心理科学进展 ›› 2022, Vol. 30 ›› Issue (8): 1832-1843.doi: 10.3724/SP.J.1042.2022.01832
收稿日期:
2021-07-08
出版日期:
2022-08-15
发布日期:
2022-06-23
通讯作者:
王福顺
E-mail:13814541138@163.com
基金资助:
LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun()
Received:
2021-07-08
Online:
2022-08-15
Published:
2022-06-23
Contact:
WANG Fushun
E-mail:13814541138@163.com
摘要:
基本情绪理论(basic emotion theory)是情绪科学领域最具代表性的理论, 该理论认为人类情绪是由有限的几种基本情绪组成的, 如恐惧、愤怒、喜悦、悲伤等。基本情绪是为了完成基本生命任务(fundamental life task)进化而来的, 每一种基本情绪都有独特的神经结构和生理基础。尽管基本情绪理论被广泛接受, 但是对于基本情绪的种类却莫衷一是。近几十年来, 许多fMRI研究试图确定各种基本情绪的独特神经结构基础, 而且取得了许多重要发现, 比如厌恶和脑岛有关, 悲伤和前扣带回有关, 杏仁核是与恐惧有关的重要边缘结构等。但是, 最近有人进行了元分析研究, 发现许多基本情绪存在混淆的大脑区域, 因此对基本情绪的特定脑区理论提出质疑, 甚至否定基本情绪理论。通过对基本情绪及其神经基础的探讨, 以及对基本情绪理论的最新功能性磁共振成像研究进行梳理分析, 提出有关基本情绪理论的争论来源于基本情绪种类的确定, 因为许多所谓的不同基本情绪实际上是同一种基本情绪, 提出人类可能只有3种基本情绪。未来研究可以利用机器视觉技术进一步推动基本情绪脑影像研究。
中图分类号:
梁飞, 江瑶, 肖婷炜, 董洁, 王福顺. (2022). 基本情绪的神经基础:来自fMRI与机器视觉技术研究的证据. 心理科学进展 , 30(8), 1832-1843.
LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun. (2022). Basic emotion and its neural basis: Evidence from fMRI and machine-vision studies. Advances in Psychological Science, 30(8), 1832-1843.
提出学者 | 基本情绪 | 理论基础 |
---|---|---|
Arnold ( | 愤怒, 厌恶, 勇气, 渴望, 绝望, 沮丧, 恐惧, 希望, 憎恨, 爱, 悲伤 | 与行动倾向的关系 |
Ekman, Friesen, & Ellsworth ( | 高兴, 愤怒, 恐惧, 悲伤, 惊讶, 厌恶 | 面孔表情的普遍性 |
Frijda ( | 渴望, 高兴, 兴趣, 惊奇, 疑惑, 悲伤 | 行动准备的形式 |
Gray ( | 愤怒, 恐惧, 焦虑, 愉悦 | 固有的 |
Izard ( | 愤怒, 蔑视, 厌恶, 痛苦, 恐惧, 愉悦, 内疚, 兴趣, 惊奇, 羞愧 | 固有的 |
William ( | 恐惧, 悲伤, 爱, 愤怒 | 身体卷入 |
McDougall ( | 愤怒, 厌恶, 高兴, 恐惧, 服从, 温和情绪, 疑惑 | 与本能的关系 |
Mowrer ( | 痛苦, 愉悦 | 未习得的情绪状态 |
Oatley & Johnson-Laird ( | 愤怒, 厌恶, 焦虑, 高兴, 悲伤 | 无需前置内容 |
Panksepp ( | 期待, 恐惧, 愤怒, 恐慌 | 固有的 |
Plutchik ( | 接纳, 愤怒, 预期, 厌恶, 愉悦, 恐惧, 悲伤, 惊奇 | 与适应性生物过程的关系 |
Tomkins ( | 愤怒, 兴趣, 蔑视, 厌恶, 痛苦, 恐惧, 愉悦, 害羞, 惊奇 | 神经放电密度 |
Watson ( | 恐惧, 爱, 愤怒 | 固有的 |
Weiner & Graham ( | 高兴, 悲伤 | 归因 |
Jack, Garrod, & Schyns ( | 恐惧, 愤怒, 愉悦, 悲伤 | 动态面部表情所提供的复杂信号系统 |
Gu, Wang, Wang, & Huang ( | 恐惧, 愤怒, 愉悦, 悲伤 | 单胺类神经递质的释放 |
表1 基本情绪的分类
提出学者 | 基本情绪 | 理论基础 |
---|---|---|
Arnold ( | 愤怒, 厌恶, 勇气, 渴望, 绝望, 沮丧, 恐惧, 希望, 憎恨, 爱, 悲伤 | 与行动倾向的关系 |
Ekman, Friesen, & Ellsworth ( | 高兴, 愤怒, 恐惧, 悲伤, 惊讶, 厌恶 | 面孔表情的普遍性 |
Frijda ( | 渴望, 高兴, 兴趣, 惊奇, 疑惑, 悲伤 | 行动准备的形式 |
