心理科学进展 ›› 2023, Vol. 31 ›› Issue (2): 240-255.doi: 10.3724/SP.J.1042.2023.00240
收稿日期:
2022-04-13
出版日期:
2023-02-15
发布日期:
2022-11-10
通讯作者:
付迪,刘勋
E-mail:fud@psych.ac.cn;liux@psych.ac.cn
基金资助:
CHEN Zi-Wei1,2, FU Di1,2,3(), LIU Xun1,2(
)
Received:
2022-04-13
Online:
2023-02-15
Published:
2022-11-10
Contact:
FU Di,LIU Xun
E-mail:fud@psych.ac.cn;liux@psych.ac.cn
摘要:
面孔视错觉现象表现为个体从其他事物中感知到并不存在的面孔。面孔视错觉要素已广泛应用于艺术、广告及商品中, 起到吸引注意、促进消费的作用。同时, 先前的研究通过采用各种范式, 发现患者在面孔视错觉的产生上同常人的差异, 以及视错觉与视幻觉之间的联系。根据视觉加工通路的不同, 相关范式可分为视错觉监测范式, 以及视错觉辨认范式。前者侧重于基于提取的类面孔特征所做出的快速预测, 后者侧重于主观期望引导个体对物体特征的提取, 两者最终均会影响到后续的认知判断。日后研究可从面孔视错觉的发生机制出发, 结合自上而下和自下而上两种加工通路, 为面孔视错觉产生机制提供理论依据, 并拓宽该要素在临床诊断及商业广告领域上的应用。
中图分类号:
陈子炜, 付迪, 刘勋. (2023). 错认总比错过好——面孔视错觉的发生机制及其应用. 心理科学进展 , 31(2), 240-255.
CHEN Zi-Wei, FU Di, LIU Xun. (2023). Better to misidentify than to miss: A review of occurrence mechanisms and applications of face pareidolia. Advances in Psychological Science, 31(2), 240-255.
图3 自动产生面孔视错觉的认知神经机制:a)个体提取类面孔物体的局部特征, 随后将特征同大脑记忆中的概念进行类比, 类比过程中伴随着有关类比物的联想过程, 并根据特征重叠度从类比过程中得出预测。最终基于预测, 快速得出类面孔物体可能是面孔的结论; b)快速产生面孔视错觉的神经机制。 注:前额叶(prefrontal cortex, PFC), 梭状回面孔区(fusiform face area, FFA), 枕叶面孔区(occipital face area, OFA)
图4 主观诱导产生视错觉的认知神经机制:a)个体提取噪音图片的局部特征, 并进行类比, 若特征重叠较低, 初步得出噪音中没有面孔, 但若重叠度适中或主观期望认为噪音中存在面孔, 通过降低类比条件或重新提取特征进行类比, 最后得出噪音中存在面孔; b)期望诱导产生面孔视错觉的神经机制。注:眶额叶皮层(orbitofrontal cortex, OFC), 梭状回面孔区(fusiform face area, FFA), 枕叶面孔区(occipital face area, OFA)
[1] |
Akdeniz G. (2020). Brain activity underlying face and face pareidolia processing: An ERP study. Neurological Sciences, 41(6), 1557-1565. https://doi.org/10.1007/s10072-019-04232-4
doi: 10.1007/s10072-019-04232-4 URL pmid: 31980969 |
[2] |
Akdeniz G., Toker S., & Atli I. (2018). Neural mechanisms underlying visual pareidolia processing: An fMRI study. Pakistan Journal of Medical Sciences, 34(6), 1560-1566. https://doi.org/10.12669/pjms.346.16140
doi: 10.12669/pjms.346.16140 URL pmid: 30559823 |
[3] | Akdeniz G., Vural G., Gumusyayla S., Bektas H., & Deniz O. (2020). Event-related potentials elicited by face and face pareidolia in Parkinson’s disease. Parkinson's Disease, 2020(313), 1-10. https://doi.org/10.1155/2020/3107185 |
[4] |
Akechi H., Kikuchi Y., Tojo Y., Osanai H., & Hasegawa T. (2014). Neural and behavioural responses to face-likeness of objects in adolescents with autism spectrum disorder. Scientific Reports, 4(1), 3874. https://doi.org/10.1038/srep03874
doi: 10.1038/srep03874 URL |
[5] |
Alais D., Xu Y., Wardle S. G., & Taubert J. (2021). A shared mechanism for facial expression in human faces and face pareidolia. Proceedings of the Royal Society B-Biological Sciences, 288(1954), 20210966. https://doi. org/10.1098/rspb.2021.0966
doi: 10.1098/rspb.2021.0966 URL |
[6] |
Allefeld C., Pütz P., Kastner K., & Wackermann J. (2011). Flicker-light induced visual phenomena: Frequency dependence and specificity of whole percepts and percept features. Consciousness and Cognition, 20(4), 1344-1362. https://doi.org/10.1016/j.concog.2010.10.026
doi: 10.1016/j.concog.2010.10.026 URL pmid: 21123084 |
[7] | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®) (5th ed.). Washington, DC: American Psychiatric Publishing. |
[8] |
