心理科学进展 ›› 2022, Vol. 30 ›› Issue (10): 2303-2320.doi: 10.3724/SP.J.1042.2022.02303
收稿日期:
2021-07-26
出版日期:
2022-10-15
发布日期:
2022-08-24
通讯作者:
骆方
E-mail:luof@bnu.edu.cn
基金资助:
Received:
2021-07-26
Online:
2022-10-15
Published:
2022-08-24
Contact:
LUO Fang
E-mail:luof@bnu.edu.cn
摘要:
自闭症谱系障碍(Autistic Spectrum Disorders, ASD)的症状早在婴幼儿期就会显现, 越早发现, 越早干预, 治疗效果越好。传统自闭症早期筛查与诊断在评估方法、流程上存在局限, 无法满足大规模筛查和诊断需求。随着人工智能技术的快速发展, 使用智能化方法进行自闭症早期大规模无感筛查与诊断逐渐成为可能。近10年间, 国内外对自闭症智能化识别方法的探索在经典任务行为、面部表情和情绪、眼动、脑影像、运动控制和运动模式、多模态6个领域积累了丰富的研究成果。未来研究应围绕构建国内自闭症早期智能医学筛查与诊断体系, 开发针对婴幼儿患者的筛查工具, 构建融合多模态数据的自闭症婴幼儿智能化识别模型, 建立结合脑影像技术的自闭症精细化诊断方法等方面来开展。
中图分类号:
袁玉琢, 骆方. (2022). 人工智能辅助的自闭症早期患者的筛查与诊断. 心理科学进展 , 30(10), 2303-2320.
YUAN Yuzhuo, LUO Fang. (2022). Early screening and diagnosis of autism spectrum disorder assisted by artificial intelligence. Advances in Psychological Science, 30(10), 2303-2320.
研究者 | 工具名称 | 缩写 | 适用范围(单位:月) | 形式 |
---|---|---|---|---|
Baron-Cohen等( | Checklist for Autism in Toddlers | CHAT | 18~24 | 父母报告 专业观察 |
Robins等( | Modified Checklist for Autism in Toddlers | M-CHAT | 16~30 | 父母报告 专业观察 |
Siegel ( | Pervasive Developmental Disorders Screening Test-II | PDDST-Ⅱ | 12~48 | 父母报告 |
Dietz等( | the Early Screening for Autistic Traits | ESAT | 14~15 | 父母报告 临床观察 |
Reznick等( | the First Year Inventory | FYI | 9~12 | 父母报告 |
Krug等( | Autism Behavior Checklist | ABC | >18 | 父母报告 |
Schopler等(2010) | Childhood Autism Rating Scale | CARS | >24 | 父母报告 专业观察 |
Matson等( | Baby and Infant Screen for Children with Autism Traits | BISCUIT | 17~37 | 父母报告 |
Stone等( | Screening Tool for Autism in Two-Year-Olds | STAT | 24~36 | 基于互动项目 的观察 |
Bryson等(2000) | the Autism Observation Scale for Infant | AOSI | 6~18 | 基于半结构化游戏活动的观察 |
Young ( | Autism Detection in Early Childhood | ADEC | 12~36 | 基于游戏项目 的观察 |
表1 ASD早期筛查常用工具表
研究者 | 工具名称 | 缩写 | 适用范围(单位:月) | 形式 |
---|---|---|---|---|
Baron-Cohen等( | Checklist for Autism in Toddlers | CHAT | 18~24 | 父母报告 专业观察 |
Robins等( | Modified Checklist for Autism in Toddlers | M-CHAT | 16~30 | 父母报告 专业观察 |
Siegel ( | Pervasive Developmental Disorders Screening Test-II | PDDST-Ⅱ | 12~48 | 父母报告 |
Dietz等( | the Early Screening for Autistic Traits | ESAT | 14~15 | 父母报告 临床观察 |
Reznick等( | the First Year Inventory | FYI | 9~12 | 父母报告 |
Krug等( | Autism Behavior Checklist | ABC | >18 | 父母报告 |
Schopler等(2010) | Childhood Autism Rating Scale | CARS | >24 | 父母报告 专业观察 |
Matson等( | Baby and Infant Screen for Children with Autism Traits | BISCUIT | 17~37 | 父母报告 |
Stone等( | Screening Tool for Autism in Two-Year-Olds | STAT | 24~36 | 基于互动项目 的观察 |
Bryson等(2000) | the Autism Observation Scale for Infant | AOSI | 6~18 | 基于半结构化游戏活动的观察 |
Young ( | Autism Detection in Early Childhood | ADEC | 12~36 | 基于游戏项目 的观察 |
[1] | 毕小彬, 范晓壮, 米文丽, 贺荟中. (2020). 高风险婴儿前瞻性纵向研究与孤独症谱系障碍早期识别. 心理科学进展, 28(3), 443-455. |
[2] | 陈顺森, 白学军, 张日昇. (2011). 自闭症谱系障碍的症状, 诊断与干预. 心理科学进展, 19(1), 60-72. |
[3] | 廖梦怡, 陈靓影, 王广帅, 彭世新. (2021). 融合多模态数据的自闭症谱系障碍儿童智能化识别及其有效性. 科学通报, 66(20), 2618-2628. |
[4] | 徐云, 杨健. (2014). 自闭症早期发现研究进展. 中国临床心理学杂志, 22(6), 1023-1027. |
