心理科学进展 ›› 2022, Vol. 30 ›› Issue (8): 1844-1855.doi: 10.3724/SP.J.1042.2022.01844
收稿日期:
2021-04-20
出版日期:
2022-08-15
发布日期:
2022-06-23
通讯作者:
杨倩
E-mail:qianyang_psy@163.com
基金资助:
Received:
2021-04-20
Online:
2022-08-15
Published:
2022-06-23
Contact:
YANG Qian
E-mail:qianyang_psy@163.com
摘要:
负性情绪如何影响冲突适应一直以来受到领域内研究者们的广泛关注。根据负性情绪产生的源头(冲突外部操纵vs.冲突内部固有), 对于该问题的论述可以分别从认知与情绪的分离与整合视角展开。分离视角下, 操纵于冲突之外的负性情绪(外部负性情绪)独立于冲突加工过程, 通过情绪加工系统或个体自身的动机/唤醒水平影响冲突适应。近些年来的研究发现冲突加工自动产生负性情绪(固有负性情绪), 寓示着认知冲突与负性情绪间的内在关联, 固有负性情绪因此可被视作诱发冲突适应的另一个有效来源。整合视角下, 操纵于冲突内部的(固有)负性情绪高度整合于冲突加工过程, 其功能与冲突信息类似, 通过内在地促进目标导向行为直接诱发冲突适应。对这一主题的论述加深了我们对负性情绪如何作用于冲突适应过程的理解, 也为探索认知与情绪系统的整合过程及作用机制提供了一个全新的视角, 在此基础上, 我们也提出一些未来可行的研究方向。
中图分类号:
杨倩. (2022). 负性情绪在冲突适应中的作用机制:分离与整合视角. 心理科学进展 , 30(8), 1844-1855.
YANG Qian. (2022). The underlying mechanisms of negative affect in (cognitive) conflict adaptation: Separated vs. integrated insights. Advances in Psychological Science, 30(8), 1844-1855.
图1 A. 冲突监测模型框架下(Conflict-monitoring theory, Botvinick et al., 2001), 冲突信息是诱发冲突适应的主要来源, 操纵于冲突之外的负性情绪通过情绪加工系统和个体的动机/唤醒水平调节冲突适应。B. 情绪信号假说理论框架下(Affective Signaling Hypothesis; Dignath et al., 2020), 伴随冲突加工产生的负性情绪(如图中的不愉快表情所示)是诱发冲突适应的主要来源。C. 冲突信息与伴随其产生的固有负性情绪都是诱发冲突适应的有效来源。
[1] | 刘烨, 付秋芳, 傅小兰. (2009). 认知与情绪的交互作用. 科学通报, 54(18), 2783-2796. |
[2] | 罗培, 胡学平, 王小影, 王婷, 陈安涛. (2016). 负性情绪加工与体验以相反方式影响冲突适应. 中国科学, 46(3), 330-338. |
[3] | 张孟可, 李晴, 尹首航, 陈安涛. (2021). 冲突水平的变化诱发冲突适应. 心理学报, 53(2), 128-138. |
[4] |
Aarts K., de Houwer J., & Pourtois G. (2012). Evidence for the automatic evaluation of self-generated actions. Cognition, 124(2), 117-127.
doi: 10.1016/j.cognition.2012.05.009 URL |
[5] |
Becker M. W., & Leinenger M. (2011). Attentional selection is biased toward mood-congruent stimuli. Emotion, 11(5), 1248-1254.
doi: 10.1037/a0023524 pmid: 21604872 |
[6] | Berger A., Mitschke V., Dignath D., Eder A., & van Steenbergen H. (2020). The face of control: Corrugator supercilii tracks aversive conflict signals in the service of adaptive cognitive control. Psychophysiology, 57(4), e13524. |
[7] |
Botvinick M., & Braver T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83-113.
doi: 10.1146/annurev-psych-010814-015044 pmid: 25251491 |
[8] |
Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., & Cohen J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652.
