心理科学进展 ›› 2022, Vol. 30 ›› Issue (10): 2321-2337.doi: 10.3724/SP.J.1042.2022.02321
侯婷婷1, 陈潇2, 孔德彭2, 邵秀筠3, 林丰勋1, 李开云1()
收稿日期:
2021-11-02
出版日期:
2022-10-15
发布日期:
2022-08-24
通讯作者:
李开云
E-mail:sep_liky@ujn.edu.cn
基金资助:
HOU Tingting1, CHEN Xiao2, KONG Depeng2, SHAO Xiujun3, LIN Fengxun1, LI Kaiyun1()
Received:
2021-11-02
Online:
2022-10-15
Published:
2022-08-24
Contact:
LI Kaiyun
E-mail:sep_liky@ujn.edu.cn
摘要:
早发现、早诊断、早干预是开展自闭症儿童教育康复工作的共识, 但传统识别和诊断方法局限及专业人员缺乏常导致自闭症儿童错失最佳干预期。为改善现状, 近年来机器学习凭借其客观准确、简便灵活等方面的优势, 逐渐被应用到自闭症的早期预测、筛查、诊断和评估过程管理中, 积累了较为丰富的成果。但是机器学习也在研究对象选取、分类数据采集和理论模型应用等方面存在局限性。未来研究应推动构建孕产期和新生儿病理生理信息追踪数据库和标准化模型分类指标体系, 同时继续优化算法, 加快智能化自闭症识别和诊断理论成果向实践转化。
中图分类号:
侯婷婷, 陈潇, 孔德彭, 邵秀筠, 林丰勋, 李开云. (2022). 机器学习在自闭症儿童早期识别和诊断领域的应用. 心理科学进展 , 30(10), 2321-2337.
HOU Tingting, CHEN Xiao, KONG Depeng, SHAO Xiujun, LIN Fengxun, LI Kaiyun. (2022). Application of machine learning in early identification and diagnosis of autistic children. Advances in Psychological Science, 30(10), 2321-2337.
序号 | 中文名称 | 英文名称(简称) |
---|---|---|
1 | 自闭症脑成像数据 交换数据库 | Autism Brain Imaging Data Exchange (ABIDE) |
2 | 自闭症遗传资源交 换数据库 | Autism Genetic Resource Exchange (AGRE) |
3 | 波士顿自闭症协会 | Boston autism consortium (AC) |
4 | 自闭症治疗网络 | Autism Treatment Network (ATN) |
5 | SSC数据库 | Simons Simplex Collection (SSC) |
6 | Simons VIP数据库 | Simons Variation in Individuals Project (Simons VIP) |
7 | 加州大学欧文分校 知识库 | University of California Irvine Repository (UCI) |
表1 自闭症研究公开数据库
序号 | 中文名称 | 英文名称(简称) |
---|---|---|
1 | 自闭症脑成像数据 交换数据库 | Autism Brain Imaging Data Exchange (ABIDE) |
2 | 自闭症遗传资源交 换数据库 | Autism Genetic Resource Exchange (AGRE) |
3 | 波士顿自闭症协会 | Boston autism consortium (AC) |
4 | 自闭症治疗网络 | Autism Treatment Network (ATN) |
5 | SSC数据库 | Simons Simplex Collection (SSC) |
6 | Simons VIP数据库 | Simons Variation in Individuals Project (Simons VIP) |
7 | 加州大学欧文分校 知识库 | University of California Irvine Repository (UCI) |
一级维度 | 具体指标 |
---|---|
影像 | 功能性磁共振成像(functional Magnetic Resonance Imaging, fMRI), 结构性磁共振成像(structural Magnetic Resonance Imaging, sMRI), 脑电图(electroencephalogram, EEG), 超声波(ultrasonic, UT) |
量表/问卷 | 自闭症诊断观察量表(Autism Diagnostic Observation Schedule, ADOS), 自闭症诊断访谈量表-修订版(Autism Diagnostic Interview—Revised, ADI-R), 精神疾病诊断与统计手册(DSM-IV/ DSM-V), 国际疾病分类(ICD-10), 婴幼儿自闭症观察量表(Autism Observational Scale for Infants, AOSI), 修订版婴幼儿自闭症检核表(Modified Checklist for Autism in Toddlers, M-CHAT), 穆林早期学习量表(Mullen Scales of Early Learning, MSEL), 文兰适应行为量表(Vineland Adaptive Behavior Scales, VABS), 社会反应量表(Social Responsiveness Scale, SRS), 自闭症谱系量表(Autism-spectrum Quotient-10, AQ-10), 儿童行为检核表(Child Behavior Checklist, CBCL), 社交沟通问卷(Social Communication Questionnaire, SCQ), 家长问卷2(2作者注:在传统的诊断过程中, ADOS、ADI-R、DSM-V、ICD-10等主要用于自闭症临床诊断, 但是在本研究参考文献中, 研究者也会将其用作筛查指标参数, 因此正文未做明确划分。) |
典型行为 | 眼动行为, 社会行为, 刻板行为, 姿势控制, 上肢运动等 |
个人特征 | 父母的病史信息, 儿童的个人信息(年龄、性别、惯用手、智商、种族、病史、饮食、睡眠等) |
其他 | DNA, RNA, 代谢物, 语音 |
表2 基于机器学习的自闭症识别和诊断研究数据类型
一级维度 | 具体指标 |
---|---|
影像 | 功能性磁共振成像(functional Magnetic Resonance Imaging, fMRI), 结构性磁共振成像(structural Magnetic Resonance Imaging, sMRI), 脑电图(electroencephalogram, EEG), 超声波(ultrasonic, UT) |