Gray ( | 愤怒, 恐惧, 焦虑, 愉悦 | 固有的 |
Izard ( | 愤怒, 蔑视, 厌恶, 痛苦, 恐惧, 愉悦, 内疚, 兴趣, 惊奇, 羞愧 | 固有的 |
William ( | 恐惧, 悲伤, 爱, 愤怒 | 身体卷入 |
McDougall ( | 愤怒, 厌恶, 高兴, 恐惧, 服从, 温和情绪, 疑惑 | 与本能的关系 |
Mowrer ( | 痛苦, 愉悦 | 未习得的情绪状态 |
Oatley & Johnson-Laird ( | 愤怒, 厌恶, 焦虑, 高兴, 悲伤 | 无需前置内容 |
Panksepp ( | 期待, 恐惧, 愤怒, 恐慌 | 固有的 |
Plutchik ( | 接纳, 愤怒, 预期, 厌恶, 愉悦, 恐惧, 悲伤, 惊奇 | 与适应性生物过程的关系 |
Tomkins ( | 愤怒, 兴趣, 蔑视, 厌恶, 痛苦, 恐惧, 愉悦, 害羞, 惊奇 | 神经放电密度 |
Watson ( | 恐惧, 爱, 愤怒 | 固有的 |
Weiner & Graham ( | 高兴, 悲伤 | 归因 |
Jack, Garrod, & Schyns ( | 恐惧, 愤怒, 愉悦, 悲伤 | 动态面部表情所提供的复杂信号系统 |
Gu, Wang, Wang, & Huang ( | 恐惧, 愤怒, 愉悦, 悲伤 | 单胺类神经递质的释放 |
图2 基本情绪理论与建构取向(维度理论)的整合模型(integrative model)。整合理论认为基本情绪理论和维度理论不矛盾, 基本情绪之所以基本, 是因为它们落在了坐标轴上。因此, 它们代表了情绪的某一个特点:喜悦落在了横坐标的右侧, 代表了正性效价, 悲伤落在了横轴的左侧, 代表了负性效价, 恐惧(愤怒)代表了最强烈的唤醒度(Zheng et al., 2016; Gu et al., 2019a)。
图3 脑影像学关于基本情绪的实验结果(Locationist Hypotheses of Brain-Emotion Correspondence) A: Lateral view. B: Sagital view at the midline. C: Ventral view. D: Coronal view. Brain regions hypothesized to be associated with emotion categories are depicted. Fear: amygdala (yellow); Disgust: insula (green); Anger: OFC (rust); Sadness: ACC (blue) (资料来源:Lindquist et al., 2012).
[1] | 梁飞, 李红, 王福顺. (2021). 基本情绪的电生理活动: 来自ERP的证据. 应用心理学, 27 (1), 42-56. |
[2] | 王福顺, 成敬, 张艳萍, 姜长青. (2018). 情绪心理学. 北京: 人民卫生出版社. |
[3] |
An S., Han X., Wu B., Shi Z., Marks M., Wang S., Wu X., & Han S. (2018). Neural activation in response to the two sides of emotion. Neuroscience Letters, 684, 140-144.
doi: 10.1016/j.neulet.2018.07.011 URL |
[4] |
Anthony T. E., Dee N., Bernard A., Lerchner W., Heintz N., & Anderson D. J. (2014). Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell, 156(3), 522-536.
doi: 10.1016/j.cell.2013.12.040 pmid: 24485458 |
[5] | Arnold M. B. (1960). Emotion and personality. New York: Columbia University Press. |
[6] |
Bartra O., McGuire J. T., & Kable J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412-427.
doi: 10.1016/j.neuroimage.2013.02.063 pmid: 23507394 |
[7] |
Barrett L. F., Adolphs R., Marsella S., Martinez A. M., & Pollak S. D. (2019). Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychological Science in the Public Interest, 20(1), 1-68.
