心理科学进展 ›› 2020, Vol. 28 ›› Issue (4): 588-603.doi: 10.3724/SP.J.1042.2020.00588
收稿日期:
2019-08-16
出版日期:
2020-04-15
发布日期:
2020-02-24
通讯作者:
张清芳
E-mail:zhang@ruc.edu.cn
基金资助:
Received:
2019-08-16
Online:
2020-04-15
Published:
2020-02-24
Contact:
ZHANG Qingfang
E-mail:zhang@ruc.edu.cn
摘要:
口语产生的最后阶段是发声运动, 该阶段涉及到言语运动系统中前馈和反馈控制的整合加工。其中, 前馈控制指个体自上而下地提取并执行产生目标语音的运动指令, 而反馈控制指个体根据发声时产生的感觉反馈自下而上地调整言语运动, 感觉目标和感觉预期是联系两者的重要枢纽。基于DIVA (directions into velocities of articulators)神经计算模型, 从语言习得和语言产生两个阶段, 阐述了前馈和反馈控制整合的认知神经机制。在以往研究的基础上, 重点梳理了听觉反馈如何帮助个体在线控制言语运动和更新前馈运动表征, 以及ERP研究中P1-N1-P2成分波相应的认知内涵。此外, 总结了影响讲话者前馈和反馈控制的各种因素, 包括个体差异、训练经历和任务情境等, 并提出这一领域应该重点关注的研究问题。
中图分类号:
蔡笑, 张清芳. (2020). 言语运动系统中前馈和反馈控制整合加工的作用机制 *. 心理科学进展 , 28(4), 588-603.
CAI Xiao, ZHANG Qingfang. (2020). The integration mechanisms of feedforward and feedback control in speech motor system. Advances in Psychological Science, 28(4), 588-603.
1 | 张清芳, 杨玉芳 . ( 2003). 言语产生中的词汇通达理论. 心理科学进展, 11( 1), 6-11. |
2 | Alsius A., Mitsuya T., & Munhall K . ( 2013). Does compensation in auditory feedback require attention? Journal of the Acoustical Society of America, 19( 1), 3342. |
3 | Ballard K. J., Halaki M., Sowman P. F., Kha A., Daliri A., Robin D., .. Guenther F . ( 2018). An investigation of compensation and adaptation to auditory perturbations in individuals with acquired apraxia of speech. Frontiers in Human Neuroscience, 12, 510. |
4 | Ballard K. J., Tourville J., & Robin D. A . ( 2014). Behavioral, computational, and neuroimaging studies of acquired apraxia of speech. Frontiers in Human Neuroscience, 8, 892. |
5 | Bauer J. J., Mittal J., Larson C. R., & Hain T. C . ( 2006). Vocal responses to unanticipated perturbations in voice loudness feedback: An automatic mechanism for stabilizing voice amplitude. Journal of the Acoustical Society of America, 119( 4), 2363-2371. |
6 | Behroozmand R., Ibrahim N., Korzyukov O., Robin D. A., & Larson C. R . ( 2015). Functional role of delta and theta band oscillations for auditory feedback processing during vocal pitch motor control. Frontiers in Neuroscience, 9, 109. |
7 | Behroozmand, R., & Larson, C . ( 2011). Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback. BMC Neuroscience, 12( 1), 54-63. |
8 | Behroozmand R., Sangtian S., Korzyukov O., & Larson C. R . ( 2016). A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback. Brain Research, 1636, 1-12. |
9 | Bohland, J. W., & Guenther, F. H . ( 2006). An fMRI investigation of syllable sequence production. NeuroImage, 32( 2), 821-841. |
10 | Cai, S . ( 2012). Online control of articulation based on auditory feedback in normal speech and stuttering: Behavioral and modeling studies (Unpublished doctorial dissertation). Massachusetts Institute of Technology, Cambridge. |
11 | Cai S., Beal D. S., Ghosh S. S., Tiede M. K., Guenther F. H., & Perkell J. S . ( 2012). Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation. PLoS ONE, 7( 7), e41830. |
12 | Cai S., Ghosh S. S., Guenther F. H., & Perkell J. S . ( 2010). Adaptive auditory feedback control of the production of formant trajectories in the Mandarin triphthong /iau/ and its pattern of generalization. Journal of the Acoustical Society of America, 128( 4), 2033-2048. |
13 | Cai S., Ghosh S. S., Guenther F. H., & Perkell J. S . ( 2011). Focal manipulations of formant trajectories reveal a role of auditory feedback in the online control of both within- syllable and between-syllable speech timing. Journal of Neuroscience, 31( 45), 16483-16490. |
14 | Cavanagh, J. F., & Frank, M. J . ( 2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18( 8), 414-421. |