[5] | 尤娜, 杨广学. (2006). 自闭症诊断与干预研究综述. 中国特殊教育, 7, 26-31. |
[6] | Ahmed, A. A., & Goodwin, M. S. (2017, May). Automated detection of facial expressions during computer-assisted instruction in individuals on the autism spectrum. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp.6050-6055). Association for Computing Machinery. |
[7] |
Akshoomoff, N., Corsello, C., & Schmidt, H. (2006). The role of the autism diagnostic observation schedule in the assessment of autism spectrum disorders in school and community settings. The California School Psychologist, 11(1), 7-19.
doi: 10.1007/BF03341111 URL |
[8] |
Anzulewicz, A., Sobota, K., & Delafield-Butt, J. T. (2016). Toward the autism motor signature: Gesture patterns during smart tablet gameplay identify children with autism. Scientific Reports, 6(1), 31107.
doi: 10.1038/srep31107 URL |
[9] |
Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/ non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188.
doi: 10.1109/78.978374 URL |
[10] | Baltrušaitis, T., Mahmoud, M., & Robinson, P. (2015, May). Cross-dataset learning and person-specific normalisation for automatic action unit detection. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) (Vol.6, pp. 1-6). IEEE. |
[11] | Baltrušaitis, T., Robinson, P., & Morency, L. P. (2013). Constrained local neural fields for robust facial landmark detection in the wild. Proceedings of the IEEE International Conference on Computer Vision Workshops (pp.354-361). IEEE. |
[12] | Baltrušaitis, T., Robinson, P., & Morency, L. P. (2016, March). Openface: An open source facial behavior analysis toolkit. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp.1-10). IEEE. |
[13] |
Baron-Cohen, S., Allen, J., & Gillberg, C. (1992). Can autism be detected at 18 months? The needle, the haystack, and the CHAT. The British Journal of Psychiatry, 161(6), 839-843.
doi: 10.1192/bjp.161.6.839 URL |
[14] | Bidwell, J., Essa, I. A., Rozga, A., & Abowd, G. D. (2014, November). Measuring child visual attention using markerless head tracking from color and depth sensing cameras. Proceedings of the 16th International Conference on Multimodal Interaction (pp.447-454). Association for Computing Machinery. |
[15] |
Bovery, M., Dawson, G., Hashemi, J., & Sapiro, G. (2019). A scalable off-the-shelf framework for measuring patterns of attention in young children and its application in autism spectrum disorder. IEEE Transactions on Affective Computing, 12(3), 722-731.
doi: 10.1109/TAFFC.2018.2890610 URL |
[16] | Campbell, D. J., Chang, J., Chawarska, K., & Shic, F. (2014, March). Saliency-based Bayesian modeling of dynamic viewing of static scenes. Proceedings of the Symposium on Eye Tracking Research and Applications (pp.51-58). Association for Computing Machinery. |
[17] |
Campbell, K., Carpenter, K. L., Hashemi, J., Espinosa, S., Marsan, S., Borg, J. S.,... Dawson, G. (2019). Computer vision analysis captures atypical attention in toddlers with autism. Autism, 23(3), 619-628.