pmid: 11488380 |
[9] |
Bradley M. M. (2009). Natural selective attention: Orienting and emotion. Psychophysiology, 46(1), 1-11.
doi: 10.1111/j.1469-8986.2008.00702.x URL |
[10] |
Braem S., King J. A., Korb F. M., Krebs R. M., Notebaert W., & Egner T. (2017). The role of anterior cingulate cortex in the affective evaluation of conflict. Journal of Cognitive Neuroscience, 29(1), 137-149.
doi: 10.1162/jocn_a_01023 URL |
[11] | Braem S., Coenen E., Bombeke K., van Bochove M. E., & Notebaert W. (2015). Open your eyes for prediction errors. Cognitive, Affective and Behavioral Neuroscience, 15(2), 374-380. |
[12] |
Braver T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106-113.
doi: 10.1016/j.tics.2011.12.010 pmid: 22245618 |
[13] |
Brouillet T., Ferrier L. P., Grosselin A., & Brouillet D. (2011). Action compatibility effects are hedonically marked and have incidental consequences on affective judgment. Emotion, 11(5), 1202-1205.
doi: 10.1037/a0024742 pmid: 21875190 |
[14] |
Cacioppo J. T., Petty R. E., Losch M. E., & Kim H. S. (1986). Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. Journal of Personality and Social Psychology, 50(2), 260-268.
pmid: 3701577 |
[15] |
Carretié L., Hinojosa J. A., Martín‐Loeches M., Mercado F., & Tapia M. (2004). Automatic attention to emotional stimuli: neural correlates. Human Brain Mapping, 22(4), 290-299.
pmid: 15202107 |
[16] |
Choi J., Padmala S., & Pessoa L. (2012). Impact of state anxiety on the interaction between threat monitoring and cognition. Neuroimage, 59(2), 1912-1923.
doi: 10.1016/j.neuroimage.2011.08.102 URL |
[17] |
Damasio A. R., Grabowski T. J., Bechara A., Damasio H., Ponto L. L., Parvizi J., & Hichwa R. D. (2000). Subcortical and cortical brain activity during the feeling of self- generated emotions. Nature Neuroscience, 3(10), 1049-1056.
pmid: 11017179 |
[18] | Damen T. G., Strick M., Taris T. W., & Aarts H. (2018). When conflict influences liking: The case of the Stroop task. PloS One, 13(7), e0199700. |
[19] |
Desender K., van Opstal F., & van den Bussche E. (2014). Feeling the conflict: The crucial role of conflict experience in adaptation. Psychological Science, 25(3), 675-683.
doi: 10.1177/0956797613511468 pmid: 24395737 |
[20] |
Diede N. T., & Bugg J. M. (2017). Cognitive effort is modulated outside of the explicit awareness of conflict frequency: Evidence from pupillometry. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(5), 824-835.
doi: 10.1037/xlm0000349 URL |
[21] |
Dignath D., Berger A., Spruit I. M., & van Steenbergen H. (2019). Temporal dynamics of error-related corrugator supercilii and zygomaticus major activity: Evidence for implicit emotion regulation following errors. International Journal of Psychophysiology, 146, 208-216.
doi: S0167-8760(19)30512-4 pmid: 31648024 |
[22] | Dignath D., & Eder A. B. (2015). Stimulus conflict triggers behavioral avoidance. Cognitive, Affective & Behavioral Neuroscience, 15(4), 822-836. |
[23] |
Dignath D., Eder A. B., Steinhauser M., & Kiesel A. (2020). Conflict monitoring and the affective-signaling hypothesis—An integrative review. Psychonomic Bulletin & Review, 27(2), 193-216.
doi: 10.3758/s13423-019-01668-9 URL |
[24] |
Dreisbach G., & Fischer R. (2011). If it’s hard to read… try harder! Processing fluency as signal for effort adjustments. Psychological Research, 75(5), 376-383.