15 | Chang E. F., Niziolek C. A., Knight R. T., Nagarajan S. S., & Houde J. F . ( 2013). Human cortical sensorimotor network underlying feedback control of vocal pitch. Proceedings of the National Academy of Sciences, 110( 7), 2653-2658. |
16 | Chen Z., Chen X., Liu P., Huang D., & Liu H . ( 2012). Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization. BMC Neuroscience, 13( 1), 1-10. |
17 | Chen Z., Liu P., Jones J. A., Huang D., & Liu H . ( 2010). Sex-related differences in vocal responses to pitch feedback perturbations during sustained vocalization. Journal of the Acoustical Society of America, 128(6), EL355-EL360. |
18 | Chen Z., Liu P., Wang E. Q., Larson C. R., Huang D., & Liu H . ( 2012). ERP correlates of language-specific processing of auditory pitch feedback during self-vocalization. Brain and Language, 121( 1), 25-34. |
19 | Chen Z., Wong F. C. K., Jones J. A., Li W., Liu P., Chen X., & Liu H . ( 2015). Transfer effect of speech-sound learning on auditory-motor processing of perceived vocal pitch errors. Scientific Reports, 5, 13134. |
20 | Civier O., Tasko S. M., & Guenther F. H . ( 2010). Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production. Journal of Fluency Disorders, 35( 3), 246-279. |
21 | Cowie R., Douglas-Cowie E., & Kerr A. G . ( 1982). A study of speech deterioration in post-lingually deafened adults. The Journal of Laryngology & Otology, 96( 2), 101-112. |
22 | Cruikshank L. C., Singhal A., Hueppelsheuser M., & Caplan J. B . ( 2012). Theta oscillations reflect a putative neural mechanism for human sensorimotor integration. Journal of Neurophysiology, 107( 1), 65-77. |
23 | Daliri, A., & Max, L . ( 2015a). Electrophysiological evidence for a general auditory prediction deficit in adults who stutter. Brain and Language, 150, 37-44. |
24 | Daliri, A., & Max, L . ( 2015b). Modulation of auditory processing during speech movement planning is limited in adults who stutter. Brain and Language, 143, 59-68. |
25 | Daliri A., Wieland E. A., Cai S., Guenther F. H., & Chang S.-E . ( 2017). Auditory-motor adaptation is reduced in adults who stutter but not in children who stutter. Developmental Science, 21( 2), e12521. |
26 | Delvaux, V., & Soquet, A . ( 2007). The influence of ambient speech on adult speech productions through unintentional imitation. Phonetica, 64( 2-3), 145-173. |
27 | Franken M. K., Acheson D. J., Mcqueen J. M., Peter H., & Frank E . ( 2018). Opposing and following responses in sensorimotor speech control: Why responses go both ways. Psychonomic Bulletin & Review, 25( 4), 1458-1467. |
28 | Franken M. K., Frank E., Acheson D. J., Mcqueen J. M., Peter H., & Jan-Mathijs S . ( 2018). Self-monitoring in the cerebral cortex: Neural responses to small pitch shifts in auditory feedback during speech production. NeuroImage, 179, 326-336. |
29 | Franklin, D. W., & Wolpert, D. M . ( 2011). Computational mechanisms of sensorimotor control. Neuron, 72( 3), 425-442. |
30 | Fu C. H., Vythelingum G. N., Brammer M. J., Williams S. C., Amaro E., Jr., Andrew C. M., … McGuire K. P . ( 2006). An fMRI study of verbal self-monitoring: Neural correlates of auditory verbal feedback. Cerebral Cortex, 16( 7), 969-977. |
31 | Golfinopoulos E., Tourville J. A., Bohland J. W., Ghosh S. S., Nieto-Castanon A., & Guenther F. H . ( 2011). fMRI investigation of unexpected somatosensory feedback perturbation during speech. NeuroImage, 55( 3), 1324-1338. |
32 | Golfinopoulos E., Tourville J. A., & Guenther F. H . ( 2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52( 3), 862-874. |
33 | Gould J., Lane H., Vick J., Perkell J. S., Matthies M. L., & Zandipour M . ( 2001). Changes in speech intelligibility of postlingually deaf adults after cochlear implantation. Ear and Hearing, 22( 6), 453-460. |