量表/问卷 | 自闭症诊断观察量表(Autism Diagnostic Observation Schedule, ADOS), 自闭症诊断访谈量表-修订版(Autism Diagnostic Interview—Revised, ADI-R), 精神疾病诊断与统计手册(DSM-IV/ DSM-V), 国际疾病分类(ICD-10), 婴幼儿自闭症观察量表(Autism Observational Scale for Infants, AOSI), 修订版婴幼儿自闭症检核表(Modified Checklist for Autism in Toddlers, M-CHAT), 穆林早期学习量表(Mullen Scales of Early Learning, MSEL), 文兰适应行为量表(Vineland Adaptive Behavior Scales, VABS), 社会反应量表(Social Responsiveness Scale, SRS), 自闭症谱系量表(Autism-spectrum Quotient-10, AQ-10), 儿童行为检核表(Child Behavior Checklist, CBCL), 社交沟通问卷(Social Communication Questionnaire, SCQ), 家长问卷2(2作者注:在传统的诊断过程中, ADOS、ADI-R、DSM-V、ICD-10等主要用于自闭症临床诊断, 但是在本研究参考文献中, 研究者也会将其用作筛查指标参数, 因此正文未做明确划分。) |
典型行为 | 眼动行为, 社会行为, 刻板行为, 姿势控制, 上肢运动等 |
个人特征 | 父母的病史信息, 儿童的个人信息(年龄、性别、惯用手、智商、种族、病史、饮食、睡眠等) |
其他 | DNA, RNA, 代谢物, 语音 |
预测 | |||
---|---|---|---|
ASD | Non-ASD | ||
真实 | ASD | 真阳性 (True Positive, TP) | 假阴性 (False Negative, FN) |
Non-ASD | 假阳性 (False Positive, FP) | 真阴性 (True Negative, TN) |
表3 ASD二分类数据的混淆矩阵
预测 | |||
---|---|---|---|
ASD | Non-ASD | ||
真实 | ASD | 真阳性 (True Positive, TP) | 假阴性 (False Negative, FN) |
Non-ASD | 假阳性 (False Positive, FP) | 真阴性 (True Negative, TN) |
序号 | 国家 | 作者 | 被试 | 主要数据指标 | 算法/方法 | 评价指标 Acc-/Sen-/ Spe-/AUC | ||
---|---|---|---|---|---|---|---|---|
样本量 | 年龄 | 性别(男%) | ||||||
1 | 美国 | Abbas et al.( | 162 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频 | RF | -/100%/97.7%/99.7% |
2 | 美国 | Abbas et al.( | 375 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频, 医生问卷 | GBDT | -/90%/83%/ 92% |
3 | 伊朗 | Abdolzadegan et al.( | 34ASD, 11HC | 3~12岁 | 88.2; 54.5 | 脑电图 | SVM, KNN | 94.68%/100%/-/- |
4 | 法国 | Abraham et al.( | 871 (ASD+TC) | 6~64岁 | 83.5 | fMRI | SVC, RR | 66.9%/53.2%/78.3%/- |
5 | 美国 | Achenie et al.( | 14995 (ASD+non) | 16~30个月 | 46.51 | 个人信息, M-CHAT-R | fNN | 99.72%/73.8%/99.9%/- |
6 | 美国 | Bahado-Singh et al.( | 14ASD, 10Controls | 新生儿(24~79小时) | / | 白细胞DNA | DL, RF, SVM, GLM, PAM, LDA | -/97.5%/100%/100% |
7 | 以色列 | Ben-Sasson & Yom-Tov( | 189 (LR+MR+HR) | 1.25个月~18岁 | 84.7 | 父母问题 | DT, 最小二乘法 | AUC = 82% |
8 | 美国 | Bone et al.( | 1264ASD, 462 non | 4~55.1岁 | / | ADI-R, SRS | SVM | -/89.2%/59%/- |
9 | 英国 | Bosl et al.( | 99HR, 89LR | 3个月~3岁 | / | 脑电图 | KNN, RF, SVM | -/100%/100%/- |
10 | 荷兰 | Bussu et al.( | 232(HR+LR) | 8~36个月 | 50 | ADOS, AOSI, VABS, MSEL | LSSVM | 57.5%/79.6%/52.2%/71.3% |
11 | 法国 | Caly et al.( | 63ASD, 189NT | 妊娠期 | 81; 48.7 | 超声波, 生物测量 | LASSO, DT, XGBoost | -/41%/96%/- |
12 | 中国 | Dong et al.( | 86ASD, 89TD | 3~6岁 | / | 脑电图 | CNN | Acc- = 100% |
13 | 美国 | Duda & Ma et al.( | 2775ASD, 150ADHD | 13~163个月 | 83.9; 62 | SRS | DT, RF, SVC, LR, LASSO, LDA | AUC = 96.5% |
14 | 美国 | Duda, Daniels, & Wall ( | 222 (ASD+non) | 16个月~17岁 | 76.1 | ADI-R | ADTree | -/89.9%/79.7%/- |
15 | 美国 | Duda et al.( | 200ASD, 114ADHD | 2~17岁 | 80.6; 65.5 | SRS | ENet, LR, SVM, LDA, RR | AUC = 89% |
16 | 美国 | Dickinson et al.( | 36HR, 29LR | 3~18个月 | / | 脑电图 | SVM | r = 0.76 |
17 | 美国 | Emerson et al.( | 59HR | 6~24个月 | 69.5 | fcMRI | SVM | 96.6%/81.8%/100%/- |
18 | 以色列 | Eni et al.( | 56ASD, 6TD, 10Other | av4岁;av3岁;av4岁 | 87.5;83.3;90 | 语音特征 | MLR, SVR, FC-DNN, CNN | r = 0.72(ADOS) |