doi: 10.1177/1529100619832930 URL |
[8] |
Barrett L. F., Khan Z., Dy J., & Brooks D. (2018). Nature of emotion categories: Comment on Cowen and Keltner. Trends in Cognitive Sciences, 22(2), 97-99.
doi: 10.1016/j.tics.2017.12.004 URL |
[9] |
Behrens T. E., Woolrich M. W., Walton M. E., & Rushworth M. F. (2009). Learning the value of information in an uncertain world. Nature Neuroscience. 10, 1214-1221.
doi: 10.1038/nn1954 URL |
[10] |
Bogert B., Numminen-Kontti T., Gold B., Sams M., Numminen J., Burunat I., Lampinen J., & Brattico E. (2016). Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions. Neuropsychologia, 89, 393-402.
doi: 10.1016/j.neuropsychologia.2016.07.005 URL |
[11] |
Borgsted C., Ozenne B., Mc Mahon B., Madsen M. K., Hjordt L. V., Hageman I.,... Fisher P. M. (2018). Amygdala response to emotional faces in seasonal affective disorder. Journal of Affective Disorders, 229, 288-295.
doi: S0165-0327(16)32419-3 pmid: 29329062 |
[12] |
Britton J. C., Taylor S. F., Sudheimer K. D., & Liberzon I. (2006). Facial expressions and complex IAPS pictures: Common and differential networks. NeuroImage, 31(2), 906-919.
doi: 10.1016/j.neuroimage.2005.12.050 URL |
[13] |
Buades-Rotger M., & Krämer U. M. (2018). From words to action: Implicit attention to antisocial semantic cues predicts aggression and amygdala reactivity to angry faces in healthy young women. Aggressive Behavior, 44(6), 624-637.
doi: 10.1002/ab.21787 pmid: 30141188 |
[14] |
Celeghin A., Diano M., Bagnis A., Viola M., & Tamietto M. (2017). Basic emotions in human neuroscience: Neuroimaging and beyond. Frontiers in Psychology, 8, 1432-1432.
doi: 10.3389/fpsyg.2017.01432 pmid: 28883803 |
[15] | Chapman H. A., & Anderson A. K. (2012). Understanding disgust. Annals of the New York Academy of Sciences, 1251(1), 62-76. |
[16] |
Clore G. L., & Ortony A. (2013). Psychological construction in the OCC model of emotion. Emotion Review, 5(4), 335-343.
doi: 10.1177/1754073913489751 URL |
[17] |
Coccaro E. F., McCloskey M. S., Fitzgerald D. A., & Phan K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168-178.
pmid: 17210136 |
[18] |
Cowen A. S., Fang X., Sauter D., & Keltner D. (2020). What music makes us feel: At least 13 dimensions organize subjective experiences associated with music across different cultures. Proceedings of the National Academy of Sciences of the United States of America, 117(4), 1924-1934.
doi: 10.1073/pnas.1910704117 pmid: 31907316 |
[19] | Cowen A. S., & Keltner D. (2017). Self-report captures 27 distinct categories of emotion bridged by continuous gradients. Proceedings of the National Academy of Sciences of the United States of America, 114(38), E7900-E7909. |
[20] |
da Cunha-Bang S., Fisher P. M., Hjordt L. V., Holst K., & Knudsen G. M. (2019). Amygdala reactivity to fearful faces correlates positively with impulsive aggression. Social Neuroscience, 14(2), 162-172.
doi: 10.1080/17470919.2017.1421262 pmid: 29271284 |
[21] | DeLancey C. (2002). Passionate engines: What emotions reveal about mind and artificial intelligence. Oxford: Oxford University Press. |
[22] |
Dolensek N., Gehrlach D. A., Klein A. S., & Gogolla N. (2020). Facial expressions of emotion states and their neuronal correlates in mice. Science, 368(6486), 89-94.
doi: 10.1126/science.aaz9468 pmid: 32241948 |
[23] |
Dolensek N., & Gogolla N. (2021). Machine-learning approaches to classify and understand emotion states in mice. Neuropsychopharmacology, 46(1), 250-251.
doi: 10.1038/s41386-020-00857-8 URL |
[24] |
Dzafic I., Oestreich L., Martin A. K., Mowry B., & Burianová H. (2019). Stria terminalis, amygdala, and temporoparietal junction networks facilitate efficient emotion processing under expectations. Human Brain Mapping, 40(18), 5382-5396.