doi: 10.1177/1362361318766247 pmid: 29595333 |
[18] |
Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biological Psychiatry, 74(3), 195-203.
doi: 10.1016/j.biopsych.2012.11.022 pmid: 23313640 |
[19] | Chen, S., & Zhao, Q. (2019). Attention-based autism spectrum disorder screening with privileged modality. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.1181-1190). IEEE. |
[20] | Chong, E., Chanda, K., Ye, Z., Southerland, A., Ruiz, N., Jones, R. M.,... Rehg, J. M. (2017). Detecting gaze towards eyes in natural social interactions and its use in child assessment. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3), 1-20. Association for Computing Machinery. |
[21] | Choutas, V., Weinzaepfel, P., Revaud, J., & Schmid, C. (2018). Potion: Pose motion representation for action recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7024-7033).IEEE. |
[22] | Chrysouli, C., Vretos, N., & Daras, P. (2018, September). Affective state recognition based on eye gaze analysis using two-stream convolutional networks. 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) (pp.1-6). IEEE. |
[23] |
Dawson, G., Campbell, K., Hashemi, J., Lippmann, S. J., Smith, V., Carpenter, K.,... Sapiro, G. (2018). Atypical postural control can be detected via computer vision analysis in toddlers with autism spectrum disorder. Scientific Reports, 8(1), 17008.
doi: 10.1038/s41598-018-35215-8 pmid: 30451886 |
[24] |
de Belen, R. A. J., Bednarz, T., Sowmya, A., & Del Favero, D. (2020). Computer vision in autism spectrum disorder research: A systematic review of published studies from 2009 to 2019. Translational Psychiatry, 10(1), 1-20.
doi: 10.1038/s41398-019-0665-5 URL |
[25] |
de Bildt, A., Sytema, S., Zander, E., Bölte, S., Sturm, H., Yirmiya, N.,... Oosterling, I. J. (2015). Autism Diagnostic Interview-Revised (ADI-R) algorithms for toddlers and young preschoolers: Application in a non-US sample of 1, 104 children. Journal of Autism and Developmental Disorders, 45(7), 2076-2091.
doi: 10.1007/s10803-015-2372-2 URL |
[26] |
Dickinson, A., Daniel, M., Marin, A., Gaonkar, B., Dapretto, M., McDonald, N. M., & Jeste, S. (2021). Multivariate neural connectivity patterns in early infancy predict later autism symptoms. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(1), 59-69.
doi: 10.1016/j.bpsc.2020.06.003 URL |
[27] |
Dietz, C., Swinkels, S., van Daalen, E., van Engeland, H., & Buitelaar, J. K. (2006). Screening for autistic spectrum disorder in children aged 14-15 months. II: Population screening with the Early Screening of Autistic Traits Questionnaire (ESAT). Design and general findings. Journal of Autism and Developmental Disorders, 36(6), 713-722.
doi: 10.1007/s10803-006-0114-1 pmid: 16633887 |
[28] |
Elsabbagh, M., Fernandes, J., Webb, S. J., Dawson, G., Charman, T., Johnson, M. H., & British Autism Study of Infant Siblings Team. (2013). Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biological Psychiatry, 74(3), 189-194.
doi: 10.1016/j.biopsych.2012.11.030 pmid: 23374640 |
[29] |
Emerson, R. W., Adams, C., Nishino, T., Hazlett, H. C., Wolff, J. J., Zwaigenbaum, L.,... Piven, J. (2017). Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Science Translational Medicine, 9(393), eaag2882. doi: 10.1126/scitranslmed.aag2882
doi: 10.1126/scitranslmed.aag2882 URL |
[30] |
Eslami, T., Almuqhim, F., Raiker, J. S., & Saeed, F. (2021). Machine learning methods for diagnosing autism spectrum disorder and attention-deficit/hyperactivity disorder using functional and structural MRI: A survey. Frontiers in Neuroinformatics, 14, 575999. https://doi.org/10.3389/fninf.2020.575999
doi: 10.3389/fninf.2020.575999 URL |
[31] |
Esposito, G., Venuti, P., Maestro, S., & Muratori, F. (2009). An exploration of symmetry in early autism spectrum disorders: Analysis of lying. Brain and Development, 31(2), 131-138.