19 | 中国 | Epalle et al.( | 506ASD, 532TC | av10~35岁 | 87.7; 82.1 | fMRI | MISO-DNN, PNN | Acc- = 79.13% |
20 | 美国 | Eslami et al.( | 550ASD, 485HC | av10~34岁 | 81.5; 88.7 | fMRI | SMOTE, SVM, RF | 68.2%/66.7%/69.4%/74.4% |
21 | 意大利 | Eugenia et al.( | 26ASD, 24CAS, 18TD | 34~74个月 | 77; 75; 72 | sMRI | SVM | AUC = 76% (ASD vs TD); AUC = 64% (ASD vs CAS) |
22 | 美国 | Feczko et al.( | 47ASD, 58TD | 9~13岁 | 80.85; 46.55 | FcMRI | FRF | 72.7%/80.7%/63.1%/- |
附录1 机器学习算法与分类模型性能汇总表
序号 | 国家 | 作者 | 被试 | 主要数据指标 | 算法/方法 | 评价指标 Acc-/Sen-/ Spe-/AUC | ||
---|---|---|---|---|---|---|---|---|
样本量 | 年龄 | 性别(男%) | ||||||
1 | 美国 | Abbas et al.( | 162 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频 | RF | -/100%/97.7%/99.7% |
2 | 美国 | Abbas et al.( | 375 (ASD+non) | 18~72个月 | / | 家长问卷, 家庭视频, 医生问卷 | GBDT | -/90%/83%/ 92% |
3 | 伊朗 | Abdolzadegan et al.( | 34ASD, 11HC | 3~12岁 | 88.2; 54.5 | 脑电图 | SVM, KNN | 94.68%/100%/-/- |
4 | 法国 | Abraham et al.( | 871 (ASD+TC) | 6~64岁 | 83.5 | fMRI | SVC, RR | 66.9%/53.2%/78.3%/- |
5 | 美国 | Achenie et al.( | 14995 (ASD+non) | 16~30个月 | 46.51 | 个人信息, M-CHAT-R | fNN | 99.72%/73.8%/99.9%/- |
6 | 美国 | Bahado-Singh et al.( | 14ASD, 10Controls | 新生儿(24~79小时) | / | 白细胞DNA | DL, RF, SVM, GLM, PAM, LDA | -/97.5%/100%/100% |
7 | 以色列 | Ben-Sasson & Yom-Tov( | 189 (LR+MR+HR) | 1.25个月~18岁 | 84.7 | 父母问题 | DT, 最小二乘法 | AUC = 82% |
8 | 美国 | Bone et al.( | 1264ASD, 462 non | 4~55.1岁 | / | ADI-R, SRS | SVM | -/89.2%/59%/- |
9 | 英国 | Bosl et al.( | 99HR, 89LR | 3个月~3岁 | / | 脑电图 | KNN, RF, SVM | -/100%/100%/- |
10 | 荷兰 | Bussu et al.( | 232(HR+LR) | 8~36个月 | 50 | ADOS, AOSI, VABS, MSEL | LSSVM | 57.5%/79.6%/52.2%/71.3% |
11 | 法国 | Caly et al.( | 63ASD, 189NT | 妊娠期 | 81; 48.7 | 超声波, 生物测量 | LASSO, DT, XGBoost | -/41%/96%/- |
12 | 中国 | Dong et al.( | 86ASD, 89TD | 3~6岁 | / | 脑电图 | CNN | Acc- = 100% |
13 | 美国 | Duda & Ma et al.( | 2775ASD, 150ADHD | 13~163个月 | 83.9; 62 | SRS | DT, RF, SVC, LR, LASSO, LDA | AUC = 96.5% |
14 | 美国 | Duda, Daniels, & Wall ( | 222 (ASD+non) | 16个月~17岁 | 76.1 | ADI-R | ADTree | -/89.9%/79.7%/- |
15 | 美国 | Duda et al.( | 200ASD, 114ADHD | 2~17岁 | 80.6; 65.5 | SRS | ENet, LR, SVM, LDA, RR | AUC = 89% |
16 | 美国 | Dickinson et al.( | 36HR, 29LR | 3~18个月 | / | 脑电图 | SVM | r = 0.76 |
17 | 美国 | Emerson et al.( | 59HR | 6~24个月 | 69.5 | fcMRI | SVM | 96.6%/81.8%/100%/- |
18 | 以色列 | Eni et al.( | 56ASD, 6TD, 10Other | av4岁;av3岁;av4岁 | 87.5;83.3;90 | 语音特征 | MLR, SVR, FC-DNN, CNN | r = 0.72(ADOS) |
19 | 中国 | Epalle et al.( | 506ASD, 532TC | av10~35岁 | 87.7; 82.1 | fMRI | MISO-DNN, PNN | Acc- = 79.13% |
20 | 美国 | Eslami et al.( | 550ASD, 485HC | av10~34岁 | 81.5; 88.7 | fMRI | SMOTE, SVM, RF | 68.2%/66.7%/69.4%/74.4% |
21 | 意大利 | Eugenia et al.( | 26ASD, 24CAS, 18TD | 34~74个月 | 77; 75; 72 | sMRI | SVM | AUC = 76% (ASD vs TD); AUC = 64% (ASD vs CAS) |
22 | 美国 | Feczko et al.( | 47ASD, 58TD | 9~13岁 | 80.85; 46.55 | FcMRI | FRF | 72.7%/80.7%/63.1%/- |
*为纳入系统分析的文献 | |
[1] | 陈光华, 陶冠澎, 翟璐煜, 白学军. (2022). 自闭症谱系障碍的早期筛查工具. 心理科学进展, 30(4), 738-760. |
[2] | 陈顺森, 白学军, 张日昇. (2011). 自闭症谱系障碍的症状、诊断与干预. 心理科学进展, 19(1), 60-72. |
[3] | 曹正凤. (2014). 随机森林算法优化研究 (博士学位论文). 首都经济贸易大学, 北京. |
[4] | 崔建伟, 赵哲, 杜小勇. (2021). 支撑机器学习的数据管理技术综述. 软件学报, 32(3), 604-621. |
