心理科学进展 ›› 2021, Vol. 29 ›› Issue (1): 45-55.doi: 10.3724/SP.J.1042.2021.00045
张帆1, 陈艾睿2, 董波2, 王爱君1(), 张明1,2()
收稿日期:
2020-04-06
出版日期:
2021-01-15
发布日期:
2020-11-23
通讯作者:
王爱君,张明
E-mail:ajwang@suda.edu.cn;psyzm@suda.edu.cn
基金资助:
ZHANG Fan1, CHEN Airui2, DONG Bo2, WANG Aijun1(), ZHANG Ming1,2()
Received:
2020-04-06
Online:
2021-01-15
Published:
2020-11-23
Contact:
WANG Aijun,ZHANG Ming
E-mail:ajwang@suda.edu.cn;psyzm@suda.edu.cn
摘要:
快速脱离假说和信号抑制假说都是将传统的自下而上捕获和自上而下控制结合起来的混合模式假说。快速脱离假说认为突显干扰物总能在第一时间自下而上地捕获注意, 当突显干扰物与任务要求不符时, 注意会迅速脱离该位置。信号抑制假说认为突显干扰物都会产生“注意我”的信号, 当突显干扰物与任务要求不符时, 该信号会被自上而下地抑制以阻止注意捕获发生。前者相关的研究多采用空间线索提示范式和眼动脱离范式, 实验中被试采取独子探测策略, 而后者相关的研究多采用额外单例范式的变式, 实验中被试采取特征探测策略。未来研究应采用不同的刺激类型和实验方法进一步为两个假说提供证据支持, 同时要关注奖赏、训练等因素对“捕获-脱离”和“信号-抑制”的影响。
中图分类号:
张帆, 陈艾睿, 董波, 王爱君, 张明. (2021). 视觉注意捕获的快速脱离假说与信号抑制假说. 心理科学进展 , 29(1), 45-55.
ZHANG Fan, CHEN Airui, DONG Bo, WANG Aijun, ZHANG Ming. (2021). Rapid disengagement hypothesis and signal suppression hypothesis of visual attentional capture. Advances in Psychological Science, 29(1), 45-55.
[1] | 储衡清, 周晓林. (2004). 注意捕获与自上而下的加工过程. 心理科学进展, 12(5), 680-687. |
[2] |
张明, 王爱君. (2012). 视觉搜索中基于工作记忆内容的注意捕获与抑制. 心理科学进展, 20(12), 1899-1907.
doi: 10.3724/SP.J.1042.2012.01899 URL |
[3] | Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention Perception & Psychophysics, 72(2), 342-352. |
[4] | Anderson, B. A., & Folk, C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention Perception & Psychophysics, 74(6), 1183-1198. |
[5] |
Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-e68.
doi: 10.1016/j.biopsych.2010.07.024 URL |
[6] |
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443.
doi: 10.1016/j.tics.2012.06.010 URL |
[7] |
Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74-83.
doi: 10.1016/j.biopsycho.2016.10.004 URL pmid: 27756581 |
[8] | Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention Perception & Psychophysics, 72(2), 326-341. |
[9] |
Biggs, A. T., Kreager, R. D., Gibson, B. S., Villano, M., & Crowell, C. R. (2012). Semantic and affective salience: The role of meaning and preference in attentional capture and disengagement. Journal of Experimental Psychology: Human Perception & Performance, 38(2), 531-541.
doi: 10.1037/a0027394 URL pmid: 22390289 |
[10] |
Blakely, D. P., Wright, T. J., Dehili, V. M., Boot, W. R., & Brockmole, J. R. (2012). Characterizing the time course and nature of attentional disengagement effects. Vision Research, 56, 38-48.
doi: 10.1016/j.visres.2012.01.010 URL |
[11] |
Boot, W. R., & Brockmole, J. R. (2010). Irrelevant features at fixation modulate saccadic latency and direction in visual search. Visual Cognition, 18(4), 481-491.
doi: 10.1080/13506280903356780 URL |
[12] |
Born, S., Kerzel, D., & Theeuwes, J. (2011). Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 208(4), 621-631.
doi: 10.1007/s00221-010-2510-1 URL |
[13] |
Brockmole, J. R., & Boot, W. R. (2009). Should I stay or should I go? Attentional disengagement from visually unique and unexpected items at fixation. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 808-815.