34 | Grafton S. T., Schmitt P., van Horn J., & Diedrichsen J . ( 2008). Neural substrates of visuomotor learning based on improved feedback control and prediction. NeuroImage, 39( 3), 1383-1395. |
35 | Guenther, F. H . ( 1994). A neural network model of speech acquisition and motor equivalent speech production. Biological Cybernetics, 72( 1), 43-53. |
36 | Guenther, F. H . ( 1995). Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychological Review, 102( 3), 594-621. |
37 | Guenther, F . ( 2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39( 5), 350-365. |
38 | Guenther F. H. ( 2006). Neural control of speech . Cambridge, MA: MIT Press. |
39 | Guenther F. H., Ghosh S. S., & Tourville J. A . ( 2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96( 3), 280-301. |
40 | Guenther, F., & Vladusich, T . ( 2012). A neural theory of speech acquisition and production. Journal of Neurolinguistics, 25( 5), 408-422. |
41 | Heinks‐Maldonado T. H., Mathalon D. H., Gray M., & Ford J. M . ( 2005). Fine‐tuning of auditory cortex during speech production. Psychophysiology, 42( 2), 180-190. |
42 | Heinks-Maldonado T. H., Nagarajan S. S., & Houde J. F . ( 2006). Magnetoencephalographic evidence for a precise forward model in speech production. Neuroreport, 17( 13), 1375-1379. |
43 | Hickok, G . ( 2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13( 2), 135-145. |
44 | Hickok G., Houde J., & Rong F . ( 2011). Sensorimotor integration in speech processing: Computational basis and neural organization. Neuron, 69( 3), 407-422. |
45 | Hickok G., Okada K., & Serences J. T . ( 2009). Area Spt in the human planum temporale supports sensory-motor integration for speech processing. Journal of Neurophysiology, 101( 5), 2725-2732. |
46 | Houde, J. F., & Chang, E. F . ( 2015). The cortical computations underlying feedback control in vocal production. Current Opinion in Neurobiology, 33, 174-181. |
47 | Houde, J. F., & Nagarajan, S. S . ( 2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5, 82. |
48 | Houde J. F., Nagarajan S. S., Sekihara K., & Merzenich M. M . ( 2002). Modulation of the auditory cortex during speech: An MEG study. Journal of Cognitive Neuroscience, 14( 8), 1125-1138. |
49 | Indefrey, P . ( 2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2, 255. |
50 | Indefrey, P., & Levelt, W. J. M . ( 2004). The spatial and temporal signatures of word production components. Cognition, 92( 1-2), 101-144. |
51 | Ito, M . ( 2000). Mechanisms of motor learning in the cerebellum. Brain Research, 886( 1-2), 237-245. |
52 | Iuzzini-Seigel J., Hogan T. P., Guarino A. J., & Green J. R . ( 2015). Reliance on auditory feedback in children with childhood apraxia of speech. Journal of Communication Disorders, 54, 32-42. |
53 | Jones, J. A., & Keough, D . ( 2008). Auditory-motor mapping for pitch control in singers and nonsingers. Experimental Brain Research, 190( 3), 279-287. |
54 | Jones J. A., Scheerer N., & Tumber A . ( 2013). The relationship between vocal pitch feedback error and event-related brain potentials. In Proceedings of Meetings on Acoustics, Vol. 19, 060151. |
55 | Kakimoto A., Ito S., Okada H., Nishizawa S., Minoshima S., & Ouchi Y . ( 2016). Age-related sex-specific changes in brain metabolism and morphology. Journal of Nuclear Medicine, 57( 2), 221-225. |
56 | Kalpouzos G., Nyberg L., . ( 2010). Asymmetry of memory in the brain. In K. Hugdahl, R. Westerhausen, (Eds). The two halves of the brain: Information processing in the cerebral hemispheres. MIT Press, Cambridge, MA, USA. 499-530. |