doi: 10.1002/hbm.24779 URL |
[25] | Ekman P. (1972). Emotion in the human face. New York, NY: Pergamon Press. |
[26] |
Ekman P. (1992). An argument for basic emotions? Cognition and Emotion, 6, 169-200.
doi: 10.1080/02699939208411068 URL |
[27] | Ekman P. (1999). Basic emotions. In T. Dalgleish & M. J. Power (Eds). Handbook of cognition and emotion (pp.45-60). Chichester: John Wiley and Sons. |
[28] | Ekman P., & Davidson R. J.(Eds.). (1994). The nature of emotion: Fundamental questions. New York, NY: Oxford University Press. |
[29] | Ekman P., Friesen W. V., & Ellsworth P. (1982). What emotion categories or dimensions can observers judge from facial behavior? In P. Ekman (Ed.), Emotion in the human face (pp. 39-55). New York: Cambridge University Press. |
[30] |
Ekman P., Sorenson E. R., & Friesen W. V. (1969). Pan- cultural elements in the facial display of emotions. Science, 164, 86-88.
pmid: 5773719 |
[31] |
Fouragnan E., Retzler C., & Philiastides M. G. (2018). Separate neural representations of prediction error valence and surprise: Evidence from an fMRI meta-analysis. Human Brain Mapping, 39(7), 2887-2906.
doi: 10.1002/hbm.24047 pmid: 29575249 |
[32] | Frijda N. H. (1987). Comment on Oatley and Johnson- Lairdʼs “Towards a cognitive theory of emotions” . Cognition & Emotion, 1, 51-58. |
[33] |
Fulwiler C. E., King J. A., & Zhang N. (2012). Amygdala- orbitofrontal resting-state functional connectivity is associated with trait anger. Neuroreport, 23(10), 606-610.
doi: 10.1097/WNR.0b013e3283551cfc pmid: 22617448 |
[34] |
Ghaffari S., Soleimani P., Li K. F., & Capson D. W. (2020). A novel hardware-software co-design and implementation of the HOG algorithm. Sensors, 20(19), 5655.
doi: 10.3390/s20195655 URL |
[35] |
Graham A. M., Buss C., Rasmussen J. M., Rudolph M. D., Demeter D. V., Gilmore J. H.,... Fair D. A. (2016). Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. Developmental Cognitive Neuroscience, 18, 12-25.
doi: S1878-9293(15)30059-1 pmid: 26499255 |
[36] | Gray J. A. (1982). The neuropsychology of anxiety. Oxford: Oxford University Press. |
[37] | Griffiths P. E. (1997). What emotions really are: The problem of psychological categories. Chicago, IL: University of Chicago Press. |
[38] |
Gu S., Gao M., Yan Y., Wang F., Tang Y.-Y., & Huang J. H. (2018). The neural mechanism underlying cognitive and emotional processes in creativity. Frontiers in Psychology, 9, 1924.
doi: 10.3389/fpsyg.2018.01924 URL |
[39] |
Gu S., Wang F., Cao C., Wu E., Tang Y.-Y., & Huang J. H. (2019a). An integrative way for studying neural basis of basic emotions with fMRI. Frontiers in Neuroscience, 13, 628-628.
doi: 10.3389/fnins.2019.00628 URL |
[40] |
Gu S., Wang F., Patel N. P., Bourgeois J. A., & Huang J. H. (2019b). A model for basic emotions using observations of behavior in drosophila. Frontiers in Psychology, 10, 781.
doi: 10.3389/fpsyg.2019.00781 URL |
[41] | Gu S., Wang W., Wang F., & Huang J. H. (2016). Neuromodulator and emotion biomarker for stress induced mental disorders. Neural Plasticity, 2016, 2609128. |
[42] |
Han W., Tellez L. A., Rangel M. J., Jr, Motta S. C., Zhang X., Perez I. O.,... de Araujo I. E. (2017). Integrated control of predatory hunting by the central nucleus of the amygdala. Cell, 168(1-2), 311-324.e18.
doi: 10.1016/j.cell.2016.12.027 URL |
[43] |
Hutto D. D., Robertson I., & Kirchhoff M. D. (2018). A new, better BET: Rescuing and revising basic emotion theory. Frontiers in Psychology, 9, 1217-1217.