doi: 10.1037/a0013707 URL |
[14] |
Burra, N., & Kerzel, D. (2014). The distractor positivity (pd) signals lowering of attentional priority: Evidence from event-related potentials and individual differences. Psychophysiology, 51(7), 685-696.
doi: 10.1111/psyp.12215 URL |
[15] |
Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how and where. Current Opinion in Psychology, 29, 135-147.
doi: 10.1016/j.copsyc.2019.02.004 URL pmid: 30856512 |
[16] |
Chen, P., & Mordkoff, J. T. (2007). Contingent capture at a very short SOA: Evidence against rapid disengagement. Visual Cognition, 15(6), 637-646.
doi: 10.1080/13506280701317968 URL |
[17] |
Cosman, J. D., Atreya, P. V., & Woodman, G. F. (2015). Transient reduction of visual distraction following electrical stimulation of the prefrontal cortex. Cognition, 145, 73-76.
doi: 10.1016/j.cognition.2015.08.010 URL pmid: 26319971 |
[18] |
Cosman, J. D., Lowe, K. A., Zinke, W., Woodman, G. F., & Schall, J. D. (2018). Prefrontal control of visual distraction. Current Biology, 28(3), 414-420.
doi: 10.1016/j.cub.2017.12.023 URL pmid: 29358071 |
[19] |
Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event- related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423-1433.
doi: 10.1162/jocn.2008.20099 URL pmid: 18303979 |
[20] |
Failing, M., & Theeuwes, J. (2019). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27, 86-95.
doi: 10.3758/s13423-019-01672-z URL pmid: 31848910 |
[21] | Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention Perception & Psychophysics, 81(5), 1405-1414. |
[22] |
Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64(5), 741-753.
doi: 10.3758/bf03194741 URL pmid: 12201333 |
[23] |
Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847-858.
doi: 10.1037//0096-1523.24.3.847 URL pmid: 9627420 |
[24] |
Folk, C. L., & Remington, R. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14(4-8), 445-465.
doi: 10.1080/13506280500193545 URL |
[25] |
Folk, C. L., & Remington, R. (2010). A critical evaluation of the disengagement hypothesis. Acta Psychologica, 135(2), 103-105.
doi: 10.1016/j.actpsy.2010.04.012 URL |
[26] |
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030-1044.
URL pmid: 1431742 |
[27] |
Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception & Performance, 20(2), 317-329.
doi: 10.1037//0096-1523.20.2.317 URL pmid: 8189195 |
[28] |
Fortier-Gauthier, U., Dell'Acqua, R., & Jolicœur, P. (2013). The “red-alert” effect in visual search: Evidence from human electrophysiology. Psychophysiology, 50(7), 671-679.
doi: 10.1111/psyp.12050 URL |
[29] |
Gao, Y., & Theeuwes, J. (2019). Learning to suppress a distractor is not affected by working memory load. Psychonomic Bulletin & Review, 27(8), 96-104.
doi: 10.3758/s13423-019-01679-6 URL |
[30] |
Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & Mcdonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113(13), 3693-3698.
doi: 10.1073/pnas.1523471113 URL |
[31] |
Gaspar, J. M., & McDonald, J. J. (2014). Suppression of Salient Objects Prevents Distraction in Visual Search. Journal of Neuroscience, 34(16), 5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014 URL |
[32] |
Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4), 227-246.
URL pmid: 31745389 |
[33] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740-1750.
doi: 10.1177/0956797615597913 URL pmid: 26420441 |
[34] | Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention Perception & Psychophysics, 79(1), 45-62. |
[35] |
Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265-1280.
doi: 10.1162/jocn_a_01279 URL pmid: 29762104 |
[36] |
Gaspelin, N., & Luck, S. J. (2018b). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology. Human Perception and Performance, 44(4), 626-644.
doi: 10.1037/xhp0000484 URL pmid: 29035072 |
[37] |
Gaspelin, N., & Luck, S. J. (2018c). The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends in Cognitive Sciences, 22(1), 79-92.
doi: 10.1016/j.tics.2017.11.001 URL pmid: 29191511 |
[38] |
Geng, J. J., & Diquattro, N. E. (2010). Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection. Journal of Vision, 10(6), 5, 1-12.
doi: 10.1167/10.4.13 URL pmid: 20465333 |
[39] |
Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153.