doi: 10.1016/j.braindev.2008.04.005 pmid: 18534798 |
[32] | Feil-Seifer, D., & Matarić, M. (2010, March). Using proxemics to evaluate human-robot interaction. 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp.143-144). IEEE. |
[33] |
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395.
doi: 10.1145/358669.358692 URL |
[34] | Fitzgerald, M. (2017). The clinical utility of the ADI-R and ADOS in diagnosing autism. The British Journal of Psychiatry, 211(2), 117-117. |
[35] |
Gabard-Durnam, L. J., Wilkinson, C., Kapur, K., Tager-Flusberg, H., Levin, A. R., & Nelson, C. A. (2019). Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nature Communications, 10(1), 4188.
doi: 10.1038/s41467-019-12202-9 pmid: 31519897 |
[36] |
Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional brain development in early childhood. Nature Reviews Neuroscience, 19(3), 123-137.
doi: 10.1038/nrn.2018.1 pmid: 29449712 |
[37] | Girdhar, R., Gkioxari, G., Torresani, L., Paluri, M., & Tran, D. (2018). Detect-and-track: Efficient pose estimation in videos. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.350-359). IEEE. |
[38] |
Guha, T., Yang, Z., Grossman, R. B., & Narayanan, S. S. (2016). A computational study of expressive facial dynamics in children with autism. IEEE Transactions on Affective Computing, 9(1), 14-20.
doi: 10.1109/TAFFC.2016.2578316 URL |
[39] | Han, J., Li, X., Xie, L., Liu, J., Wang, F., & Wang, Z. (2018, November). Affective Computing of Childern with Authism Based on Feature Transfer. 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS) (pp.845-849). IEEE. |
[40] | Hashemi, J., Campbell, K., Carpenter, K., Harris, A., Qiu, Q., Tepper, M.,... Sapiro, G. (2015). A scalable app for measuring autism risk behaviors in young children:A technical validity and feasibility study. Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare (pp.23-27). ICST. |
[41] |
Hashemi, J., Dawson, G., Carpenter, K. L., Campbell, K., Qiu, Q., Espinosa, S.,... Sapiro, G. (2018). Computer vision analysis for quantification of autism risk behaviors. IEEE Transactions on Affective Computing, 12(1), 215-226.
doi: 10.1109/TAFFC.2018.2868196 URL |
[42] | Hashemi, J., Tepper, M., Vallin Spina, T., Esler, A., Morellas, V., Papanikolopoulos, N.,... Sapiro, G. (2014). Computer vision tools for low-cost and noninvasive measurement of autism-related behaviors in infants. Autism Research and Treatment, 2014. https://doi.org/10.1155/2014/935686 |
[43] |
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J.,... The IBIS Network. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348-351.
doi: 10.1038/nature21369 URL |
[44] |
Hodges, H., Fealko, C., & Soares, N. (2020). Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Translational Pediatrics, 9(Suppl 1), S55-S65. https://doi.org/10.21037/tp.2019.09.09
doi: 10.21037/tp.2019.09.09 URL |
[45] |
Hong, S. J., Vogelstein, J. T., Gozzi, A., Bernhardt, B. C., Yeo, B. T., Milham, M. P., & Di Martino, A. (2020). Toward neurosubtypes in autism. Biological Psychiatry, 88(1), 111-128.
doi: 10.1016/j.biopsych.2020.03.022 URL |
[46] | Hyman, S. L., Levy, S. E., & Myers, S. M. (2020). Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics, 145(1), e20193447. https://doi.org/10.1542/peds.2019-3447 |
[47] |
Imafuku, M., Hakuno, Y., Uchida-Ota, M., Yamamoto, J.-I., & Minagawa, Y. (2014). “Mom called me!” Behavioral and prefrontal responses of infants to self-names spoken by their mothers. NeuroImage, 103, 476-484.
doi: 10.1016/j.neuroimage.2014.08.034 URL |
[48] | Jeni, L. A., & Cohn, J. F. (2016). Person-independent 3d gaze estimation using face frontalization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp.87-95). IEEE. |
[49] | Jeni, L. A., Cohn, J. F., & Kanade, T. (2015, May). Dense 3D face alignment from 2D videos in real-time. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG) (Vol. 1, pp. 1-8). IEEE. |
[50] |
Johnson, C. P., & Myers, S. M. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120(5), 1183-1215.