doi: 10.1007/s00426-010-0319-y pmid: 21210144 |
[25] |
Dreisbach G., & Fischer R. (2012). Conflicts as aversive signals. Brain and Cognition, 78(2), 94-98.
doi: 10.1016/j.bandc.2011.12.003 pmid: 22218295 |
[26] |
Dreisbach G., & Fischer R. (2015). Conflicts as aversive signals for control adaptation. Current Directions in Psychological Science, 24(4), 255-260.
doi: 10.1177/0963721415569569 URL |
[27] | Dreisbach G., & Fischer R. (2016). Conflicts as aversive signals:Motivation for control adaptation in the service of affect regulation. In T. S. Braver (Ed.), Motivation and cognitive control (pp. 188-210). New York, Routledge: Taylor and Francis. |
[28] |
Dreisbach G., Reindl A. L., & Fischer R. (2018). Conflict and disfluency as aversive signals: Context-specific processing adjustments are modulated by affective location associations. Psychological Research, 82(2), 324-336.
doi: 10.1007/s00426-016-0822-x pmid: 27826656 |
[29] | Egner T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 380-390. |
[30] | Egner T. (2017). Past, present, and future of the congruency sequence effect as an index of cognitive control. In T. Egner (Ed.), The Wiley Handbook of Cognitive Control (pp. 64-78). Wiley Blackwell. |
[31] |
Egner T., & Hirsch J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage, 24, 539-547.
doi: 10.1016/j.neuroimage.2004.09.007 URL |
[32] |
Fazio R. H. (2001). On the automatic activation of associated evaluations: An overview. Cognition and Emotion, 15(2), 115-141.
doi: 10.1080/02699930125908 URL |
[33] | Fiedler K. (2001). Affective influences on social information processing. In J. P. Forgas (Ed.), The Handbook of Affect and Social Cognition (pp. 163-185). Mahwah, NJ: Erlbaum. |
[34] | Fiehler K., Ullsperger M., Grigutsch M., & von Cramon D. Y. (2004). Cardiac responses to error processing and response conflict. In M. Ullsperger & M. Falkenstein (Eds.), Errors, conflicts, and the brain: Current Opinions on Performance Monitoring (pp. 135-140). Leipzig: MPI for Human Cognitive and Brain Sciences. |
[35] | Fritz J., & Dreisbach G. (2013). Conflicts as aversive signals: Conflict priming increases negative judgments for neutral stimuli. Cognitive, Affective, & Behavioral Neuroscience, 13(2), 311-317. |
[36] |
Fritz J., & Dreisbach G. (2015). The time course of the aversive conflict signal. Experimental Psychology, 62(1), 30-39.
doi: 10.1027/1618-3169/a000271 URL |
[37] |
Fröber K., Stürmer B., Frömer R., & Dreisbach G. (2017). The role of affective evaluation in conflict adaptation: An LRP study. Brain and Cognition, 116, 9-16.
doi: 10.1016/j.bandc.2017.05.003 URL |
[38] |
Ghashghaei H. T., Hilgetag C. C., & Barbas H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage, 34(3), 905-923.
pmid: 17126037 |
[39] |
Gross J. J., & John O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348-362.
doi: 10.1037/0022-3514.85.2.348 URL |
[40] | Hengstler M., Holland R. W., van Steenbergen H., & van Knippenberg A. (2014). The influence of approach- avoidance motivational orientation on conflict adaptation. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 548-560. |
[41] |
Hirsh J. B., & Inzlicht M. (2010). Error-related negativity predicts academic performance. Psychophysiology, 47(1), 192-196.
doi: 10.1111/j.1469-8986.2009.00877.x URL |
[42] |
Hobson N. M., Saunders B., Al-Khindi T., & Inzlicht M. (2014). Emotion down-regulation diminishes cognitive control: A neurophysiological investigation. Emotion, 14(6), 1014-1026.