doi: 10.1177/0963721414525780 URL |
[40] |
Glickman, M., & Lamy, D. (2017). Attentional capture by irrelevant emotional distractor faces is contingent on implicit attentional settings. Cognition & Emotion, 32(2), 303-314.
doi: 10.1080/02699931.2017.1301883 URL pmid: 28281398 |
[41] |
Gong, M., Jia, K., & Li, S. (2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37(26), 6242-6252.
doi: 10.1523/JNEUROSCI.0217-17.2017 URL pmid: 28539425 |
[42] |
Gong, M., Yang, F., & Li, S. (2016). Reward association facilitates distractor suppression in human visual search. The European Journal of Neuroscience, 43(7), 942-953.
doi: 10.1111/ejn.13174 URL pmid: 26797805 |
[43] |
Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760-775.
doi: 10.1162/jocn.2009.21039 URL pmid: 18564048 |
[44] |
Hickey, C., van Zoest, W., & Theeuwes, J. (2010). The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 201(4), 789-796.
doi: 10.1007/s00221-009-2094-9 URL |
[45] |
Hu, L., Ding, Y., & Qu, Z. (2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56(9), e13393.
doi: 10.1111/psyp.13393 URL pmid: 31087676 |
[46] |
Ipata, A. E., Gee, A. L., Gottlieb, J., Bisley, J. W., & Goldberg, M. E. (2006). Lip responses to a popout stimulus are reduced if it is overtly ignored. Nature Neuroscience, 9(8), 1071-1076.
doi: 10.1038/nn1734 URL pmid: 16819520 |
[47] |
Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1713-1730.
doi: 10.1037/a0032251 URL pmid: 23527999 |
[48] |
Lega, C., Ferrante, O., Marini, F., Santandrea, E., Cattaneo, L., & Chelazzi, L. (2019). Probing the neural mechanisms for distractor filtering and their history-contingent modulation by means of TMS. Journal of Neuroscience, 39(38), 7591-7603.
doi: 10.1523/JNEUROSCI.2740-18.2019 URL pmid: 31387915 |
[49] |
Livingstone, A. C., Christie, G. J., Wright, R. D., & McDonald, J. J. (2017). Signal enhancement, not active suppression, follows the contingent capture of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 219-224.
doi: 10.1037/xhp0000339 URL pmid: 28134549 |
[50] |
Marini, F., Demeter, E., Roberts, K. C., Chelazzi, L., & Woldorff, M. G. (2016). Orchestrating proactive and reactive mechanisms for filtering distracting information: Brain-behavior relationships revealed by a mixed-design fMRI study. Journal of Neuroscience, 36(3), 988-1000.
doi: 10.1523/JNEUROSCI.2966-15.2016 URL pmid: 26791226 |
[51] | Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention Perception & Psychophysics, 74(8), 1590-1605. |
[52] |
Moher, J., Lakshmanan, B. M., Egeth, H. E., & Ewen, J. B. (2014). Inhibition drives early feature-based attention. Psychological Science, 25(2), 315-324.
doi: 10.1177/0956797613511257 URL pmid: 24390823 |
[53] | Roque, N. A., Wright, T. J., & Boot, W. R. (2016). Do different attention capture paradigms measure different types of capture? Attention Perception & Psychophysics, 78(7), 2014-2030. |
[54] |
Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012 URL |
[55] | Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention Perception & Psychophysics, 72(6), 1455-1470. |
[56] |
Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956-972.
doi: 10.1080/13506285.2011.603709 URL |
[57] |
Schoeberl, T., Goller, F., & Ansorge, U. (2018). Top-down matching singleton cues have no edge over top-down matching nonsingletons in spatial cueing. Psychonomic Bulletin & Review, 26, 241-249.