pmid: 17967920 |
[51] |
Kalantarian, H., Jedoui, K., Washington, P., Tariq, Q., Dunlap, K., Schwartz, J., & Wall, D. P. (2019). Labeling images with facial emotion and the potential for pediatric healthcare. Artificial Intelligence in Medicine, 98, 77-86.
doi: S0933-3657(18)30259-8 pmid: 31521254 |
[52] |
Kaur, M., Srinivasan, S. M., & Bhat, A. N. (2018). Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without Autism Spectrum Disorder (ASD). Research in Developmental Disabilities, 72, 79-95.
doi: S0891-4222(17)30294-9 pmid: 29121516 |
[53] |
Krug, D. A., Arick, J., & Almond, P. (1980). Behavior checklist for identifying severely handicapped individuals with high levels of autistic behavior. Journal of Child Psychology and Psychiatry, 21(3), 221-229.
pmid: 7430288 |
[54] |
Landa, R., & Garrett-Mayer, E. (2006). Development in infants with autism spectrum disorders: A prospective study. Journal of Child Psychology and Psychiatry, 47(6), 629-638.
pmid: 16712640 |
[55] |
Leo, M., Carcagnì, P., Distante, C., Mazzeo, P. L., Spagnolo, P., Levante, A.,... Lecciso, F. (2019). Computational analysis of deep visual data for quantifying facial expression production. Applied Sciences, 9(21), 4542. https://doi.org/10.3390/app9214542
doi: 10.3390/app9214542 URL |
[56] | Li, B., Mehta, S., Aneja, D., Foster, C., Ventola, P., Shic, F., & Shapiro, L. (2019, September). A facial affect analysis system for autism spectrum disorder. 2019 IEEE International Conference on Image Processing (ICIP) (pp.4549-4553). IEEE. |
[57] |
Li, J., & Li, S. (2015). Gaze estimation from color image based on the eye model with known head pose. IEEE Transactions on Human-Machine Systems, 46(3), 414-423.
doi: 10.1109/THMS.2015.2477507 URL |
[58] |
Liu, W., Li, M., & Yi, L. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research, 9(8), 888-898.
doi: 10.1002/aur.1615 pmid: 27037971 |
[59] | Liu, W., Yu, X., Raj, B., Yi, L., Zou, X., & Li, M. (2015, September). Efficient autism spectrum disorder prediction with eye movement: A machine learning framework. 2015 International Conference on Affective Computing and Intelligent Interaction (ACII) (pp.649-655). IEEE. |
[60] |
Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659-685.
pmid: 7814313 |
[61] |
Lu, F., Sugano, Y., Okabe, T., & Sato, Y. (2014). Adaptive linear regression for appearance-based gaze estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(10), 2033-2046.
doi: 10.1109/TPAMI.2014.2313123 pmid: 26352633 |
[62] | Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., … Dietz, P. M. (2020). Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries, 69(4), 1-12. |
[63] |
Matson, J. L., Wilkins, J., Sevin, J. A., Knight, C., Boisjoli, J. A., & Sharp, B. (2009). Reliability and item content of the Baby and Infant Screen for Children with aUtIsm Traits (BISCUIT): Parts 1-3. Research in Autism Spectrum Disorders, 3(2), 336-344.
doi: 10.1016/j.rasd.2008.08.001 URL |
[64] |
Martin, K. B., Hammal, Z., Ren, G., Cohn, J. F., Cassell, J., Ogihara, M.,... Messinger, D. S. (2018). Objective measurement of head movement differences in children with and without autism spectrum disorder. Molecular Autism, 9(1), 14.
doi: 10.1186/s13229-018-0198-4 URL |
[65] |
Matson, J. L., & Goldin, R. L. (2014). Diagnosing young children with autism. International Journal of Developmental Neuroscience, 39, 44-48.
doi: 10.1016/j.ijdevneu.2014.02.003 pmid: 24603281 |
[66] |
Matson, J. L., Rieske, R. D., & Tureck, K. (2011). Additional considerations for the early detection and diagnosis of autism: Review of available instruments. Research in Autism Spectrum Disorders, 5(4), 1319-1326.