Bar M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280-289. https://doi.org/10.1016/j.tics.2007.08.004
doi: 10.1016/j.tics.2007.05.005 URL pmid: 17548232 |
[9] |
Barik K., Daimi S. N., Jones R., Bhattacharya J., & Saha G. (2019). A machine learning approach to predict perceptual decisions: An insight into face pareidolia. Brain Informatics, 6(1), 2. https://doi.org/10.1186/s40708-019-0094-5
doi: 10.1186/s40708-019-0094-5 URL pmid: 30721365 |
[10] |
Bayliss A. P., Bartlett J., Naughtin C. K., & Kritikos A. (2011). A direct link between gaze perception and social attention. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 634-644. https://doi. org/10.1037/a0020559
doi: 10.1037/a0020559 URL |
[11] |
Bortolon C., Capdevielle D., & Raffard S. (2015). Face recognition in schizophrenia disorder: A comprehensive review of behavioral, neuroimaging and neurophysiological studies. Neuroscience & Biobehavioral Reviews, 53(3), 79-107. https://doi.org/10.1016/j.neubiorev.2015.03.006
doi: 10.1016/j.neubiorev.2015.03.006 URL |
[12] |
Bowman A. R., Bruce V., Colbourn C. J., & Collerton D. (2017). Compensatory shifts in visual perception are associated with hallucinations in Lewy body disorders. Cognitive Research: Principles and Implications, 2, 1-9. https://doi.org/10.1186/s41235-017-0063-6
doi: 10.1186/s41235-016-0043-2 URL |
[13] |
Brunelin J., Combris M., Poulet E., Kallel L., D'Amato T., Dalery J., & Saoud M. (2006). Source monitoring deficits in hallucinating compared to non-hallucinating patients with schizophrenia. European Psychiatry, 21(4), 259-261. https://doi.org/10.1016/j.eurpsy.2006.01.015
URL pmid: 16545546 |
[14] |
Calder A. J., & Young A. W. (2005). Understanding the recognition of facial identity and facial expression. Nature Reviews Neuroscience, 6(8), 641-651. https://doi.org/10.1038/nrn1724
URL pmid: 16062171 |
[15] |
Cao X., Yang Q., & Hu F. (2016). Eyeglasses elicit effects similar to face-like perceptual expertise: Evidence from the N170 response. Experimental Brain Research, 234(3), 883-891. https://doi.org/10.1007/s00221-015-4525-0
doi: 10.1007/s00221-015-4525-0 URL pmid: 26670904 |
[16] |
Chen Y. C., & Yeh S. L. (2012). Look into my eyes and I will see you: Unconscious processing of human gaze. Consciousness and Cognition, 21(4), 1703-1710. https://doi.org/10.1016/j.concog.2012.10.001
doi: 10.1016/j.concog.2012.10.001 URL |
[17] |
Chevallier C., Kohls G., Troiani V., Brodkin E. S., & Schultz R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231-239. https://doi.org/10.1016/j.tics.2012.02.007
doi: 10.1016/j.tics.2012.02.007 URL pmid: 22425667 |
[18] | Cummings J., Ballard C., Tariot P., Owen R., Foff E., Youakim J.,... Stankovic S. (2018). Pimavanserin: Potential treatment for dementia-related psychosis. Journal of Prevention of Alzheimers Disease, 5(4), 253-258. https://doi.org/10.14283/jpad.2018.29 |
[19] |
de Lange F. P., Heilbron M., & Kok P. (2018). How do expectations shape perception? Trends in Cognitive Sciences, 22(9), 764-779. https://doi.org/10.1016/j.tics.2018.06.002
doi: S1364-6613(18)30139-6 URL pmid: 30122170 |
[20] |