doi: 10.3389/fpsyg.2018.01217 URL |
[44] |
Isosaka T., Matsuo T., Yamaguchi T., Funabiki K., Nakanishi S., Kobayakawa R., & Kobayakawa K. (2015). Htr2a- Expressing cells in the central amygdala control the hierarchy between innate and learned fear. Cell, 163(5), 1153-1164.
doi: S0092-8674(15)01403-8 pmid: 26590419 |
[45] | Izard C. E. (1971). The face of emotion. Appleton-Century- Crofts. |
[46] |
Jack R. E., Garrod O., & Schyns P. G. (2014). Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Current Biology, 24(2), 187-192.
doi: 10.1016/j.cub.2013.11.064 URL |
[47] |
Jack R. E., Sun W., Delis I., Garrod O. G., & Schyns P. G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708-730.
doi: 10.1037/xge0000162 URL |
[48] | James W. (1884). What is an emotion? Mind, 9, 188-205. |
[49] |
Kapucu A., Kılıç A., Özkılıç Y., & Sarıbaz B. (2021). Turkish emotional word norms for arousal, valence, and discrete emotion categories. Psychological Reports, 124(1), 188-209.
doi: 10.1177/0033294118814722 URL |
[50] |
Keltner D., Sauter D., Tracy J., & Cowen A. (2019). Emotional Expression: Advances in basic emotion theory. Journal of Nonverbal Behavior, 43(2), 133-160.
doi: 10.1007/s10919-019-00293-3 pmid: 31395997 |
[51] |
Keltner D., Tracy J. L., Sauter D., & Cowen A. (2019). What basic emotion theory really says for the twenty-first century study of emotion. Journal of Nonverbal Behavior, 43(2), 195-201.
doi: 10.1007/s10919-019-00298-y pmid: 31404243 |
[52] |
Kim M. J., Mattek A. M., Bennett R. H., Solomon K. M., Shin J., & Whalen P. J. (2017). Human amygdala tracks a feature-based valence signal embedded within the facial expression of surprise. The Journal of Neuroscience, 37(39), 9510-9518.
doi: 10.1523/JNEUROSCI.1375-17.2017 URL |
[53] | Kluczniok D., Hindi Attar C., Stein J., Poppinga S., Fydrich T., Jaite C.,... Bermpohl F. (2017). Dissociating maternal responses to sad and happy facial expressions of their own child: An fMRI study. PloS One, 12(8), e0182476. |
[54] | Kragel P. A., Reddan M. C., LaBar K. S., & Wager T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5(7), eaaw4358. |
[55] |
Lane R. D., Reiman E. M., Ahern G. L., Schwartz G. E., & Davidson R. J. (1997). Neuroanatomical correlates of happiness, sadness, and disgust. The American Journal of Psychiatry, 154(7), 926-933.
doi: 10.1176/ajp.154.7.926 URL |
[56] |
LeDoux J., Phelps L., & Alberini C. (2016). What we talk about when we talk about emotions. Cell, 167(6), 1443-1445.
doi: 10.1016/j.cell.2016.11.029 URL |
[57] | Levenson R. W. (2003). Blood, sweat, and fears. Annals of the New York Academy of Sciences, 1000(1), 348-366. |
[58] | Liang F., Feng R., Gu S., Jiang S., Zhang X., Li N.,... Wang F.. (2021). Neurotransmitters and electrophysiological changes might work as biomarkers for diagnosing affective disorders. Disease Markers, 2021, 9116502. |
[59] |
Lindquist K. A., Siegel E. H., Quigley K. S., & Barrett L. F. (2013). The hundred-year emotion war: Are emotions natural kinds or psychological constructions? Comment on Lench, Flores, and Bench (2011). Psychological Bulletin, 139(1), 255-263.
doi: 10.1037/a0029038 pmid: 23294094 |
[60] |
Lindquist K. A., Wager T. D., Kober H., Bliss-Moreau E., & Barrett L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121-143.
doi: 10.1017/S0140525X11000446 pmid: 22617651 |
[61] | Loued-Khenissi L., Pfeuffer A., Einhäuser W., & Preuschoff K. (2020). Anterior insula reflects surprise in value-based decision-making and perception. NeuroImage, 210, 116549. |
[62] | McDougall W. (1926). An introduction to social psychology. Boston: Luce. |
[63] | Mowrer O. H. (1960). Learning theory and behavior. New York: Wiley. |
[64] |
Murty V. P., LaBar K. S., & Adcock R. A. (2016). Distinct medial temporal networks encode surprise during motivation by reward versus punishment. Neurobiology of Learning and Memory, 134 (Pt A),55-64.