[5] | 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. (2020). 机器学习在抑郁症领域的应用. 心理科学进展, 28(2), 266-274. |
[6] | 顾曰国. (2013). 论言思情貌整一原则与鲜活话语研究--多模态语料库语言学方法. 当代修辞学, (6), 1-19. |
[7] | 郭利明, 杨现民, 段小莲, 邢蓓蓓. (2019). 人工智能与特殊教育的深度融合设计. 中国远程教育, (8), 10-19+92-93. |
[8] | 韩保祯. (2018). 基于多模态信息融合的脑网络研究及其应用 (硕士学位论文). 电子科技大学, 成都. |
[9] | 胡越, 罗东阳, 花奎, 路海明, 张学工. (2019). 关于深度学习的综述与讨论. 智能系统学报, 14(1), 1-19. |
[10] | 黄碧玉. (2018). 社交机器人对孤独症儿童社交行为诱导效果研究 (硕士学位论文). 浙江工业大学, 杭州. |
[11] | 靳宇倡, 张政, 郑佩璇, 安俊秀. (2022). 远程心理健康服务:应用、优势及挑战. 心理科学进展, 30(1), 141-156. |
[12] | 李航. (2012). 统计学习方法. 北京: 清华大学出版社. |
[13] | 刘笑晗, 陈明隆, 郭静. (2022). 机器学习在儿童创伤后应激障碍识别及转归预测中的应用. 心理科学进展, 30(4), 1-12. |
[14] | 徐建平, 张厚粲. (2005). 质性研究中编码者信度的多种方法考察. 心理科学, 28(6), 1430-1432. |
[15] | 杨剑锋, 乔佩蕊, 李永梅, 王宁. (2019). 机器学习分类问题及算法研究综述. 统计与决策, 35(6), 36-40. |
[16] | 余明华, 冯翔, 祝智庭. (2017). 人工智能视域下机器学习的教育应用与创新探索. 远程教育杂志, 35(3), 11-21. |
[17] |
*Abbas, H., Garberson, F., Glover, E., & Wall, D. P. (2018). Machine learning approach for early detection of autism by combining questionnaire and home video screening. Journal of the American Medical Informatics Association, 25(8), 1000-1007.
doi: 10.1093/jamia/ocy039 pmid: 29741630 |
[18] |
*Abbas, H., Garberson, F., Liu-Mayo, S. Glover, E., & Wall, D. P. (2020). Multi-modular AI approach to streamline autism diagnosis in young children. Scientific Reports, 10(1), 1-8.
doi: 10.1038/s41598-019-56847-4 URL |
[19] |
*Abdolzadegan, D., Moattar, M. H., & Ghoshuni, M. (2020). A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method. Biocybernetics and Biomedical Engineering, 40(1), 482-493.
doi: 10.1016/j.bbe.2020.01.008 URL |
[20] |
*Abraham, A., Milham, M. P., Martino, A. D., Craddock, R. C., Samaras, D., Thirion, B., & Varoquaux, G. (2017). Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. NeuroImage, 147(15), 736-745.
doi: 10.1016/j.neuroimage.2016.10.045 URL |
[21] |
*Achenie, L. E. K., Scarpa, A., Factor, R. S., Wang, T., Robins, D. L., & McCrickard, D. S. (2019). A machine learning strategy for autism screening in toddlers. Journal of Developmental and Behavioral Pediatrics, 40(5), 369-376.
doi: 10.1097/DBP.0000000000000668 pmid: 30985384 |
[22] | Autism Brain Imaging Data Exchange. (2017). Retrieved July 3, 2021, from http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html |
[23] |
*Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B., Mishra, N. K., Yilmaz, A., Guda, C., & Radhakrishna, U. (2019). Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Research, 1724, 146457.
doi: 10.1016/j.brainres.2019.146457 URL |
[24] |
*Bone, D., Bishop, S., Black, M. P., Goodwin, M. S., Lord, C., & Narayanan, S. S. (2016). Use of machine learning to improve autism screening and diagnostic instruments: Effectiveness, efficiency, and multi-instrument fusion. Journal of Child Psychology and Psychiatry, 57(8), 927-937.
doi: 10.1111/jcpp.12559 URL |
[25] |
Bone, D., Goodwin, M. S., Black, M. P., Lee, C., Audhkhasi, K., & Narayanan, S. (2015). Applying machine learning to facilitate autism diagnostics: Pitfalls and promises. Journal of Autism and Developmental Disorders, 45(5), 1121-1136.