Delbaere M., Mcquarrie E. F., & Phillips B. J. (2011). Personification in advertising: Using a visual metaphor to trigger anthropomorphism. Journal of Advertising, 40(1), 121-130. https://doi.org/10.2753/JOA0091-3367400108
doi: 10.2753/JOA0091-3367400108 URL |
[21] | DiSalvo C., & Gemperle F. (2003). From seduction to fulfillment: The use of anthropomorphic form in design. Paper presented at the Proceedings of the 2003 International, Pittsburgh, PA, USA. |
[22] |
Ekman P., Friesen W. V., O'Sullivan M., Chan A., Diacoyanni-Tarlatzis I., Heider K.,... Tzavaras A. (1987). Universals and cultural differences in the judgments of facial expressions of emotion. Journal of Personality and Social Psychology, 53(4), 712-718. https://doi.org/10.1037//0022-3514.53.4.712
doi: 10.1037//0022-3514.53.4.712 URL pmid: 3681648 |
[23] |
Epley N., Waytz A., & Cacioppo J. T. (2007). On seeing human: A three-factor theory of anthropomorphism. Psychological Review, 114(4), 864-886. https://doi.org/10.1037/0033-295X.114.4.864
doi: 10.1037/0033-295X.114.4.864 URL pmid: 17907867 |
[24] |
ffytche D. H., & Howard R. J. (1999). The perceptual consequences of visual loss: 'Positive' pathologies of vision. Brain, 122(7), 1247-1260. https://doi.org/10.1093/brain/122.7.1247
doi: 10.1093/brain/122.7.1247 URL |
[25] |
Frässle S., Paulus F. M., Krach S., Schweinberger S. R., Stephan K. E., & Jansen A. (2016). Mechanisms of hemispheric lateralization: Asymmetric interhemispheric recruitment in the face perception network. NeuroImage, 124, 977-988. https://doi.org/10.1016/j.neuroimage.2015.09.055
doi: S1053-8119(15)00877-0 URL pmid: 26439515 |
[26] |
Frazier T. W., Strauss M., Klingemier E. W., Zetzer E. E., Hardan A. Y., Eng C., & Youngstrom E. A. (2017). A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. Journal of the American Academy of Child & Adolescent Psychiatry, 56(7), 546-555. https://doi.org/10.1016/j.jaac.2017.05.005
doi: 10.1016/j.jaac.2017.05.005 URL |
[27] |
Frischen A., Bayliss A. P., & Tipper S. P. (2007). Gaze cueing of attention: Visual attention, social cognition, and individual differences. Psychological Bulletin, 133(4), 694-724. https://doi.org/10.1037/0033-2909.133.4.694
doi: 10.1037/0033-2909.133.4.694 URL pmid: 17592962 |
[28] |
Gosselin F., & Schyns P. G. (2003). Superstitious perceptions reveal properties of internal representations. Psychological Science, 14(5), 505-509. https://doi.org/10.1111/1467-9280.03452
URL pmid: 12930484 |
[29] | Guido G., Pichierri M., Pino G., & Nataraajan R. (2018). Effects of face images and face pareidolia on consumers' responses to print advertising: An empirical investigation. Journal of Advertising Research, 59(2), JAR-2018-2030. https://doi.org/10.2501/JAR-2018-030 |
[30] |
Guillon Q., Hadjikhani N., Baduel S., & Roge B. (2014). Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neuroscience and Biobehavioral Reviews, 42, 279-297. https://doi.org/10.1016/j.neubiorev.2014.03.013
doi: 10.1016/j.neubiorev.2014.03.013 URL pmid: 24694721 |
[31] |
Guillon Q., Rogé B., Afzali M. H., Baduel S., Kruck J., & Hadjikhani N. (2016). Intact perception but abnormal orientation towards face-like objects in young children with ASD. Scientific Reports, 6, 22119. https://doi.org/10.1038/srep22119