57 | Kearney, E., & Guenther, F. H . ( 2019). Articulating: The neural mechanisms of speech production. Language, Cognition and Neuroscience, 34( 9), 1-16. |
58 | Kearney E., Nieto-Castoñón A., Weerathunge H. R., Falsini R., Daliri A., Abur D., .. Guenther F. H . ( 2020). A simple 3-parameter model for examining adaptation in speech and voice production. Frontiers in Psychology, 10, 2995. |
59 | Keough D., Hawco C., & Jones J. A . ( 2013). Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neuroscience, 14( 1), 25-35. |
60 | Kort N. S., Nagarajan S. S., & Houde J. F . ( 2014). A bilateral cortical network responds to pitch perturbations in speech feedback. NeuroImage, 86, 525-535. |
61 | Korzyukov O., Karvelis L., Behroozmand R., & Larson C. R . ( 2012). ERP correlates of auditory processing during automatic correction of unexpected perturbations in voice auditory feedback. International Journal of Psychophysiology, 83( 1), 71-78. |
62 | Korzyukov O., Sattler L., Behroozmand R., & Larson C. R . ( 2012). Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback. PLoS One, 7( 7), e41216. |
63 | Lametti D. R., Krol S. A., Shiller D. M., & Ostry D. J . ( 2014). Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning. Psychological Science, 25( 7), 1325-1336. |
64 | Lametti D. R., Nasir S. M., & Ostry D. J . ( 2012). Sensory preference in speech production revealed by simultaneous alteration of auditory and somatosensory feedback. Journal of Neuroscience, 32( 27), 9351-9358. |
65 | Lane, H., & Webster, J. W . ( 1991). Speech deterioration in postlingually deafened adults. Journal of the Acoustical Society of America, 89( 2), 859-866. |
66 | Levelt W. J. M., Roelofs A., & Meyer A. S . ( 1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22( 1), 1-75. |
67 | Li J., Hu H., Chen N., Jones J. A., Wu D., Liu P., & Liu H . ( 2018). Aging and sex influence cortical auditory-motor integration for speech control. Frontiers in Neuroscience, 12, 749. |
68 | Liu H., Meshman M., Behroozmand R., & Larson C. R . ( 2011). Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback. Clinical Neurophysiology, 122( 5), 951-957. |
69 | Liu H., Russo N., & Larson C. R . ( 2010). Age-related differences in vocal responses to pitch feedback perturbations: A preliminary study. Journal of the Acoustical Society of America, 127( 2), 1042-1046. |
70 | Liu H., Wang E. Q., Chen Z., Liu P., Larson C. R., & Huang D . ( 2010). Effect of tonal native language on voice fundamental frequency responses to pitch feedback perturbations during sustained vocalizations. Journal of the Acoustical Society of America, 128( 6), 3739-3746. |
71 | Liu, X., & Tian, X . ( 2018). The functional relations among motor-based prediction, sensory goals and feedback in learning non-native speech sounds: Evidence from adult Mandarin Chinese speakers with an auditory feedback masking paradigm. Scientific Reports, 8( 1), 11910. |
72 | Liu Y., Hu H., Jones J., Guo Z., Li W., Chen X., … Liu H . ( 2015). Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors. European Journal of Neuroscience, 42( 3), 1895-1904. |
73 | Maas E., Mailend M. L., & Guenther F. H . ( 2015). Feedforward and feedback control in apraxia of speech: Effects of noise masking on vowel production. Journal of Speech, Language, and Hearing Research, 58( 2), 185-200. |
74 | Mitsuya T., Munhall K. G., & Purcell D. W . ( 2017). Modulation of auditory-motor learning in response to formant perturbation as a function of delayed auditory feedback. Journal of the Acoustical Society of America, 141( 4), 2758-2767. |
75 | Munhall K. G., Macdonald E. N., Byrne S. K., & Johnsrude I . ( 2009). Talkers alter vowel production in response to real-time formant perturbation even when instructed not to compensate. Journal of the Acoustical Society of America, 125( 1), 384-390. |