doi: 10.1016/j.rasd.2011.03.006 URL |
[67] |
Matson, J. L., Wilkins, J., & Gonzalez, M. (2008). Early identification and diagnosis in autism spectrum disorders in young children and infants: How early is too early? Research in Autism Spectrum Disorders, 2(1), 75-84.
doi: 10.1016/j.rasd.2007.03.002 URL |
[68] | Moghadas, M., & Moradi, H. (2018, October). Analyzing human-robot interaction using machine vision for autism screening. 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM) (pp.572-576). IEEE. |
[69] |
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Prisma, Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Physical Therapy, 89(9), 873-880.
doi: 10.1093/ptj/89.9.873 URL |
[70] |
Nah, Y. H., Young, R. L., & Brewer, N. (2019). Development of a brief version of the Autism Detection in Early Childhood. Autism, 23(2), 494-502.
doi: 10.1177/1362361318757563 URL |
[71] | Ozonoff, S., Iosif, A.-M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T.,... Young, G. S. (2010). A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child & Adolescent Psychiatry, 49(3), 256-266. |
[72] |
Ozonoff, S., Young, G. S., Goldring, S., Greiss-Hess, L., Herrera, A. M., Steele, J.,... Rogers, S. J. (2008). Gross motor development, movement abnormalities, and early identification of autism. Journal of Autism and Developmental Disorders, 38(4), 644-656.
doi: 10.1007/s10803-007-0430-0 pmid: 17805956 |
[73] |
Pierce, K., Gazestani, V. H., Bacon, E., Barnes, C. C., Cha, D., Nalabolu, S.,... Courchesne, E. (2019). Evaluation of the diagnostic stability of the early autism spectrum disorder phenotype in the general population starting at 12 months. JAMA Pediatrics, 173(6), 578-587.
doi: 10.1001/jamapediatrics.2019.0624 pmid: 31034004 |
[74] |
Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125.
doi: 10.1016/j.inffus.2017.02.003 URL |
[75] | Rehg, J., Abowd, G., Rozga, A., Romero, M., Clements, M., Sclaroff, S.,... Ye, Z. (2013). Decoding children's social behavior. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.3414-3421). IEEE. |
[76] |
Reznick, J. S., Baranek, G. T., Reavis, S., Watson, L. R., & Crais, E. R. (2007). A parent-report instrument for identifying one-year-olds at risk for an eventual diagnosis of autism: the first year inventory. Journal of Autism and Developmental Disorders, 37(9), 1691-1710.
doi: 10.1007/s10803-006-0303-y pmid: 17180716 |
[77] |
Robins, D. L., Fein, D., Barton, M. L., & Green, J. A. (2001). The Modified Checklist for Autism in Toddlers: an initial study investigating the early detection of autism and pervasive developmental disorders. Journal of Autism and Developmental Disorders, 31(2), 131-144.
pmid: 11450812 |
[78] |
Romero-Garcia, R., Warrier, V., Bullmore, E. T., Baron-Cohen, S., & Bethlehem, R. A. (2019). Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism. Molecular Psychiatry, 24(7), 1053-1064.