doi: 10.1038/srep22119 URL pmid: 26912096 |
[32] |
Hansen B. C., Thompson B., Hess R. F., & Ellemberg D. (2010). Extracting the internal representation of faces from human brain activity: An analogue to reverse correlation. NeuroImage, 51(1), 373-390. https://doi.org/10.1016/j.neuroimage.2010.02.021
doi: 10.1016/j.neuroimage.2010.02.021 URL pmid: 20156567 |
[33] | Hart P., & Royne M. B. (2017). Being human: How anthropomorphic presentations can enhance advertising effectiveness. Journal of Current Issues & Research in Advertising, 38(1), 129-145. https://doi.org/10.1080/10641734.2017.1291381 |
[34] |
Haxby J. V., Hoffman E. A., & Gobbini M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223-233. https://doi. org/10.1016/S1364-6613(00)01482-0
doi: 10.1016/s1364-6613(00)01482-0 pmid: 10827445 |
[35] | Hendrickson K., & Ailawadi K. L. (2014). Six lessons for in-store marketing from six years of mobile eye-tracking research. In D. Grewal, A. L. Roggeveen, & J. NordfÄlt (Eds.), Shopper marketing and the role of in-store marketing (Vol. 11, pp. 57-74). Emerald Group Publishing Limited, Bingley: Review of Marketing Research. |
[36] |
Ishikawa M., Haensel J. X., Smith T. J., Senju A., & Itakura S. (2021). Affective priming enhances gaze cueing effect. Journal of Experimental Psychology: Human Perception and Performance, 47(2), 189-199. https://doi.org/10.1037/xhp0000880
doi: 10.1037/xhp0000880 URL |
[37] |
Klatt W. K., Chesham A., & Lobmaier J. S. (2016). Putting up a big front: Car design and size affect road-crossing behaviour. PLoS One, 11(7), e0159455. https://doi.org/10.1371/journal.pone.0159455
doi: 10.1371/journal.pone.0159455 URL |
[38] |
Li J., Liu J., Liang J., Zhang H., Zhao J., Rieth C. A.,... Lee K. (2010). Effective connectivities of cortical regions for top-down face processing: A dynamic causal modeling study. Brain Research, 1340, 40-51. https://doi.org/10.1016/j.brainres.2010.04.044
doi: 10.1016/j.brainres.2010.04.044 URL pmid: 20423709 |
[39] |
Liu J., Li J., Feng L., Lia L., Tian J., & Lee K. (2014). Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia. Cortex, 53, 60-77. https://doi.org/10.1016/j.cortex.2014.01.013
doi: 10.1016/j.cortex.2014.01.013 URL pmid: 24583223 |
[40] |
Liu Q., Wang Q., Li X., Gong X., Luo X., Yin T.,... Yi L. (2021). Social synchronization during joint attention in children with autism spectrum disorder. Autism Research, 14(7), 2120-2130. https://doi.org/10.1002/aur.2553
doi: 10.1002/aur.2553 URL |
[41] |
Mamiya Y., Nishio Y., Watanabe H., Yokoi K., Uchiyama M., Baba T.,... Mori E. (2016). The pareidolia test: A simple neuropsychological Test Measuring Visual Hallucination-Like Illusions. PLoS One, 11(5), e0154713. https://doi.org/10.1371/journal.pone.0154713
doi: 10.1371/journal.pone.0154713 URL |
[42] |
Manesi Z., van Lange P. A. M., & Pollet T. V. (2015). Butterfly eyespots: Their potential influence on aesthetic preferences and conservation attitudes. PLoS One, 10(11), e0141433. https://doi.org/10.1371/journal.pone.0141433
doi: 10.1371/journal.pone.0141433 URL |