doi: 10.1007/s10803-014-2268-6 pmid: 25294649 |
[26] |
*Bosl, W. J., Tager-Flusberg, H., & Nelson, C. A. (2018). EEG analytics for early detection of autism spectrum disorder: A data-driven approach. Scientific Reports, 8(1), 6828.
doi: 10.1038/s41598-018-24318-x pmid: 29717196 |
[27] |
*Ben-Sasson, A., & Yom-Tov, E. (2016). Online concerns of parents suspecting autism spectrum disorder in their child: Content analysis of signs and automated prediction of risk. Journal of Medical Internet Research, 18(11), e300.
doi: 10.2196/jmir.5439 pmid: 27876688 |
[28] |
*Bussu, G., Jones, E. J., Charman, T., Johnson, M. H., & Buitelaar, J. K. (2018). Prediction of autism at 3 years from behavioural and developmental measures in high-risk infants: A longitudinal cross-domain classifier analysis. Journal of Autism and Developmental Disorders, 48(7), 2418-2433.
doi: 10.1007/s10803-018-3509-x pmid: 29453709 |
[29] |
*Caly, H., Rabiei, H., Coste-Mazeau, P., Hantz, S., Alain, S., Eyraud, J. L., … Ben-Ari, Y. (2021). Machine learning analysis of pregnancy data enables early identification of a subpopulation of newborns with ASD. Scientific Reports, 11(1), 6877.
doi: 10.1038/s41598-021-86320-0 pmid: 33767300 |
[30] |
Choi, G. B., Yim, Y. S., Wong, H., Kim, S., Kim, H., Kim, S. V., … Huh, J. R. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351(6276), 933-939.
doi: 10.1126/science.aad0314 pmid: 26822608 |
[31] | Cloarec, R., Riffault, B., Dufour, A., Rabiei, H., Gouty-Colomer, L. A., Dumon, C., … Ben-Ari, Y. (2019). Pyramidal neuron growth and increased hippocampal volume during labor and birth in autism. Science Advances, 5(1), eaav0394. |
[32] |
Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders, 6(1), 249-262.
pmid: 22125579 |
[33] |
*Dickinson, A., Daniel, M., Marin, A., Gaonkar, B., Dapretto, M., McDonald, N. M., & Jeste, S. (2020). Multivariate neural connectivity patterns in early infancy predict later autism symptoms. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(1), 59-69.
doi: 10.1016/j.bpsc.2020.06.003 URL |
[34] |
*Dong, H. Y., Chen, D., Zhang, L., Ke, H. J., & Li, X. L. (2021). Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: A case study of ASD evaluation. Neurocomputing, 449, 136-145.
doi: 10.1016/j.neucom.2021.04.009 URL |
[35] |
Dubreuil-Vall, L., Ruffini, G., & Camprodon, J. A. (2020). Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG. Frontiers in Neuroscience, 14, 251.
doi: 10.3389/fnins.2020.00251 pmid: 32327965 |
[36] |
*Duda, M., Daniels, J., & Wall, D. P. (2016). Clinical evaluation of a novel and mobile autism risk assessment. Journal of Autism and Developmental Disorders, 46(6), 1953-1961.
doi: 10.1007/s10803-016-2718-4 pmid: 26873142 |
[37] |
*Duda, M., Haber, N., Daniels, J., & Wall, D. P. (2017). Crowdsourced validation of a machine-learning classification system for autism and ADHD. Translational Psychiatry, 7(5), e1133.
doi: 10.1038/tp.2017.86 URL |
[38] |
*Duda, M., Ma, R., Haber, N., & Wall, D. P. (2016). Use of machine learning for behavioral distinction of autism and ADHD. Translational Psychiatry, 6(2), e732.
doi: 10.1038/tp.2015.221 URL |
[39] |
Elsabbagh, M., Mercure, E., Hudry, K., Chandler, S., Pasco, G., Charman, T.,… the BASIS Team. (2012). Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism. Current Biology, 22(4), 338-342.
doi: 10.1016/j.cub.2011.12.056 pmid: 22285033 |
[40] | *Emerson, R. W., Adams, C., Nishino, T., Hazlett, H, C., Wolff, J. J., Zwaigenbaum, L., … Piven, J. (2017). Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Science Translational Medicine, 9(393). https://doi.org/10.1126/scitranslmed.aag2882 |
[41] |
*Eni, M., Dinstein, I., Ilan, M., Menashe, I., Meiri, G., & Zigel, Y. (2020). Estimating autism severity in young children from speech signals using a deep neural network. IEEE Access, 8, 139489-139500.
doi: 10.1109/ACCESS.2020.3012532 URL |
[42] |
*Epalle, T. M., Song, Y. Q., Liu, Z., & Lu, H. (2021). Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results. Applied Soft Computing, 107(3), 107375.
doi: 10.1016/j.asoc.2021.107375 URL |
[43] | *Eslami, T., Mirjalili, V., Fong, A., Laird, A. R., & Saeed, F. (2019). ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data. Frontiers in Neuroinformatics, 13. https://doi.org/10.3389/fninf.2019.00070 |
[44] |
*Eugenia, C., Alessandra, R., Letizia, P., Spera, G., Bosco, P., Biagi, L., … Calderoni, S. (2020). Autism spectrum disorder and childhood apraxia of speech: Early language-related hallmarks across structural MRI study. Journal of Personalized Medicine, 10(4), 275.
doi: 10.3390/jpm10040275 URL |
[45] |
Falkmer, T., Anderson, K., Falkmer, M., & Horlin, C. (2013). Diagnostic procedures in autism spectrum disorders: A systematic literature review. European Child and Adolescent Psychiatry, 22(6), 329-340.
