101] |
Pitt M. A., Szostak C., & Dilley L. C. (2016). Rate dependent speech processing can be speech specific: Evidence from the perceptual disappearance of words under changes in context speech rate. Attention Perception & Psychophysics, 78(1), 334-345. https://doi.org/10.3758/s13414-015-0981-7
doi: 10.3758/s13414-015-0981-7 URL |
[102] |
Poeppel D., & Assaneo M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews Neuroscience, 21(6), 322-334. https://doi.org/10.1038/s41583-020-0304-4
doi: 10.1038/s41583-020-0304-4 URL pmid: 32376899 |
[103] |
Poeppel D., Idsardi W. J., & van Wassenhove V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1071-1086. https://doi.org/10.1098/rstb.2007.2160
doi: 10.1098/rstb.2007.2160 URL |
[104] | Proctor M., Walker R., Smith C., Szalay T., Goldstein L., & Narayanan S. (2019). Articulatory characterization of English liquid-final rimes. Journal of Phonetics, 77, https://doi.org/10.1016/j.wocn.2019.100921 |
[105] | Raco V., Bauer R., Tharsan S., & Gharabaghi A. (2016). Combining TMS and tACS for closed-loop phase-dependent modulation of corticospinal excitability: A feasibility study. Frontiers in Cellular Neuroscience, 10, https://doi.org/10.3389/fncel.2016.00143 |
[106] | Ramus F. (2002). Acoustic correlates of linguistic rhythm: Perspectives Proc Speech Prosody, Aix-en-Provence. |
[107] |
Ramus F., Nespor M., & Mehler J. (1999). Correlates of linguistic rhythm in the speech signal. Cognition, 73(3), 265-292. https://doi.org/10.1016/s0010-0277(99)00058-x
URL pmid: 10585517 |
[108] |
Raichle M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180-190. https://doi.org/10.1016/j.tics.2010.01.008
doi: 10.1016/j.tics.2010.01.008 URL pmid: 20206576 |
[109] |
Reinisch E. (2016). Natural fast speech is perceived as faster than linearly time-compressed speech. Attention Perception & Psychophysics, 78(4), 1203-1217. https://doi.org/10.3758/s13414-016-1067-x
doi: 10.3758/s13414-016-1067-x URL |
[110] |
Riecke L., Formisano E., Sorger B., Baskent D., & Gaudrain E. (2018). Neural entrainment to speech modulates speech intelligibility. Current Biology, 28(2), 161-169. https://doi.org/10.1016/j.cub.2017.11.033
doi: S0960-9822(17)31515-4 URL pmid: 29290557 |
[111] |
Rimmele J. M., Morillon B., Poeppel D., & Arnal L. H. (2018). Proactive sensing of periodic and aperiodic auditory patterns. Trends in Cognitive Sciences, 22(10), 870-882. https://doi.org/10.1016/j.tics.2018.08.003
doi: 10.1016/j.tics.2018.08.003 URL |
[112] | Roach P. (1982). On the distinction between ‘stress-timed’ and ‘syllable-timed’ languages. In D. Crystal (Eds.), Linguistic controversies (pp. 73-79). London: Arnold. |
[113] |
Rohenkohl G., Cravo A. M., Wyart V., & Nobre A. C. (2012). Temporal expectation improves the quality of sensory information. Journal of Neuroscience, 32(24), 8424-8428. https://doi.org/10.1523/jneurosci.0804-12.2012
doi: 10.1523/JNEUROSCI.0804-12.2012 URL pmid: 22699922 |
[114] | Schmidt-Kassow M., Roncaglia-Denissen M. P., & Kotz S. A. (2013). Speech rhythm facilitates syntactic ambiguity resolution: ERP Evidence. Figshare, 8(2), e56000. https://doi.org/10.1371/journal.pone.0056000 |
[115] |
Schroeder C. E., & Lakatos P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9-18. https://doi.org/10.1016/j.tins.2008.09.012
doi: 10.1016/j.tins.2008.09.012 URL pmid: 19012975 |
[116] |
Sheng J., Zheng L., Lyu B., Cen Z., Qin L., Tan L. H.,... Gao J.-H. (2019). The cortical maps of hierarchical linguistic structures during speech perception. Cerebral Cortex, 29(8), 3232-3240. https://doi.org/10.1093/cercor/bhy191
doi: 10.1093/cercor/bhy191 URL |
[117] |
Steinmetzger K., & Rosen S. (2017). Effects of acoustic periodicity and intelligibility on the neural oscillations in response to speech. Neuropsychologia, 95, 173-181. https://doi.org/10.1016/j.neuropsychologia.2016.12.003
doi: S0028-3932(16)30442-0 URL pmid: 27939190 |
[118] | Stilp C. (2020). Acoustic context effects in speech perception. Wiley Interdisciplinary Reviews-Cognitive Science, 11(1), 1-18. https://doi.org/10.1002/wcs.1517 |
[119] |