doi: 10.1038/s41380-018-0023-7 pmid: 29483624 |
[79] | Scassellati, B. (2007). How social robots will help us to diagnose, treat, and understand autism. Robotics Research (pp.552-563), Springer. |
[80] | Siegel, B. (2004). PDDST-II: Pervasive Developmental Disorders Screening Test-II: Early Childhood Screener for Autistic Spectrum Disorder. Pearson. |
[81] |
Shi, L., Zhou, Y., Ou, J., Gong, J., Wang, S., Cui, X.,... Luo, X. (2015). Different visual preference patterns in response to simple and complex dynamic social stimuli in preschool-aged children with autism spectrum disorders. PLoS One, 10(3), e0122280. https://doi.org/10.1371/journal.pone.0122280
doi: 10.1371/journal.pone.0122280 URL |
[82] | Shukla, P., Gupta, T., Saini, A., Singh, P., & Balasubramanian, R. (2017, March). A deep learning frame-work for recognizing developmental disorders. 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp.705-714). IEEE. |
[83] | Stone, W. L., Coonrod, E. E., & Ousley, O. Y. (2000). Brief report: screening tool for autism in two-year-olds (STAT): Development and preliminary data. Journal of Autism and Developmental Disorders, 30(6), 607-612. |
[84] | Syeda, U. H., Zafar, Z., Islam, Z. Z., Tazwar, S. M., Rasna, M. J., Kise, K., & Ahad, M. A. R. (2017, September). Visual face scanning and emotion perception analysis between autistic and typically developing children. Proceedings of the 2017 Acm International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 Acm International Symposium on Wearable Computers (pp.844-853). Association for Computing Machinery. |
[85] | Talbott, M. R., & Miller, M. R. (2020). Future directions for infant identification and intervention for autism spectrum disorder from a transdiagnostic perspective. Journal of Clinical Child & Adolescent Psychology, 49(5), 688-700. |
[86] | Tang, C., Zheng, W., Zong, Y., Cui, Z., Qiu, N., Yan, S., & Ke, X. (2018, October). Automatic smile detection of infants in mother-infant interaction via CNN-based feature learning. Proceedings of the Joint Workshop of the 4th Workshop on Affective Social Multimedia Computing and first Multi-Modal Affective Computing of Large-Scale Multimedia Data (pp.35-40). Association for Computing Machinery. |
[87] | Taylor, L. J., Eapen, V., Maybery, M., Midford, S., Paynter, J., Quarmby, L.,... Whitehouse, A. J. (2017). Brief report: An exploratory study of the diagnostic reliability for autism spectrum disorder. Journal of Autism and Developmental Disorders, 47(5), 1551-1558. |
[88] |
Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J., & Maurer, R. G. (1998). Movement analysis in infancy may be useful for early diagnosis of autism. Proceedings of the National Academy of Sciences, 95(23), 13982-13987.
doi: 10.1073/pnas.95.23.13982 URL |
[89] |
Thevenot, J., López, M. B., & Hadid, A. (2017). A survey on computer vision for assistive medical diagnosis from faces. IEEE Journal of Biomedical and Health Informatics, 22(5), 1497-1511.
doi: 10.1109/JBHI.2017.2754861 URL |
[90] | Vyas, K., Ma, R., Rezaei, B., Liu, S., Neubauer, M., Ploetz, T.,... Ostadabbas, S. (2019, October). Recognition of atypical behavior in autism diagnosis from video using pose estimation over time. 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP) (pp.1-6). IEEE. |
[91] | Wang, Z., Cai, H., & Liu, H. (2018, December). Robust eye center localization based on an improved SVR method. International Conference on Neural Information Processing (pp.623-634). Springer, Cham. |
[92] |
Wang, Z., Liu, J., He, K., Xu, Q., Xu, X., & Liu, H. (2019). Screening early children with autism spectrum disorder via response-to-name protocol. IEEE Transactions on Industrial Informatics, 17(1), 587-595.
doi: 10.1109/TII.2019.2958106 URL |
[93] | Wiggins, L. D., Baio, J., & Rice, C. (2006). Examination of the time between first evaluation and first autism spectrum diagnosis in a population-based sample. Journal of Developmental & Behavioral Pediatrics, 27(2), S79-S87. |
[94] | Winoto, P., Chen, C. G., & Tang, T. Y. (2016, September). The development of a Kinect-based online socio-meter for users with social and communication skill impairments: A computational sensing approach. 2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA) (pp.139-143). IEEE. |
[95] |
Wolfers, T., Floris, D. L., Dinga, R., van Rooij, D., Isakoglou, C., Kia, S. M.,... Beckmann, C. F. (2019). From pattern classification to stratification: Towards conceptualizing the heterogeneity of Autism Spectrum Disorder. Neuroscience & Biobehavioral Reviews, 104, 240-254.
doi: 10.1016/j.neubiorev.2019.07.010 URL |
[96] | Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., & Yu, S. (2021). A survey on incorporating domain knowledge into deep learning for medical image analysis. Medical Image Analysis, 69. https://doi.org/10.1016/j.media.2021.101985 |
[97] |
Xu, L., Liu, Y., Yu, J., Li, X., Yu, X., Cheng, H., & Li, J. (2020). Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy. Journal of Neuroscience Methods, 331, 108538.