[43] | Martinez-Conde S., Conley D., Hine H., Kropf J., Tush P., Ayala A., & Macknik S. L. (2015). Marvels of illusion: Illusion and perception in the art of Salvador Dali. Frontiers in Human Neuroscience, 9, 1-12. https://doi.org/10.3389/fnhum.2015.00496 |
[44] | Miesler L., Leder H., & Herrmann A. (2011). Isn't it cute: An evolutionary perspective of baby-schema effects in visual product designs. International Journal of Design, 5(3), 17-30. |
[45] |
Müller R.-A., & Fishman I. (2018). Brain connectivity and neuroimaging of social networks in autism. Trends in Cognitive Sciences, 22(12), 1103-1116. https://doi.org/10.1016/j.tics.2018.09.008
doi: 10.1016/j.tics.2018.09.008 URL |
[46] |
Nakano T., Tanaka K., Endo Y., Yamane Y., Yamamoto T., Nakano Y.,... Kitazawa S. (2010). Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour. Proceedings of the Royal Society B-Biological Sciences, 277(1696), 2935-2943. https://doi.org/10.1098/rspb.2010.0587
doi: 10.1098/rspb.2010.0587 URL |
[47] |
Nakata T., Shimada K., Iba A., Oda H., Terashima A., Koide Y.,... Ishii K. (2022). Correlation between noise pareidolia test scores for visual hallucinations and regional cerebral blood flow in dementia with Lewy bodies. Annals of Nuclear Medicine, 36(4), 384-392. https://doi.org/10.1007/s12149-022-01717-9
doi: 10.1007/s12149-022-01717-9 URL |
[48] |
Nestor A., Vettel J. M., & Tarr M. J. (2013). Internal representations for face detection: An application of noise-based image classification to bold responses. Human Brain Mapping, 34(11), 3101-3115. https://doi.org/10.1002/hbm.22128
doi: 10.1002/hbm.22128 URL pmid: 22711230 |
[49] | Nickl-Jockschat T., Rottschy C., Thommes J., Schneider F., Laird A. R., Fox P. T., & Eickhoff S. B. (2015). Neural networks related to dysfunctional face processing in autism spectrum disorder. Brain Structure & Function, 220(4), 2355-2371. https://doi.org/10.1007/s00429-014-0791-z |
[50] |
Norton D., McBain R., Holt D. J., Ongur D., & Chen Y. (2009). Association of impaired facial affect recognition with basic facial and visual processing deficits in schizophrenia. Biological Psychiatry, 65(12), 1094-1098. https://doi.org/10.1016/j.biopsych.2009.01.026
doi: 10.1016/j.biopsych.2009.01.026 URL pmid: 19268917 |
[51] |
Nummenmaa L., & Calder A. J. (2009). Neural mechanisms of social attention. Trends in Cognitive Sciences, 13, 135-143. https://doi.org/10.1016/j.tics.2008.12.006
doi: 10.1016/j.tics.2008.12.006 URL pmid: 19223221 |
[52] | O'Brien, J., Taylor, J. P., Ballard, C., Barker, R. A., Bradley, C., Burns, A.,... ffytche, D. (2020). Visual hallucinations in neurological and ophthalmological disease: Pathophysiology and management. Journal of Neurology, Neurosurgery and Psychiatry, 91( 5), jnnp-2019-322702. https://doi.org/10.1136/jnnp-2019-322702 |
[53] |
Owen M. J., Sawa A., & Mortensen P. B. (2016). Schizophrenia. Lancet, 388(10039), 86-97. https://doi.org/10.1016/s0140-6736(15)01121-6
doi: 10.1016/S0140-6736(15)01121-6 URL pmid: 26777917 |
[54] |
Palmer C. J., & Clifford W. G. C. (2020). Face pareidolia recruits mechanisms for detecting human social attention. Psychological Science, 31(8), 1001-1012. https://doi. org/10.1177/0956797620924814
doi: 10.1177/0956797620924814 pmid: 32697673 |
[55] |