doi: 10.1007/s00787-013-0375-0 pmid: 23322184 |
[46] | Food and Drug Administration. (2021). FDA authorizes marketing of diagnostic aid for autism spectrum disorder. Retrieved October 21, 2021, from https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-diagnostic-aid-autism-spectrum-disorder |
[47] |
*Feczko, E., Balba, N., Miranda-Dominguez, O., Cordova, M., Karalunas, S. L., Irwin, L.,... Fair, D. A. (2017). Subtyping cognitive profiles in autism spectrum disorder using a random forest algorithm. Neuroimage, 172, 674-688.
doi: 10.1016/j.neuroimage.2017.12.044 URL |
[48] |
Geng, X., Kang, X., & Wong, P. C. M. (2020). Autism spectrum disorder risk prediction: A systematic review of behavioral and neural investigations. Progress in Molecular Biology and Translational Science, 173, 91-137.
doi: S1877-1173(20)30059-4 pmid: 32711819 |
[49] |
*Goel, N., Grover, B., Anuj, Gupta, D., Khanna, A., & Sharma, M. (2020). Modified grasshopper optimization algorithm for detection of autism spectrum disorder. Physical Communication, 41, 101115.
doi: 10.1016/j.phycom.2020.101115 URL |
[50] |
*Gök, M. (2018). A novel machine learning model to predict autism spectrum disorders risk gene. Neural Computing and Applications, 31(4), 6711-6717.
doi: 10.1007/s00521-018-3502-5 URL |
[51] |
*Grossi, E., Olivieria, C., & Buscema, M. (2017). Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study. Computer Methods and Programs in Biomedicine, 142, 73-79.
doi: S0169-2607(16)31208-1 pmid: 28325448 |
[52] |
Guinchat, V., Chamak, B., Bonniau, B., Bodeau, N., Perisse, D., Cohen, D., & Danion, A. (2012). Very early signs of autism reported by parents include many concerns not specific to autism criteria. Research in Autism Spectrum Disorders, 6(2), 589-601.
doi: 10.1016/j.rasd.2011.10.005 URL |
[53] |
*Guo, X. Y., Dominick, K. C., Minai, A. A., Li, H. L., Erickson, C. A., & Lu, L. J. (2017). Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Frontiers in Neuroscience, 11, 460.
doi: 10.3389/fnins.2017.00460 pmid: 28871217 |
[54] |
Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., … The, IBIS Network. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348-351.
doi: 10.1038/nature21369 URL |
[55] |
Hosseinzadeh, M., Koohpayehzadeh, J., Bali, A. O., Rad, F. A., Souri, A., Mazaherinezhad, A., … Bohlouli, M. (2021). A review on diagnostic autism spectrum disorder approaches based on the internet of things and machine learning. The Journal of Supercomputing, 77(3), 2590-2608.
doi: 10.1007/s11227-020-03357-0 URL |
[56] |
Hyde, K. K., Novack, M. N., LaHaye, N., Parlett-Pelleriti, C., Anden, R., Dixon, D. R., & Linstead, E. (2019). Applications of supervised machine learning in autism spectrum disorder research: A review. Review Journal of Autism and Developmental Disorders, 6(2), 128-146.
doi: 10.1007/s40489-019-00158-x URL |
[57] |
*Itani, S., & Thanou, D. (2021). Combining anatomical and functional networks for neuropathology identification: A case study on autism spectrum disorder. Medical Image Analysis, 69, 101986.
doi: 10.1016/j.media.2021.101986 URL |
[58] |
*Jun, E., Kang, E., Choi, J., & Suk, H. (2019). Modeling regional dynamics in low-frequency fluctuation and its application to autism spectrum disorder diagnosis. NeuroImage, 184, 669-686.
doi: S1053-8119(18)30828-0 pmid: 30248456 |
[59] |
*Kang, J. N., Han, X. Y., Song, J. J., Niu, Z. K., & Li, X. L. (2020). The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Computers in Biology and Medicine, 120(24), 103722.
doi: 10.1016/j.compbiomed.2020.103722 URL |
[60] |
*Kanne, S. M., Carpenter, L. A., & Warren, Z. (2018). Screening in toddlers and preschoolers at risk for autism spectrum disorder: Evaluating a novel mobile-health screening tool. Autism Research, 11(7), 1038-1049.
doi: 10.1002/aur.1959 pmid: 29734507 |
[61] | *Katuwal, G. J., Baum, S. A., Cahill, N. D., & Michael, A. M. (2016). Divide and conquer: Sub-grouping of ASD improves ASD detection based on brain morphometry. Plos One, 11(4), 1-24. |
[62] | Klin, A., Lang, J., Cicchetti, D. V., & Volkmar, F. R. (2000). Brief report: Interrater reliability of clinical diagnosis and DSM-IV criteria for autistic disorder: Results of the DSM-IV autism field trial. Journal of Autism and Developmental Disorders, 30(2), 163-167. |
[63] |
Koumpouros, Y., & Kafazis, T. (2019). Wearables and mobile technologies in autism spectrum disorder interventions: A systematic literature review. Research in Autism Spectrum Disorders, 66, 101405.
doi: 10.1016/j.rasd.2019.05.005 URL |
[64] | *Lai, M., Lee, J., Chiu, S., Charm, J., So, W. Y., Yuen, F. P., … Zee, B. (2020). A machine learning approach for retinal images analysis as an objective screening method for children with autism spectrum disorder. Eclinical Medicine, 28, 100588. |
[65] |
*Levy, S., Duda, M., Haber, N., Wall, D. P. (2017). Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Molecular Autism, 8(1), 65.