URL pmid: 29959614 |
[58] |
Sun, M., Wang, E., Huang, J., Zhao, C., Guo, J., Li, D., ... Song, Y. (2018). Attentional selection and suppression in children and adults. Developmental Science, 21(6), e12684.
doi: 10.1111/desc.12684 URL pmid: 29761932 |
[59] |
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606.
doi: 10.3758/bf03211656 URL pmid: 1620571 |
[60] |
Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65-70.
doi: 10.3758/bf03206462 URL pmid: 15116988 |
[61] |
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77-99.
doi: 10.1016/j.actpsy.2010.02.006 URL pmid: 20507828 |
[62] |
Theeuwes, J., de Vries, G. J., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65(5), 735-746.
doi: 10.3758/bf03194810 URL pmid: 12956581 |
[63] |
Tran, D. M. D. (2020). Commentary: Probing the neural mechanisms for distractor filtering and their history- contingent modulation by means of TMS. Frontiers in Neuroscience, 14, 365.
doi: 10.3389/fnins.2020.00365 URL pmid: 32351362 |
[64] |
van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception & Performance, 30(4), 746-759.
doi: 10.1037/0096-1523.30.4.749 URL pmid: 15305440 |
[65] |
Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871-878.
doi: 10.3758/s13423-012-0280-4 URL pmid: 22696250 |
[66] | Wang, B., Samara, I., & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 81(6), 1813-1821. |
[67] | Wang, B., & Theeuwes, J. (2018). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860-870. |
[68] |
Wang, L., Yu, H., & Zhou, X. (2013). Interaction between value and perceptual salience in value-driven attentional capture. Journal of Vision, 13(3), 5, 1-13.
URL pmid: 23283692 |
[69] |
Wright, T. J., Boot, W. R., & Brockmole, J. R. (2015). Functional fixedness: The functional significance of delayed disengagement based on attention set. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 17-21.
doi: 10.1037/xhp0000016 URL pmid: 25384235 |
[70] |
Wright, T. J., Boot, W. R., & Jones, J. L. (2015). Exploring the breadth of the top-down representations that control attentional disengagement. The Quarterly Journal of Experimental Psychology, 68(5), 993-1006.
doi: 10.1080/17470218.2014.973888 URL pmid: 25295752 |
[71] |
Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 676-681.
doi: 10.1037//0096-1523.19.3.676 URL pmid: 8331320 |
[72] |
Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95-107.
doi: 10.1037//0096-1523.20.1.95 URL pmid: 8133227 |
[1] | 叶舒琪, 尹俊婷, 李招贤, 罗俊龙. 情绪对直觉与分析加工的影响机制[J]. 心理科学进展, 2023, 31(5): 736-746. |
[2] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[3] | 余婕, 陈有国. 时空干扰效应:基于贝叶斯模型的解释[J]. 心理科学进展, 2023, 31(4): 597-607. |
[4] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[5] | 杨庆, 李亚琴. 不确定是坏的么?不确定状态中的错误加工特点及其解释机制[J]. 心理科学进展, 2023, 31(3): 338-349. |
[6] | 王旭东, 何雅吉, 范会勇, 罗扬眉, 陈煦海. 人际愤怒的利与弊:来自元分析的证据[J]. 心理科学进展, 2023, 31(3): 386-401. |
[7] | 李清扬, 尹俊婷, 罗俊龙. 才思泉涌“举步”间:体育运动对创造性思维的影响[J]. 心理科学进展, 2023, 31(3): 455-466. |
[8] | 陈子炜, 付迪, 刘勋. 错认总比错过好——面孔视错觉的发生机制及其应用[J]. 心理科学进展, 2023, 31(2): 240-255. |
[9] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[10] | 谢才凤, 邬家骅, 许丽颖, 喻丰, 张语嫣, 谢莹莹. 算法决策趋避的过程动机理论[J]. 心理科学进展, 2023, 31(1): 60-77. |
[11] | 叶伟豪 于美琪 张利会 高琪 傅明珠 卢家楣. 精准的意义:负性情绪粒度的作用机制与干预[J]. 心理科学进展, 0, (): 0-0. |
[12] | 朱传林, 刘电芝, 罗文波. 情绪体验影响估算策略运用的认知与脑机制[J]. 心理科学进展, 2022, 30(12): 2639-2649. |
[13] | 史汉文, 李雨桐, 隋雪. 情绪词类型效应:区分情绪标签词和情绪负载词的行为和神经活动证据[J]. 心理科学进展, 2022, 30(12): 2696-2707. |
[14] | 陈玉田, 陈睿, 李鹏. 工作记忆中“组块”概念的演化及理论模型[J]. 心理科学进展, 2022, 30(12): 2708-2717. |
[15] | 时慧颖, 汤洁, 刘萍萍. 眼睛效应不稳定与感知规范:一个新视角[J]. 心理科学进展, 2022, 30(12): 2718-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||