Palmer S. E. (1975). The effects of contextual scenes on the identification of objects. Memory & Cognition, 3(5), 519-526. https://doi.org/10.3758/BF03197524
doi: 10.3758/BF03197524 URL |
[56] |
Pavlova M. A., Guerreschi M., Tagliavento L., Gitti F., Sokolov A. N., Fallgatter A. J., & Fazzi E. (2017). Social cognition in autism: Face tuning. Scientific Reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-02790-1
doi: 10.1038/s41598-016-0028-x URL |
[57] | Pavlova M. A., Romagnano V., Fallgatter A. J., & Sokolov A. N. (2020). Face pareidolia in the brain: Impact of gender and orientation. PLoS One, 15(12). https://doi.org/10.1371/journal.pone.0244516 |
[58] |
Pereira E. J., Birmingham E., & Ristic J. (2020). The eyes do not have it after all? Attention is not automatically biased towards faces and eyes. Psychological Research, 84(5), 1407-1423. https://doi.org/10.1007/s00426-018-1130-4
doi: 10.1007/s00426-018-1130-4 URL pmid: 30603864 |
[59] | Petrican R., English T., Gross J. J., Grady C., Hai T., & Moscovitch M. (2012). Friend or foe? Age moderates time-course specific responsiveness to trustworthiness cues. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 68(2), 215-223. https://doi. org/10.1093/geronb/gbs064 |
[60] |
Pickett C. L., Gardner W. L., & Knowles M. (2004). Getting a cue: The need to belong and enhanced sensitivity to social cues. Personality and Social Psychology Bulletin, 30(9), 1095-1107. https://doi.org/10.1177/0146167203262085
URL pmid: 15359014 |
[61] |
Proverbio A. M., & Galli J. (2016). Women are better at seeing faces where there are none: An ERP study of face pareidolia. Social Cognitive and Affective Neuroscience, 11(9), 1501-1512. https://doi.org/10.1093/scan/nsw064
doi: 10.1093/scan/nsw064 URL pmid: 27217120 |
[62] | Rahman M., & van Boxtel J. J. A. (2022). Seeing faces where there are none: Pareidolia correlates with age but not autism traits. Vision Research, 199. https://doi.org/10.1016/j.visres.2022.108071 |
[63] |
Rekow D., Baudouin J.-Y., Brochard R., Rossion B., & Leleu A. (2022). Rapid neural categorization of facelike objects predicts the perceptual awareness of a face (face pareidolia). Cognition, 222(9), 105016. https://doi.org/10.1016/j.cognition.2022.105016
doi: 10.1016/j.cognition.2022.105016 URL |
[64] | Revankar G. S., Hattori N., Kajiyama Y., Nakano T., Mihara M., Mori E., & Mochizuki H. (2020). Ocular fixations and presaccadic potentials to explain pareidolias in Parkinson's disease. Brain communications, 2(1), 1. https://doi.org/10.1093/braincomms/fcaa073 |
[65] |
Rolf R., Sokolov A. N., Rattay T. W., Fallgatter A. J., & Pavlova M. A. (2020). Face pareidolia in schizophrenia. Schizophrenia Research, 218, 138-145. https://doi.org/10.1016/j.schres.2020.01.019
doi: S0920-9964(20)30035-9 URL pmid: 32057538 |
[66] |
Rotshtein P., Henson R. N., Treves A., Driver J., & Dolan R. J. (2005). Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nature Neuroscience, 8, 107-113. https://doi.org/10.1038/nn1370
doi: 10.1038/nn1370 URL pmid: 15592463 |
[67] | Ryan C., Stafford M., & King R. J. (2016). Brief report: Seeing the man in the moon: Do children with autism perceive pareidolic faces? A pilot study. Journal of Autism and Developmental Disorders, 46(12), 3838-3843. https://doi.org/10.1007/s10803-016-2927-x |