doi: 10.1037/a0038028 URL |
[43] |
Inzlicht M., Bartholow B. D., & Hirsh J. B. (2015). Emotional foundations of cognitive control. Trends in Cognitive Sciences, 19(3), 126-132.
doi: 10.1016/j.tics.2015.01.004 pmid: 25659515 |
[44] |
Ivanchei I., Braem S., Vermeylen L., & Notebaert W. (2021). You will like it in the end. Correct responses alleviate the negative evaluation of conflict. Quarterly Journal of Experimental Psychology, 74, 1083-1095.
doi: 10.1177/1747021820986146 URL |
[45] |
Jacobs S. C., Friedman R., Parker J. D., Tofler G. H., Jimenez A. H., Muller J. E.,... Stone P. H. (1994). Use of skin conductance changes during mental stress testing as an index of autonomic arousal in cardiovascular research. American Heart Journal, 128(6), 1170-1177.
doi: 10.1016/0002-8703(94)90748-X URL |
[46] | Kanske P. (2012). On the influence of emotion on conflict processing. Frontiers in Integrative Neuroscience, 6, 42. |
[47] | Kerns J. G., Cohen J. D., MacDonald A. W., Cho R. Y., Stenger V. A., & Carter C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023-1026. |
[48] |
Koban L., & Pourtois G. (2014). Brain systems underlying the affective and social monitoring of actions: An integrative review. Neuroscience & Biobehavioral Reviews, 46, 71-84.
doi: 10.1016/j.neubiorev.2014.02.014 URL |
[49] |
Kobayashi N., Yoshino A., Takahashi Y., & Nomura S. (2007). Autonomic arousal in cognitive conflict resolution. Autonomic Neuroscience, 132(1-2), 70-75.
doi: 10.1016/j.autneu.2006.09.004 URL |
[50] |
Kool W., McGuire J. T., Rosen Z. B., & Botvinick M. M. (2010). Decision making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139(4), 665-682.
doi: 10.1037/a0020198 URL |
[51] | Kuhbandner C., & Zehetleitner M. (2011). Dissociable effects of valence and arousal in adaptive executive control. PLoS ONE, 6(12), e29287. |
[52] |
Lang P. J., & Bradley M. M. (2013). Appetitive and defensive motivation: Goal-directed or goal-determined. Emotion Review, 5(3), 230-234.
doi: 10.1177/1754073913477511 URL |
[53] |
Larson M. J., Clayson P. E., & Baldwin S. A. (2012). Performance monitoring following conflict: Internal adjustments in cognitive control? Neuropsychologia, 50(3), 426-433.
doi: 10.1016/j.neuropsychologia.2011.12.021 URL |
[54] | Levenson R. W. (1994). Human emotions:A functional view. In P. Ekman, & R. J. Davidson (Eds.), The nature of emotion (pp. 123-126). New York: Oxford University Press. |
[55] | Liu P., Yang W., Chen J., Huang X., & Chen A. (2013). Alertness modulates conflict adaptation and feature integration in an opposite way. PLoS One, 8(11), e79146. |
[56] |
Mansouri F. A., Tanaka K., & Buckley M. J. (2009). Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 10(2), 141-152.
doi: 10.1038/nrn2538 pmid: 19153577 |
[57] |
Marois R., & Ivanoff J. (2005). Capacity limits of information processing in the brain. Trends in Cognitive Sciences, 9(6), 296-305.
pmid: 15925809 |
[58] |
McRae K., Ciesielski B., & Gross J. J. (2012). Unpacking cognitive reappraisal: Goals, tactics, and outcomes. Emotion, 12(2), 250-255.
doi: 10.1037/a0026351 URL |
[59] |
McRae K., & Gross J. J. (2020). Emotion regulation. Emotion, 20(1), 1-9.