doi: 10.1016/j.nlm.2016.01.018 URL |
[65] |
Oaten M., Stevenson R. J., Williams M. A., Rich A. N., Butko M., & Case T. I. (2018). Moral violations and the experience of disgust and anger. Frontiers in Behavioral Neuroscience, 12, 179.
doi: 10.3389/fnbeh.2018.00179 URL |
[66] | Oatley K., & Johnson-Laird P. N. (1987). Towards a cognitive theory of emotions. Cognition & Emotion, 1, 29-50. |
[67] |
Ortony A., & Turner T. J. (1990). Whatʼs basic about basic emotions? Psychological Review, 97(3), 315-331.
pmid: 1669960 |
[68] |
Panksepp J. (1982). Toward a general psychobiological theory of emotions. The Behavioral and Brain Sciences, 5(3), 407-467.
doi: 10.1017/S0140525X00012759 URL |
[69] |
Pessoa L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5), 357-371.
doi: S1364-6613(17)30036-0 pmid: 28363681 |
[70] |
Phan K. L., Wager T., Taylor S. F., & Liberzon I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2), 331-348.
doi: 10.1006/nimg.2002.1087 URL |
[71] | Plutchik R. (1980). A general psychoevolutionary theory of emotion. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory, research, and experience: Vol. 1. Theories of emotion (pp. 3-31). New York: Academic Press. |
[72] |
Rahko J., Paakki J.-J., Starck T., Nikkinen J., Remes J., Hurtig T.,... Kiviniemi V. (2010). Functional mapping of dynamic happy and fearful facial expression processing in adolescents. Brain Imaging and Behavior, 4(2), 164-176.
doi: 10.1007/s11682-010-9096-x URL |
[73] | Ramirez-Mahaluf J. P., Perramon J., Otal B., Villoslada P., & Compte A. (2018). Subgenual anterior cingulate cortex controls sadness-induced modulations of cognitive and emotional network hubs. Scientific Reports, 8(1), 8566. |
[74] |
Reynaud E., Guedj E., Trousselard M., El Khoury- Malhame M., Zendjidjian X., Fakra E.,... Khalfa S. (2015). Acute stress disorder modifies cerebral activity of amygdala and prefrontal cortex. Cognitive Neuroscience, 6(1), 39-43.
doi: 10.1080/17588928.2014.996212 URL |
[75] |
Russell J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178.
doi: 10.1037/h0077714 URL |
[76] |
Saarimäki H., Gotsopoulos A., Jääskeläinen I. P., Lampinen J., Vuilleumier P., Hari R.,... Nummenmaa L. (2016). Discrete neural signatures of basic emotions. Cereb Cortex, 26(6), 2563-2573.
doi: 10.1093/cercor/bhv086 pmid: 25924952 |
[77] |
Satpute A. B., & Lindquist K. A. (2019). The default mode networkʼs role in discrete emotion. Trends in Cognitive Sciences, 23(10), 851-864.
doi: S1364-6613(19)30178-0 pmid: 31427147 |
[78] |
Scarantino A., & Griffiths P. (2011). Don’t give up on basic emotions. Emotion Review, 3(4), 444-454.
doi: 10.1177/1754073911410745 URL |
[79] |
Schwartz J., Ordaz S. J., Kircanski K., Ho T. C., Davis E. G., Camacho M. C., & Gotlib I. H. (2019). Resting-state functional connectivity and inflexibility of daily emotions in major depression. Journal of Affective Disorders, 249, 26-34.
doi: S0165-0327(18)31891-3 pmid: 30743019 |
[80] |
Sokolov A. A., Zeidman P., Erb M., Pollick F. E., Fallgatter A. J., Ryvlin P., Friston K. J., & Pavlova M. A. (2020). Brain circuits signaling the absence of emotion in body language. Proceedings of the National Academy of Sciences of the United States of America, 117(34), 20868-20873.
doi: 10.1073/pnas.2007141117 pmid: 32764147 |
[81] |
Song Y., & Hakoda Y. (2018). Selective impairment of basic emotion recognition in people with autism: Discrimination thresholds for recognition of facial expressions of varying intensities. Journal of Autism and Developmental Disorders, 48(6), 1886-1894.