[68] |
Salge J. H., Pollmann S., & Reeder R. R. (2020). Anomalous visual experience is linked to perceptual uncertainty and visual imagery vividness. Psychological Research, 85(2), 1848-1865. https://doi.org/10.1007/s00426-020-01364-7
doi: 10.1007/s00426-020-01364-7 URL |
[69] | Sasai-Sakuma T., Nishio Y., Yokoi K., Mori E., & Inoue Y. (2017). Pareidolias in REM sleep behavior disorder: A possible predictive marker of Lewy Body diseases? Sleep, 40(2). https://doi.org/10.1093/sleep/zsw045 |
[70] |
Sato W., & Uono S. (2019). The atypical social brain network in autism: Advances in structural and functional MRI studies. Current Opinion in Neurology, 32(4), 617-621. https://doi.org/10.1097/wco.0000000000000713
doi: 10.1097/WCO.0000000000000713 URL pmid: 31135458 |
[71] |
Singleton C. J., Ashwin C., & Brosnan M. (2014). Physiological responses to social and nonsocial stimuli in neurotypical adults with high and low levels of autistic traits: Implications for understanding nonsocial drive in autism spectrum disorders. Autism Research, 7(6), 695-703. https://doi.org/10.1002/aur.1422
doi: 10.1002/aur.1422 URL pmid: 25346292 |
[72] |
Smailes D., Burdis E., Gregoriou C., Fenton B., & Dudley R. (2020). Pareidolia-proneness, reality discrimination errors, and visual hallucination-like experiences in a non-clinical sample. Cognitive Neuropsychiatry, 25(2), 113-125. https://doi.org/10.1080/13546805.2019.1700789
doi: 10.1080/13546805.2019.1700789 URL pmid: 31810425 |
[73] |
Summerfield C., Egner T., Mangels J., & Hirsch J. (2006). Mistaking a house for a face: Neural correlates of misperception in healthy humans. Cerebral Cortex, 16(4), 500-508. https://doi.org/10.1093/cercor/bhi129
doi: 10.1093/cercor/bhi129 URL pmid: 16014866 |
[74] |
Takahashi K., & Watanabe K. (2013). Gaze cueing by pareidolia faces. i-Perception, 4(8), 490-492. https://doi. org/10.1068/i0617sas
doi: 10.1068/i0617sas pmid: 25165505 |
[75] |
Taubert J., Wardle S. G., Flessert M., Leopold D. A., & Ungerleider L. G. (2017). Face pareidolia in the rhesus monkey. Current Biology, 27(16), 2505-2509.e2502. https://doi.org/10.1016/j.cub.2017.06.075
doi: S0960-9822(17)30812-6 URL pmid: 28803877 |
[76] |
Tsao D. Y., & Livingstone M. S. (2008). Mechanisms of face perception. Annual Review of Neuroscience, 31, 411-437. https://doi.org/10.1146/annurev.neuro.30.051606.094238
doi: 10.1146/annurev.neuro.30.051606.094238 URL pmid: 18558862 |
[77] | Uchiyama M., Nishio Y., Yokoi K., Hosokai Y., Takeda A., & Mori E. (2015). Pareidolia in Parkinson's disease without dementia: A positron emission tomography study. Parkinsonism & Related Disorders, 21(6), 603-609. https://doi.org/10.1016/j.parkreldis.2015.03.020 |
[78] |
Varese F., Barkus E., & Bentall R. P. (2012). Dissociation mediates the relationship between childhood trauma and hallucination-proneness. Psychological Medicine, 42(5), 1025-1036. https://doi.org/10.1017/S0033291711001826
doi: 10.1017/S0033291711001826 URL pmid: 21896238 |