doi: 10.1186/s13229-017-0180-6 URL |
[66] | *Li, G. Y., Lee, O., & Rabitz, H. (2018). High efficiency classification of children with autism spectrum disorder. Plos One, 13(2), e0192867. |
[67] |
Li, X. W., La, R., Wang, Y., Niu, J. H., Zeng, S., Sun, S., & Zhu, J. (2019). EEG-based mild depression recognition using convolutional neural network. Medical and Biological Engineering and Computing, 57(6), 1341-1352.
doi: 10.1007/s11517-019-01959-2 pmid: 30778842 |
[68] |
*Li, Y. M., Mache, M. A., & Todd, T. A. (2020). Automated identification of postural control for children with autism spectrum disorder using a machine learning approach. Journal of Biomechanics, 113, 110073.
doi: 10.1016/j.jbiomech.2020.110073 URL |
[69] |
*Liaqat, S., Wu, C., Duggirala, P. R., Cheung, S. S., Chuah, C. N., Ozonoff, S., & Young, G. (2021). Predicting ASD diagnosis in children with synthetic and image-based eye gaze data. Signal Processing Image Communication, 94(3), 116198.
doi: 10.1016/j.image.2021.116198 URL |
[70] |
*Liu, W., Li, M., & Li, Y. (2016). Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework. Autism Research, 9(8), 888-898.
doi: 10.1002/aur.1615 pmid: 27037971 |
[71] | Maenner, M. J., Shaw, K. A., Bakian, A.V., Bilder, D. A., Durkin, M. S., Esler, A., … Cogswell, M. E. (2021). Prevalence and characteristics of autism spectrum disorder among children aged 8 years-Autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveillance Summaries. 70(11), 1-16. |
[72] |
*Mazumdar, P., Arru, G., & Battisti, F. (2021). Early detection of children with autism spectrum disorder based on visual exploration of images. Signal Processing Image Communication, 94(3), 116184.
doi: 10.1016/j.image.2021.116184 URL |
[73] | Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., PRISMA Group, & for the PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, b2535. |
[74] | *Meera, S. S., Donovan, K., Wolff, J. J., Zwaigenbaum, L., Elison, J. T., Kinh, T.,... IBIS Network. (2020). Towards a data-driven approach to screen for autism risk at 12 months of age. Journal of the American Academy of Child and Adolescent Psychiatry, 60(8), 968-977 |
[75] | Millar, L., Mcconnachie, A., Minnis, H., Wilson, P., Thompson, L., Anzulewicz, A., … Delafield-Butt, J. (2019). Phase 3 diagnostic evaluation of a smart tablet serious game to identify autism in 760 children 3-5 years old in sweden and the united kingdom. BMJ Open, 9(7), e026226. |
[76] | Namdeo, A., & Singh, D. (2021). Challenges in evolutionary algorithm to find optimal parameters of SVM:A review. Materials Today: Proceedings, 3, 288. |
[77] |
*Negin, F., Ozyer, B., Agahian, S., Kacdioglu, S., & Ozyer, G. T. (2021). Vision-assisted recognition of stereotype behaviors for early diagnosis of autism spectrum disorders. Neurocomputing, 446, 145-155.
doi: 10.1016/j.neucom.2021.03.004 URL |
[78] |
Nogay, H. S., & Adeli, H. (2020). Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging. Reviews in the Neurosciences, 31(8), 825-841.
doi: 10.1515/revneuro-2020-0043 URL |
[79] | Oh, D. H., Kim, I. B., Kim, S. H., & Ahn, D. H. (2017). Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning. Clinical Psychopharmacology and Neuroscience: The Official Scientific Journal of the Korean College of Neuropsychopharmacology, 15(1), 47-52. |
[80] |
Pagnozzi, A. M., Conti, E., Calderoni, S., Fripp, J., & Rose, S. E. (2018). A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective. International Journal of Developmental Neuroscience, 71(1), 68-82.
doi: 10.1016/j.ijdevneu.2018.08.010 URL |
[81] |
*Parikh, M. N., Li, H., & He, L. (2019). Enhancing diagnosis of autism with optimized machine learning models and personal characteristic data. Frontiers in Computational Neuroscience, 13, 9.
doi: 10.3389/fncom.2019.00009 pmid: 30828295 |
[82] |
Perera, H., Jeewandara, K. C., Seneviratne, S., & Guruge, C. (2017). Culturally adapted pictorial screening tool for autism spectrum disorder: A new approach. World Journal of Clinical Pediatrics, 6(1), 45-51.
doi: 10.5409/wjcp.v6.i1.45 pmid: 28224095 |
[83] |
Plitt, M., Barnes, K. A., & Martin, A. (2015). Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage Clinical, 7(C),359-366.
doi: 10.1016/j.nicl.2014.12.013 URL |
[84] |
*Puerto, E., Aguilar, J., López, C., & Chávez, D. (2019). Using multilayer fuzzy cognitive maps to diagnose autism spectrum disorder. Applied Soft Computing, 75, 58-71.
doi: 10.1016/j.asoc.2018.10.034 URL |
[85] |
*Qiu, N., Tang, C., Zhai, M., Huang, W., Weng, J., Li, C., … Ke, X. (2020). Application of the still-face paradigm in early screening for high-risk autism spectrum disorder in infants and toddlers. Frontiers in Pediatrics, 8, 290.