doi: 10.1037/emo0000703 URL |
[60] | Moser J. S., Most S. B., & Simons R. F. (2010). Increasing negative emotions by reappraisal enhances subsequent cognitive control: A combined behavioral and electrophysiological study. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 195-207. |
[61] | Murphy P. R., van Moort M. L., & Nieuwenhuis S. (2016). The pupillary orienting response predicts adaptive behavioral adjustment after errors. PLoS One, 11(3), e0151763. |
[62] | Padmala S., Bauer A., & Pessoa L. (2011). Negative emotion impairs conflict-driven executive control. Frontiers in Psychology, 2, 192. |
[63] |
Pan F., Shi L., Lu Q., Wu X., Xue S., & Li Q. (2016). The negative priming effect in cognitive conflict processing. Neuroscience Letters, 628, 35-39.
doi: 10.1016/j.neulet.2016.05.062 URL |
[64] |
Payne B. K., Cheng C. M., Govorun O., & Stewart B. D. (2005). An inkblot for attitudes: Affect misattribution as implicit measurement. Journal of Personality and Social Psychology, 89(3), 277-293.
doi: 10.1037/0022-3514.89.3.277 URL |
[65] |
Pessoa L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13(4), 160-166.
doi: 10.1016/j.tics.2009.01.006 pmid: 19285913 |
[66] |
Pessoa L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5), 357-371.
doi: S1364-6613(17)30036-0 pmid: 28363681 |
[67] |
Pessoa L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148-158.
doi: 10.1038/nrn2317 pmid: 18209732 |
[68] |
Plass J. L., & Kalyuga S. (2019). Four ways of considering emotion in cognitive load theory. Educational Psychology Review, 31(2), 339-359.
doi: 10.1007/s10648-019-09473-5 |
[69] |
Plessow F., Fischer R., Kirschbaum C., & Goschke T. (2011). Inflexibly focused under stress: Acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. Journal of Cognitive Neuroscience, 23(11), 3218-3227.
doi: 10.1162/jocn_a_00024 URL |
[70] |
Pruessner L., Barnow S., Holt D. V., Joormann J., & Schulze K. (2020). A cognitive control framework for understanding emotion regulation flexibility. Emotion, 20(1), 21-29.
doi: 10.1037/emo0000658 pmid: 31961173 |
[71] |
Questienne L., van Opstal F., van Dijck J. P., & Gevers W. (2018). Metacognition and cognitive control: Behavioural adaptation requires conflict experience. Quarterly Journal of Experimental Psychology, 71(2), 411-423.
doi: 10.1080/17470218.2016.1251473 URL |
[72] |
Russell J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145-172.
pmid: 12529060 |
[73] |
Saunders B., Milyavskaya M., & Inzlicht M. (2015). Variation in cognitive control as emotion regulation. Psychological Inquiry, 26(1), 108-115.
doi: 10.1080/1047840X.2015.962396 URL |
[74] |
Schuch S., & Koch I. (2015). Mood states influence cognitive control: The case of conflict adaptation. Psychological Research, 79(5), 759-772.
doi: 10.1007/s00426-014-0602-4 URL |
[75] |
Schuch S., & Pütz S. (2018). Mood state dissociates conflict adaptation within tasks and across tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(9), 1487-1499.
doi: 10.1037/xlm0000530 URL |
[76] |
Schuch S., & Pütz S. (2021). Mood state and conflict adaptation: An update and a diffusion model analysis. Psychological Research, 85(1),322-344.
doi: 10.1007/s00426-019-01258-3 URL |
[77] |
Schuch S., Zweerings J., Hirsch P., & Koch I. (2017). Conflict adaptation in positive and negative mood: Applying a success-failure manipulation. Acta Psychologica, 176, 11-22.
doi: 10.1016/j.actpsy.2017.03.005 URL |
[78] |
Shackman A. J., Salomons T. V., Slagter H. A., Fox A. S., Winter J. J., & Davidson R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154-167.
doi: 10.1038/nrn2994 URL |
[79] | Shouse E. (2005). Feeling, emotion, affect. M/C Journal, 8(6). |
[80] |
Spunt R. P., Lieberman M. D., Cohen J. R., & Eisenberger N. I. (2012). The phenomenology of error processing: The dorsal ACC response to stop-signal errors tracks reports of negative affect. Journal of Cognitive Neuroscience, 24(8), 1753-1765.