76 | New A. B., Robin D. A., Parkinson A. L., Duffy J. R., McNeil M. R., Piguet O., … Ballard K . ( 2015). Altered resting-state network connectivity in stroke patients with and without apraxia of speech. NeuroImage: Clinical, 8, 429-439. |
77 | Ning L.-H., Loucks T. M., & Shih C . ( 2015). The effects of language learning and vocal training on sensorimotor control of lexical tone. Journal of Phonetics, 51, 50-69. |
78 | Ning L.-H., Shih C., & Loucks T. M . ( 2014). Mandarin tone learning in L2 adults: A test of perceptual and sensorimotor contributions. Speech Communication, 63-64, 55-69. |
79 | Niziolek C. A., Nagarajan S. S., & Houde J. F . ( 2013). What does motor efference copy represent? Evidence from speech production. Journal of Neuroscience, 33( 41), 16110-16116. |
80 | Oller, D. K., & Eilers, R. E . ( 1988). The role of audition in infant babbling. Child Development, 59( 2), 441-449. |
81 | O’Reilly J. X., Mesulam M. M., & Nobre A. C . ( 2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28( 9), 2252-2260. |
82 | Parkinson A. L., Flagmeier S. G., Manes J. L., Larson C. R., Rogers B., & Robin D. A . ( 2012). Understanding the neural mechanisms involved in sensory control of voice production. NeuroImage, 61( 1), 314-322. |
83 | Parrell B., Agnew Z., Nagarajan S., Houde J., & Ivry R. B . ( 2017). Impaired feedforward control and enhanced feedback control of speech in patients with cerebellar degeneration. The Journal of Neuroscience, 37( 38), 9249-9258. |
84 | Parrell B., Lammert A. C., Ciccarelli G., & Quatieri T. F . ( 2019). Current models of speech motor control: A control-theoretic overview of architectures and properties. Journal of the Acoustical Society of America, 145( 3), 1456-1481. |
85 | Patel R., Reilly K. J., Archibald E., Cai S., & Guenther F. H . ( 2015). Responses to intensity-shifted auditory feedback during running speech. Journal of Speech Language and Hearing Research, 58( 6), 1687-1694. |
86 | Perkell, J. S . ( 2012). Movement goals and feedback and feedforward control mechanisms in speech production. Journal of Neurolinguistics, 25( 5), 382-407. |
87 | Reilly, K. J., & Pettibone, C . ( 2017). Vowel generalization and its relation to adaptation during perturbations of auditory feedback. Journal of Neurophysiology, 118( 5), 2925-2934. |
88 | Saltzman, E., & Munhall, K . ( 1989). A dynamical approach to gestural patterning in speech production. Ecological Psychology, 1( 4), 333-382. |
89 | Scheerer N. E., Behich J., Liu H., & Jones J. A . ( 2013). ERP correlates of the magnitude of pitch errors detected in the human voice. Neuroscience, 240, 176-185. |
90 | Scheerer, N. E., & Jones, J. A . ( 2012). The relationship between vocal accuracy and variability to the level of compensation to altered auditory feedback. Neuroscience Letters, 529( 2), 128-132. |
91 | Scheerer, N. E., & Jones, J. A . ( 2014). The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control. European Journal of Neuroscience, 40( 12), 3793-3806. |
92 | Scheerer, N. E., & Jones, J. A . ( 2018). Detecting our own vocal errors: An event-related study of the thresholds for perceiving and compensating for vocal pitch errors. Neuropsychologia, 114, 158-167. |
93 | Scheerer N. E., Liu H., & Jones J. A . ( 2013). The developmental trajectory of vocal and event-related potential responses to frequency-altered auditory feedback. European Journal of Neuroscience, 38( 8), 3189-3200. |
94 | Simmonds A. J., Wise R. J., & Leech R . ( 2011). Two tongues, one brain: Imaging bilingual speech production. Frontiers in Psychology, 2, 166. |