[79] | Wang C., Yu L., Mo Y., Wood L. C., & Goon C. (2022). Pareidolia in a built environment as a complex phenomenological ambiguous stimuli. International Journal of Environmental Research and Public Health, 19(9). https://doi.org/10.3390/ijerph19095163 |
[80] |
Wardle S. G., Taubert J., Teichmann L., & Baker C. L. (2020). Rapid and dynamic processing of face pareidolia in the human brain. Nature Communications, 11(1), 4518. https://doi.org/10.1038/s41467-020-18325-8
doi: 10.1038/s41467-020-18325-8 URL pmid: 32908146 |
[81] |
Weigelt S., Koldewyn K., & Kanwisher N. (2012). Face identity recognition in autism spectrum disorders: A review of behavioral studies. Neuroscience and Biobehavioral Reviews, 36(3), 1060-1084. https://doi.org/10.1016/j.neubiorev.2011.12.008
doi: 10.1016/j.neubiorev.2011.12.008 URL pmid: 22212588 |
[82] | Whalen C., & Schreibman L. (2003). Joint attention training for children with autism using behavior modification procedures. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44(3), 456-468. https://doi.org/10.1111/1469-7610.00135 |
[83] |
Wodehouse A., Brisco R., Broussard E., & Duffy A. (2018). Pareidolia: Characterising facial anthropomorphism and its implications for product design. Journal of Design Research, 16(2), 83-98. https://doi.org/10.1504/JDR.2018.092792
doi: 10.1504/JDR.2018.092792 URL |
[84] |
Yang L., Zhang W., Shi B., Yang Z., Wei Z., Gu F.,... Rao H. (2014). Electrical stimulation over bilateral occipito-temporal regions reduces N170 in the right hemisphere and the composite face effect. PLoS One, 9(12), e115772. https://doi.org/10.1371/journal.pone.0115772
doi: 10.1371/journal.pone.0115772 URL |
[85] | Zhang H., Liu J., Huber D. E., Rieth C. A., Tian J., & Lee K. (2008). Detecting faces in pure noise images: A functional MRI study on top-down perception. Brain Imaging, 19(2), 229-233. https://doi.org/10.1097/WNR.0b013e3282f49083 |
[86] |
Zhou L., & Meng M. (2020). Do you see the “face”? Individual differences in face pareidolia. Journal of Pacific Rim Psychology, 14, e2. https://doi.org/10.1017/prp.2019.27
doi: 10.1017/prp.2019.27 URL |
[87] |
Zimmermann K. M., Stratil A., Ina T., Sommer J., & Jansen A. (2019). Illusory face detection in pure noise images: The role of interindividual variability in fMRI activation patterns. PLoS One, 14(1), e0209310. https://doi.org/10.1371/journal.pone.0209310
doi: 10.1371/journal.pone.0209310 URL |
[1] | 明莉莉, 胡学平. 人类嗓音加工的神经机制——来自正常视力者和盲人的脑神经证据[J]. 心理科学进展, 2021, 29(12): 2147-2160. |
[2] | 王一丹, 何生, 张杰栋. 基于降维分析的人类面孔加工脑区的细分[J]. 心理科学进展, 2019, 27(suppl.): 161-161. |
[3] | 张凯莉, 周霈, 王沛. 面孔表情及注视方向对面孔加工特异性的影响——基于知觉负荷理论的视角 *[J]. 心理科学进展, 2018, 26(6): 984-993. |
[4] | 荆伟, 刘仔琴. 孤独症者面孔加工中眼部注视不足, 是回避还是忽视?[J]. 心理科学进展, 2018, 26(3): 476-487. |
[5] | 王昊, 杨志刚. 面孔空想性错视及其神经机制[J]. 心理科学进展, 2018, 26(11): 1952-1960. |
[6] | 郝艳斌, 王福兴, 谢和平, 安婧, 王玉鑫, 刘华山. 自闭症谱系障碍者的面孔加工特点——眼动研究的元分析[J]. 心理科学进展, 2018, 26(1): 26-41. |
[7] | 姜永志;白晓丽;阿拉坦巴根;刘勇;李敏;刘桂芹. 青少年问题性社交网络使用[J]. 心理科学进展, 2016, 24(9): 1435-1447. |
[8] | 李晓白;朱棋;刘嘉. 行为遗传学:解决面孔特异性问题争论的新思[J]. 心理科学进展, 2009, 17(2): 284-293. |
[9] | 唐汉瑛;马红宇;王斌. 工作-家庭界面研究的新视角:工作家庭促进研究[J]. 心理科学进展, 2007, 15(5): 852-858. |
[10] | 徐岩,张亚旭,周晓林. 面孔加工的认知神经科学研究:回顾与展望[J]. 心理科学进展, 2003, 11(1): 35-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||