doi: 10.1007/s10803-017-3428-2 URL |
[82] | Suardi A., Sotgiu I., Costa T., Cauda F., & Rusconi M. (2016). The neural correlates of happiness: A review of PET and fMRI studies using autobiographical recall methods. Cognitive, Affective and Behavioral Neuroscience, 16(3), 383-392. |
[83] | Thomas E., Buss C., Rasmussen J. M., Entringer S., Ramirez J. S. B., Marr M.,... Graham A. M. (2019). Newborn amygdala connectivity and early emerging fear. Developmental Cognitive Neuroscience, 37, 100604. |
[84] | Tomkins S. S. (1984). Affect theory. In K. R. Scherer & P. Ekman (Eds.), Approaches to emotion (pp. 163-195). Hillsdale, NJ: Erlbaum. |
[85] |
Tonnaer F., Siep N., van Zutphen L., Arntz A., & Cima M. (2017). Anger provocation in violent offenders leads to emotion dysregulation. Scientific Reports, 7(1), 3583.
doi: 10.1038/s41598-017-03870-y pmid: 28620226 |
[86] |
Touroutoglou A., Lindquist K. A., Dickerson B. C., & Barrett L. F. (2015). Intrinsic connectivity in the human brain does not reveal networks for 'basic' emotions. Social Cognitive and Affective Neuroscience, 10(9), 1257-1265.
doi: 10.1093/scan/nsv013 pmid: 25680990 |
[87] |
Vetter N. C., Drauschke M., Thieme J., & Altgassen M. (2018). Adolescent basic facial emotion recognition is not influenced by puberty or own-age bias. Frontiers in Psychology, 9, 956.
doi: 10.3389/fpsyg.2018.00956 pmid: 29977212 |
[88] |
Viol K., Aas B., Kastinger A., Kronbichler M., Schöller H. J., Reiter E.-M.,... Schiepek G. K. (2019). Erroneously disgusted: fMRI study supports disgust-related neural reuse in obsessive-compulsive disorder (OCD). Frontiers in Behavioral Neuroscience, 13, 81.
doi: 10.3389/fnbeh.2019.00081 URL |
[89] |
Vytal K., & Hamann S. (2010). Neuroimaging support for discrete neural correlates of basic emotions: A voxel-based meta-analysis. The Journal of Cognitive Neuroscience, 22(12), 2864-2885.
doi: 10.1162/jocn.2009.21366 URL |
[90] | Wang F., Pan F., Shapiro L. A., & Huang J. H. (2017). Stress induced neuroplasticity and mental disorders. Neural Plasticity, 2017, 9634501. |
[91] |
Wang H., Chen Y., & Zhang Q.. (2018). The effects of low and high levels of sadness on scope of attention: An ERP study. Frontiers in Psychology, 9, 2397-2397.
doi: 10.3389/fpsyg.2018.02397 URL |
[92] | Wang Y., Kong F., Kong X., Zhao Y., Lin D., & Liu J. (2017). Unsatisfied relatedness, not competence or autonomy, increases trait anger through the right amygdala. Cognitive, Affective & Behavioral Neuroscience, 17(5), 932-938. |
[93] | Watson J. B. (1930). Behaviorism. Chicago: University of Chicago Press. |
[94] | Weiner B., & Graham S. (1984). An attributional approach to emotional development. In C. E. Izard, J. Kagan, & R. B. Zajonc (Eds.), Emotions, cognition, and behavior (pp. 167-191). New York: Cambridge University Press. |
[95] | Williams R. (2017). Anger as a basic emotion and its role in personality building and pathological growth: The neuroscientific, developmental and clinical perspectives. Frontiers in Psychology, 8, 1950. |
[96] |
Wilson-Mendenhall C. D., Barrett L. F., & Barsalou L. W. (2013). Neural evidence that human emotions share core affective properties. Psychological Science. 24(6), 947-956.
doi: 10.1177/0956797612464242 pmid: 23603916 |
[97] |
Wright P., He G., Shapira N. A., Goodman W. K., & Liu Y. (2004). Disgust and the insula: FMRI responses to pictures of mutilation and contamination. Neuroreport, 15(15), 2347-2351.
pmid: 15640753 |
[98] |
Xiao M., Zhu W., Wei J., Lei X., & Xia L.-X. (2019). The relationship among resting-state brain activity and connectivity, agreeableness and displaced aggression: Two possible mediation models. Journal of Affective Disorders, 256, 641-649.