95 | Swink, S., & Stuart, A . ( 2012). The effect of gender on the N1-P2 auditory complex while listening and speaking with altered auditory feedback. Brain and Language, 122( 1), 25-33. |
96 | Terband H., Rodd J., & Maas E . ( 2015). Simulations of feedforward and feedback control in apraxia of speech (AOS): Effects of noise masking on vowel production in the DIVA model. In The 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow, UK. |
97 | Tian, X., & Poeppel, D . ( 2010). Mental imagery of speech and movement implicates the dynamics of internal forward models. Frontiers in Psychology, 1, 166. |
98 | Tian, X., & Poeppel, D . ( 2012). Mental imagery of speech: Linking motor and perceptual systems through internal simulation and estimation. Frontiers in Human Neuroscience, 6, 314. |
99 | Tian, X., & Poeppel, D . ( 2015). Dynamics of self-monitoring and error detection in speech production: Evidence from mental imagery and MEG. Journal of Cognitive Neuroscience, 27( 2), 352-364. |
100 | Tian X., Zarate J. M., & Poeppel D . ( 2016). Mental imagery of speech implicates two mechanisms of perceptual reactivation. Cortex, 77( 7), 1-12. |
101 | Tourville, J. A., & Guenther, F. H . ( 2011). The DIVA model: A neural theory of speech acquisition and production. Language and Cognitive Processes, 26( 7), 952-981. |
102 | Tourville J. A., Reilly K. J., & Guenther F. H . ( 2008). Neural mechanisms underlying auditory feedback control of speech. NeuroImage, 39( 3), 1429-1443. |
103 | Toyomura A., Koyama S., Miyamaoto T., Terao A., Omori T., Murohashi H., & Kurikl S . ( 2007). Neural correlates of auditory feedback control in human. Neuroscience, 146( 2), 499-503. |
104 | Tumber A. K., Scheerer N. E., & Jones J. A . ( 2014). Attentional demands influence vocal compensations to pitch errors heard in auditory feedback. PLoS ONE, 9( 10), e109968. |
105 | Tye-Murray, N, & Spencer, L . ( 1995). Acquisition of speech by children who have prolonged cochlear implant experience. Journal of Speech and Hearing Research, 38( 2), 327-337. |
106 | Wolpert D. M., Diedrichsen J., & Flanagan J. R . ( 2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12( 12), 739-751. |
107 | Zheng Z. Z., Munhall K. G., & Johnsrude I. S . ( 2010). Functional overlap between regions involved in speech perception and in monitoring oneʼs own voice during speech production. Journal of Cognitive Neuroscience, 22( 8), 1770-1781. |
[1] | 叶舒琪, 尹俊婷, 李招贤, 罗俊龙. 情绪对直觉与分析加工的影响机制[J]. 心理科学进展, 2023, 31(5): 736-746. |
[2] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[3] | 余婕, 陈有国. 时空干扰效应:基于贝叶斯模型的解释[J]. 心理科学进展, 2023, 31(4): 597-607. |
[4] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[5] | 杨庆, 李亚琴. 不确定是坏的么?不确定状态中的错误加工特点及其解释机制[J]. 心理科学进展, 2023, 31(3): 338-349. |
[6] | 王旭东, 何雅吉, 范会勇, 罗扬眉, 陈煦海. 人际愤怒的利与弊:来自元分析的证据[J]. 心理科学进展, 2023, 31(3): 386-401. |
[7] | 李清扬, 尹俊婷, 罗俊龙. 才思泉涌“举步”间:体育运动对创造性思维的影响[J]. 心理科学进展, 2023, 31(3): 455-466. |
[8] | 陈子炜, 付迪, 刘勋. 错认总比错过好——面孔视错觉的发生机制及其应用[J]. 心理科学进展, 2023, 31(2): 240-255. |
[9] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[10] | 谢才凤, 邬家骅, 许丽颖, 喻丰, 张语嫣, 谢莹莹. 算法决策趋避的过程动机理论[J]. 心理科学进展, 2023, 31(1): 60-77. |
[11] | 叶伟豪 于美琪 张利会 高琪 傅明珠 卢家楣. 精准的意义:负性情绪粒度的作用机制与干预[J]. 心理科学进展, 0, (): 0-0. |
[12] | 朱传林, 刘电芝, 罗文波. 情绪体验影响估算策略运用的认知与脑机制[J]. 心理科学进展, 2022, 30(12): 2639-2649. |
[13] | 史汉文, 李雨桐, 隋雪. 情绪词类型效应:区分情绪标签词和情绪负载词的行为和神经活动证据[J]. 心理科学进展, 2022, 30(12): 2696-2707. |
[14] | 陈玉田, 陈睿, 李鹏. 工作记忆中“组块”概念的演化及理论模型[J]. 心理科学进展, 2022, 30(12): 2708-2717. |
[15] | 时慧颖, 汤洁, 刘萍萍. 眼睛效应不稳定与感知规范:一个新视角[J]. 心理科学进展, 2022, 30(12): 2718-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||