doi: 10.1016/j.jneumeth.2019.108538 URL |
[98] | Young, R. L. (2007). Autism detection in early childhood: ADEC. Victoria, Australia: Australian Council of Educational Research. |
[99] |
Zabihi, M., Floris, D. L., Kia, S. M., Wolfers, T., Tillmann, J., Arenas, A. L.,... Marquand, A. (2020). Fractionating autism based on neuroanatomical normative modeling. Translational Psychiatry, 10(1), 384.
doi: 10.1038/s41398-020-01057-0 pmid: 33159037 |
[100] |
Zheng, Z., Young, E. M., Swanson, A. R., Weitlauf, A. S., Warren, Z. E., & Sarkar, N. (2015). Robot-mediated imitation skill training for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 682-691.
doi: 10.1109/TNSRE.2015.2475724 URL |
[101] |
Zhou, H., Xu, X., Yan, W., Zou, X., Wu, L., Luo, X.,... Wang, Y. (2020). Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years. Neuroscience Bulletin, 36(9), 961-971.
doi: 10.1007/s12264-020-00530-6 pmid: 32607739 |
[102] | Zunino, A., Morerio, P., Cavallo, A., Ansuini, C., Podda, J., Battaglia, F.,... Murino, V. (2018, August). Video gesture analysis for autism spectrum disorder detection. 2018 24th International Conference on Pattern Recognition (ICPR) (pp.3421-3426). IEEE. |
[103] | Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23(2-3), 143-152. |
[1] | 黄钰杰, 赵荣, 克丽比努尔·艾尔肯, 李晶晶, 王俊琪, 潘海萍, 高军. 自闭症谱系障碍的社会功能障碍:触觉与催产素[J]. 心理科学进展, 2023, 31(5): 800-814. |
[2] | 寇娟, 杨梦圆, 魏子杰, 雷怡. 自闭症谱系障碍社交动机理论:机制及干预探索[J]. 心理科学进展, 2023, 31(1): 20-32. |
[3] | 徐慧, 王滔. 自闭症谱系障碍个体的社会动机缺陷[J]. 心理科学进展, 2022, 30(5): 1050-1061. |
[4] | 蒋路远, 曹李梅, 秦昕, 谭玲, 陈晨, 彭小斐. 人工智能决策的公平感知[J]. 心理科学进展, 2022, 30(5): 1078-1092. |
[5] | 邓士昌, 许祺, 张晶晶, 李象千. 基于心灵知觉理论的AI服务用户接受机制及使用促进策略[J]. 心理科学进展, 2022, 30(4): 723-737. |
[6] | 俞稼钰, 靳羽西, 梁丹丹. 自闭症谱系障碍人群词义加工的脑激活模式:基于fMRI研究的元分析[J]. 心理科学进展, 2022, 30(11): 2448-2460. |
[7] | 姜力铭, 田雪涛, 任萍, 骆方. 人工智能辅助下的心理健康新型测评[J]. 心理科学进展, 2022, 30(1): 157-167. |
[8] | 霍超, 李祚山, 孟景. 自闭症谱系障碍个体的共情干预:扬长还是补短?[J]. 心理科学进展, 2021, 29(5): 849-863. |
[9] | 王磊, 贺荟中, 毕小彬, 周丽, 范晓壮. 社会动机理论视角下自闭症谱系障碍者的社交缺陷[J]. 心理科学进展, 2021, 29(12): 2209-2223. |
[10] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[11] | 徐贵平, 范若琳, 金花. 统计学习的认知神经机制及其与语言的关系[J]. 心理科学进展, 2020, 28(9): 1525-1538. |
[12] | 刘春燕, 陈功香. 自闭症谱系障碍个体的焦虑:发生机制、评估与治疗[J]. 心理科学进展, 2019, 27(10): 1713-1725. |
[13] | 孙岩, 房林, 王亭予, 崔丽. 自闭症谱系障碍者抑制控制的影响因素及神经机制[J]. 心理科学进展, 2018, 26(8): 1450-1464. |
[14] | 李开云, 陈功香, 傅小兰. 自闭症谱系障碍者的视运动知觉[J]. 心理科学进展, 2018, 26(5): 831-845. |
[15] | 林弋琪, 王希, 彭凯平, 倪士光. 虚拟现实技术与自闭症谱系障碍治疗:科技新希望[J]. 心理科学进展, 2018, 26(3): 518-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||