doi: 10.1016/j.jad.2019.06.046 URL |
[99] |
Ying X., Luo J., Chiu C.-Y., Wu Y., Xu Y., & Fan J. (2018). Functional dissociation of the posterior and anterior insula in moral disgust. Frontiers in Psychology, 9, 860.
doi: 10.3389/fpsyg.2018.00860 URL |
[100] |
Zhan J., Ren J., Fan J., & Luo J. (2015). Distinctive effects of fear and sadness induction on anger and aggressive behavior. Frontiers in Psychology, 6, 725.
doi: 10.3389/fpsyg.2015.00725 pmid: 26124725 |
[101] | Zhan J., Ren J., Sun P., Fan J., Liu C., & Luo J. (2018). The Neural Basis of Fear Promotes Anger and Sadness Counteracts Anger. Neural Plasticity, 2018, 3479059. |
[102] | Zhan J., Tang F., He M., Fan J., Xiao J., Liu C., & Luo J. (2017). Regulating Rumination by Anger: Evidence for the Mutual Promotion and Counteraction (MPMC) Theory of Emotionality. Frontiers in Psychology, 8, 1871. |
[103] | Zheng Z., Gu S., Lei Y., Lu S., Wang W., Li Y., & Wang F. (2016). Safety needs mediate stressful events induced mental disorders. Neural Plasticity, 2016, 8058093. |
[104] |
Ziegler J. C., Montant M., Briesemeister B. B., Brink T. T., Wicker B., Ponz A.,... Braun M. (2018). Do words stink? Neural reuse as a principle for understanding emotions in reading. Journal of Cognitive Neuroscience, 30(7), 1023-1032.
doi: 10.1162/jocn_a_01268 URL |
[1] | 肖婷炜, 董洁, 梁飞, 王福顺, 李洋. 厌恶情绪与自杀行为的关系[J]. 心理科学进展, 2023, 31(1): 87-98. |
[2] | 周振友, 孔丽, 陈楚侨. 精神分裂症肠道微生物与脑影像和临床表征的关系[J]. 心理科学进展, 2022, 30(8): 1856-1869. |
[3] | 俞稼钰, 靳羽西, 梁丹丹. 自闭症谱系障碍人群词义加工的脑激活模式:基于fMRI研究的元分析[J]. 心理科学进展, 2022, 30(11): 2448-2460. |
[4] | 谢莹, 刘昱彤, 陈明亮, 梁安迪. 品牌消费旅程中消费者的认知心理过程——神经营销学视角[J]. 心理科学进展, 2021, 29(11): 2024-2042. |
[5] | 那宇亭, 赵宇雯, 关丽丽. 自我面孔识别的神经机制:基于fMRI研究的ALE元分析[J]. 心理科学进展, 2021, 29(10): 1783-1795. |
[6] | 沈蕾, 江黛苔, 陈宁, 刘伟. 自豪感的神经基础:比较的视角[J]. 心理科学进展, 2021, 29(1): 131-139. |
[7] | 冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988. |
[8] | 李萍, 张明明, 李帅霞, 张火垠, 罗文波. 面孔表情和声音情绪信息整合加工的脑机制[J]. 心理科学进展, 2019, 27(7): 1205-1214. |
[9] | 杨剑峰, 党敏, 张瑞, 王小娟. 汉字阅读的语义神经回路及其与语音回路的协作机制[J]. 心理科学进展, 2018, 26(3): 381-390. |
[10] | 韩艳;舍英;高笑. 肥胖成因的解释——基于食物奖赏研究的视角[J]. 心理科学进展, 2017, 25(3): 452-462. |
[11] | 白琳;陈晨;陈绘雯. 消费罪恶感:维度、过程及实证研究前沿探析[J]. 心理科学进展, 2015, 23(10): 1818-1829. |
[12] | 张晓露;陈旭. 成人依恋风格在信息加工中表现出差异性的神经机制[J]. 心理科学进展, 2014, 22(3): 448-457. |
[13] | 张阳阳;饶俪琳;梁竹苑;周媛;李纾. 风险决策过程验证:补偿/非补偿模型之争的新认识与新证据[J]. 心理科学进展, 2014, 22(2): 205-219. |
[14] | 崔茜;蒋军;杨文静;张庆林. 欺骗的神经机制和测谎应用:来自fMRI研究的证据[J]. 心理科学进展, 2013, 21(9): 1629-1642. |
[15] | 李林;黄希庭. 价值观的神经机制:另一种研究视角[J]. 心理科学进展, 2013, 21(8): 1400-1407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||