Tass P., Rosenblum M. G., Weule J., Kurths J., Pikovsky A., Volkmann J.,... Freund H. J. (1998). Detection of n : M phase locking from noisy data: Application to magnetoencephalography. Physical Review Letters, 81(15), 3291-3294. https://doi.org/10.1103/PhysRevLett.81.3291
doi: 10.1103/PhysRevLett.81.3291 URL |
[120] | Turk A., & Shattuck-Hufnagel S. (2013). What is speech rhythm? A commentary on Arvaniti and Rodriquez, Krivokapic, and Goswami and Leong. Laboratory Phonology, 4(1), 93-118. https://doi.org/10.1515/lp-2013-0005 |
[121] |
Vanthornhout J., Decruy L., Wouters J., Simon J. Z., & Francart T. (2018). Speech intelligibility predicted from neural entrainment of the speech envelope. Jaro-Journal of the Association for Research in Otolaryngology, 19(2), 181-191. https://doi.org/10.1007/s10162-018-0654-z
doi: 10.1007/s10162-018-0654-z URL |
[122] |
Vosskuhl J., Strüber D., & Herrmann C. S. (2018). Non- invasive brain stimulation: A paradigm shift in understanding brain oscillations. Frontiers in Human Neuroscience, 12, 1-19. https://doi.org/10.3389/fnhum.2018.00211
doi: 10.3389/fnhum.2018.00001 URL |
[123] |
Wade T., & Holt L. L. (2005). Perceptual effects of preceding nonspeech rate on temporal properties of speech categories. Perception & Psychophysics, 67(6), 939-950. https://doi.org/10.3758/bf03193621
doi: 10.3758/BF03193621 URL |
[124] |
White L. (2014). Communicative function and prosodic form in speech timing. Speech Communication, 63-64, 38-54. https://doi.org/10.1016/j.specom.2014.04.003
doi: 10.1016/j.specom.2014.04.003 URL |
[125] |
White L., Mattys S. L., & Wiget L. (2012). Language categorization by adults is based on sensitivity to durational cues, not rhythm class. Journal of Memory and Language, 66(4), 665-679. https://doi.org/10.1016/j.jml.2011.12.010
doi: 10.1016/j.jml.2011.12.010 URL |
[126] |
Wilsch A., Neuling T., Obleser J., & Herrmann C. S. (2018). Transcranial alternating current stimulation with speech envelopes modulates speech comprehension. Neuroimage, 172, 766-774. https://doi.org/10.1016/j.neuroimage.2018.01.038
doi: S1053-8119(18)30038-7 URL pmid: 29355765 |
[127] | Wu C., Cao S., Wu X., & Li L. (2013). Temporally pre-presented lipreading cues release speech from informational masking. Journal of the Acoustical Society of America, 133(4), 281-285. https://doi.org/10.1121/1.4794933 |
[128] |
Zhang W., & Ding N. (2017). Time-domain analysis of neural tracking of hierarchical linguistic structures. Neuroimage, 146, 333-340. https://doi.org/10.1016/j.neuroimage.2016.11.016
doi: S1053-8119(16)30614-0 URL pmid: 27856315 |
[129] |
Zion-Golumbic E., & Schroeder C. E. (2012). Attention modulates 'speech-tracking' at a cocktail party. Trends in Cognitive Sciences, 16(7), 363-364. https://doi.org/10.1016/j.tics.2012.05.004
doi: 10.1016/j.tics.2012.05.004 URL pmid: 22651956 |
[130] |
Zoefel B., Archer-Boyd A., & Davis M. H. (2018). Phase entrainment of brain oscillations causally modulates neural responses to intelligible speech. Current Biology, 28(3), 401-408. https://doi.org/10.1016/j.cub.2017.11.071
doi: 10.1016/j.cub.2017.11.071 URL |
[1] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[2] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
[3] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
[4] | 方岚, 郑苑仪, 金晗, 李晓庆, 杨玉芳, 王瑞明. 口语句子的韵律边界:窥探言语理解的秘窗[J]. 心理科学进展, 2021, 29(3): 425-437. |
[5] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
[6] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[7] | 钟楚鹏, 曲折, 丁玉珑. 刺激前alpha振荡对视知觉的影响[J]. 心理科学进展, 2020, 28(6): 945-958. |
[8] | 李萍, 张明明, 李帅霞, 张火垠, 罗文波. 面孔表情和声音情绪信息整合加工的脑机制[J]. 心理科学进展, 2019, 27(7): 1205-1214. |
[9] | 韩海宾, 许萍萍, 屈青青, 程茜, 李兴珊. 语言加工过程中的视听跨通道整合[J]. 心理科学进展, 2019, 27(3): 475-489. |
[10] | 汝涛涛, 李芸, 钱柳, 陈庆伟, 钟罗金, 李静华, 周国富. 环境光照的认知功效及其调节因素与作用机理[J]. 心理科学进展, 2019, 27(10): 1687-1702. |
[11] | 毛天欣, 熊晓, 李静华, 姚颖, 杨健, 李笑然, 周国富. 光照的警觉性作用[J]. 心理科学进展, 2018, 26(7): 1213-1222. |
[12] | 钱浩悦, 黄逸慧, 高湘萍. Gamma神经振荡和信息整合加工[J]. 心理科学进展, 2018, 26(3): 433-441. |
[13] | 袁祥勇, 张西磊, 王莹, 蒋毅. 视听整合增强视觉节律的神经振荡[J]. 心理科学进展, 2017, 25(suppl.): 53-53. |
[14] | 胡瑞晨, 蒋毅, 王莹. 时间规律促进对动态信息的视觉意识[J]. 心理科学进展, 2017, 25(suppl.): 60-60. |
[15] | 邱俊杰, 黄希庭, 于晓琳. 注意控制是否影响节律时间期待?[J]. 心理科学进展, 2017, 25(12): 2145-2156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||