doi: 10.1162/jocn_a_00242 URL |
[81] |
Spruyt A., de Houwer J., Hermans D., & Eelen P. (2007). Affective priming of nonaffective semantic categorization responses. Experimental Psychology, 54(1), 44-53.
doi: 10.1027/1618-3169.54.1.44 URL |
[82] |
Stürmer B., Nigbur R., Schacht A., & Sommer W. (2011). Reward and punishment effects on error processing and conflict control. Frontiers in Psychology, 2, 335.
doi: 10.3389/fpsyg.2011.00335 pmid: 22110464 |
[83] |
Tolomeo S., Christmas D., Jentzsch I., Johnston B., Sprengelmeyer R., Matthews K., & Douglas Steele J. (2016). A causal role for the anterior mid-cingulate cortex in negative affect and cognitive control. Brain, 139(6), 1844-1854.
doi: 10.1093/brain/aww069 URL |
[84] |
van der Wel P., & van Steenbergen H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005-2015.
doi: 10.3758/s13423-018-1432-y URL |
[85] | van Steenbergen H. (2015). Affective modulation of cognitive control:A biobehavioral perspective. In G. Gendolla, M. Tops, & S. Koole (Eds.), Handbook of biobehavioral approaches to self-regulation (pp. 89-107). Berlin, Germany: Springer. |
[86] |
van Steenbergen H., & Band G. P. (2013). Pupil dilation in the Simon task as a marker of conflict processing. Frontiers in Human Neuroscience, 7, 215.
doi: 10.3389/fnhum.2013.00215 pmid: 23754997 |
[87] |
van Steenbergen H., Band G. P., & Hommel B. (2009). Reward counteracts conflict adaptation: Evidence for a role of affect in executive control. Psychological Science, 20(12), 1473-1477.
doi: 10.1111/j.1467-9280.2009.02470.x pmid: 19906127 |
[88] |
van Steenbergen H., Band G. P., & Hommel B. (2010). In the mood for adaptation: How affect regulates conflict-driven control. Psychological Science, 21(11), 1629-1634.
doi: 10.1177/0956797610385951 pmid: 20943936 |
[89] |
van Steenbergen H., Band G. P., & Hommel B. (2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90(3), 234-241.
doi: 10.1016/j.biopsycho.2012.03.018 pmid: 22504294 |
[90] |
Verguts T., & Notebaert W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13(6), 252-257.
doi: 10.1016/j.tics.2009.02.007 pmid: 19428288 |
[91] |
Vermeylen L., Wisniewski D., González-García C., Hoofs V., Notebaert W., & Braem S. (2020). Shared neural representations of cognitive conflict and negative affect in the medial frontal cortex. Journal of Neuroscience, 40, 8715-8725.
doi: 10.1523/JNEUROSCI.1744-20.2020 pmid: 33051353 |
[92] |
Vogt B. A., & Pandya D. N. (1987). Cingulate cortex of the rhesus monkey: II. Cortical afferents. Journal of Comparative Neurology, 262(2), 271-289.
pmid: 3624555 |
[93] | Westbrook A., Kester D., & Braver T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PloS One, 8(7), e68210. |
[94] | Winkielman P., Schwarz N., Fazendeiro T. A., & Reber R. (2003). The hedonic marking of processing fluency: Implications for evaluative judgment. The Psychology of Evaluation: Affective Processes in Cognition and Emotion, 189, 217. |
[95] |
Wiswede D., Münte T. F., Goschke T., & Rüsseler J. (2009). Modulation of the error-related negativity by induction of short-term negative affect. Neuropsychologia, 47(1), 83-90.
doi: 10.1016/j.neuropsychologia.2008.08.016 pmid: 18786553 |
[96] | Wiswede D., Münte T. F., Krämer U. M., & Rüsseler J. (2009). Embodied emotion modulates neural signature of performance monitoring. PLoS One, 4(6), e5754. |
[97] |
Yang Q., Notebaert W., & Pourtois G. (2019b). Reappraising cognitive control: Normal reactive adjustments following conflict processing are abolished by proactive emotion regulation. Psychological Research, 83(1), 1-12.
doi: 10.1007/s00426-018-1099-z URL |
[98] | Yang Q., Paul K., & Pourtois G. (2019a). Defensive motivation increases conflict adaptation through local changes in cognitive control: Evidence from ERPs and mid-frontal theta. Biological Psychology, 148, 107738. |
[99] |
Yang Q., & Pourtois G. (2018). Conflict-driven adaptive control is enhanced by integral negative emotion on a short time scale. Cognition and Emotion, 32(8), 1637-1653.
doi: 10.1080/02699931.2018.1434132 URL |
[100] |
Yiend J. (2010). The effects of emotion on attention: A review of attentional processing of emotional information. Cognition and Emotion, 24(1), 3-47.
doi: 10.1080/02699930903205698 URL |
[1] | 杨庆, 李亚琴. 不确定是坏的么?不确定状态中的错误加工特点及其解释机制[J]. 心理科学进展, 2023, 31(3): 338-349. |
[2] | 张振, 李海文, 熊建萍, 赵辉, 刘瑞雪, 齐春辉. 公平规范执行中内群体偏爱的心理发展机制[J]. 心理科学进展, 2021, 29(12): 2091-2104. |
[3] | 申传刚, 杨璟, 胡三嫚, 何培旭, 李小新. 辱虐管理的应对及预防:正念的自我调节作用[J]. 心理科学进展, 2020, 28(2): 220-229. |
[4] | 苏彦捷, 谢东杰, 王笑楠. 认知控制在第三方惩罚中的作用[J]. 心理科学进展, 2019, 27(8): 1331-1343. |
[5] | 刘海宁, 刘晓倩, 刘海虹, 李峰, 韩布新. 老年人情绪注意积极效应的发生机制[J]. 心理科学进展, 2019, 27(12): 2064-2076. |
[6] | 刘晓婷, 张丽锦, 张宁. 睡眠质量对冒险行为影响的证据及解析[J]. 心理科学进展, 2019, 27(11): 1875-1886. |
[7] | 刘迪迪, 王美萍, 陈翩, 张文新. COMT基因Val158Met多态性与抑郁的关系[J]. 心理科学进展, 2018, 26(8): 1429-1437. |
[8] | 李政汉, 杨国春, 南威治, 李琦, 刘勋. 冲突解决过程中认知控制的注意调节机制 *[J]. 心理科学进展, 2018, 26(6): 966-974. |
[9] | 滕静, 沈汪兵, 郝宁. 认知控制在发散性思维中的作用[J]. 心理科学进展, 2018, 26(3): 411-422. |
[10] | 杜玮玮, 宋婷, 李富洪. 双价效应及其认知机制[J]. 心理科学进展, 2018, 26(11): 1969-1975. |
[11] | 杨洁敏;张蜀;袁加锦;刘光远. 心理预期与认知方式对负面情绪的交互调节[J]. 心理科学进展, 2015, 23(8): 1312-1323. |
[12] | 易欣;葛列众;刘宏艳. 正负性情绪的自主神经反应及应用[J]. 心理科学进展, 2015, 23(1): 72-84. |
[13] | 汪强;张恩茂. 降低决策冲动性的方法及其神经机制[J]. 心理科学进展, 2015, 23(1): 101-109. |
[14] | 吕小康;汪新建;付晓婷. 为什么贫困会削弱决策能力?三种心理学解释[J]. 心理科学进展, 2014, 22(11): 1823-1828. |
[15] | 刘勋;南威治;王凯;李琦. 认知控制的模块化组织[J]. 心理科学进展, 2013, 21(12): 2091-2102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||