doi: 10.3389/fped.2020.00290 pmid: 32582594 |
[86] |
Quaak, M., van de Mortel, L., Thomas, R. M., & van Wingen, G. (2021). Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis. NeuroImage Clinical, 30, 102584.
doi: 10.1016/j.nicl.2021.102584 URL |
[87] | *Rahman, R., Kodesh, A., Levine, S. Z., Sandin, S., Reichenberg, A., & Schlessinger, A. (2020). Identification of newborns at risk for autism using electronic medical records and machine learning. European Psychiatry. 63(1), e22, 1-7. |
[88] |
Rahman, M. M., Usman, O. L., Muniyandi, R. C., Sahran, S., Mohamed, S., & Razak, R. A. (2020). A review of machine learning methods of feature selection and classification for autism spectrum disorder. Brain Sciences, 10(12), 1-23.
doi: 10.3390/brainsci10010001 URL |
[89] |
*Raj, S., & Masood, S. (2020). Analysis and detection of autism spectrum disorder using machine learning techniques. Procedia Computer Science, 167, 994-1004.
doi: 10.1016/j.procs.2020.03.399 URL |
[90] |
*Rakić, M., Cabezas, M., Kushibar, K., Oliver, A., & Lladó, X. (2020). Improving the detection of autism spectrum disorder by combining structural and functional MRI information. NeuroImage: Clinical, 25, 102181.
doi: 10.1016/j.nicl.2020.102181 URL |
[91] |
Ramírez-Duque, A. A., Frizera-Neto, A., & Bastos, T. F. (2019). Robot-assisted autism spectrum disorder diagnostic based on artificial reasoning. Journal of Intelligent and Robotic Systems, 96(2), 267-281.
doi: 10.1007/s10846-018-00975-y URL |
[92] | *Retico, A., Gori, I., Giuliano, A., Muratori, F., & Calderoni, S. (2016). One-class support vector machines identify the language and default mode regions as common patterns of structural alterations in young children with autism spectrum disorders. Frontiers in Neuroscience, 10(171), 306. |
[93] |
*Salari, V., Sherkatghanad, Z., Akhondzadeh, M., Salari, S., Zomorodi-moghadam, M., Abdar, M., & Khosrowabadi, R. (2019). Automated detection of autism spectrum disorder using convolutional neural network. Frontiers in Neuroscience. 13, 1325.
doi: 10.3389/fnins.2019.01325 pmid: 32009868 |
[94] |
Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., … State, M. W. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70(5), 863-885.
doi: 10.1016/j.neuron.2011.05.002 pmid: 21658581 |
[95] |
Sekaran, K., & Sudha, M. (2020). Predicting autism spectrum disorder from associative genetic markers of phenotypic groups using machine learning. Journal of Ambient Intelligence and Humanized Computing, 12(3), 3257-3270.
doi: 10.1007/s12652-020-02155-z URL |
[96] | *Sen, B., Borle, N. C., Greiner, R., & Brown, M. R. G. (2018). A general prediction model for the detection of ADHD and autism using structural and functional MRI. Plos One, 13(4), e0194856. |
[97] | *Sewani, H., & Kashef, R. (2020). An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children, 7(10), 0182. |
[98] |
*Shahamiri, S. R., & Thabtah, F. (2020). Autism AI: A new autism screening system based on artificial intelligence. Cognitive Computation, 12, 766-777.
doi: 10.1007/s12559-020-09743-3 URL |
[99] | Sheldrick, R. C., Maye, M. P., & Carter, A. S. (2017). Age at first identification of autism spectrum disorder: An analysis of two US surveys. Journal of the American Academy of Child and Adolescent Psychiatry, 56 (4), 313-320. |
[100] |
Shic, F., Macari, S., & Chawarska, K. (2014). Speech disturbs face scanning in 6-month-old infants who develop autism spectrum disorder. Biological Psychiatry, 75(3), 231-237.
doi: 10.1016/j.biopsych.2013.07.009 pmid: 23954107 |
[101] | *Tariq, Q., Daniels, J., Schwartz, J. N., Washington, P., Kalantarian, H., & Wall, D. P. (2018). Mobile detection of autism through machine learning on home video: A development and prospective validation study. Plos Medicine, 15(11), e1002705. |
[102] |
*Thabtah, F., Kamalov, F., & Rajab, K. (2018). A new computational intelligence approach to detect autistic features for autism screening. International Journal of Medical Informatics, 117(SEP.), 112-124.
doi: S1386-5056(18)30054-6 pmid: 30032959 |
[103] |
*Thabtah, F. (2019). An accessible and efficient autism screening method for behavioural data and predictive analyses. Health Informatics Journal, 25(2), 1739-1755.
doi: 10.1177/1460458218796636 URL |
[104] |
*Thabtah, F., Abdelhamid, N., & Peebles, D. (2019). A machine learning autism classification based on logistic regression analysis. Health Information Science and Systems, 7(1), 12.
doi: 10.1007/s13755-019-0073-5 pmid: 31168365 |
[105] |
*Thabtah, F., & Peebles, D. (2019). A new machine learning model based on induction of rules for autism detection. Health Informatics Journal, 26(1), 264-286.
doi: 10.1177/1460458218824711 URL |
[106] |
Tyzio, R., Nardou, R., Ferrari, D. C., Tsintsadze, T., Shahrokhi, A., Eftekhari, S., … Ben-Ari, Y. (2014). Oxytocin-mediated gaba inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science, 343(6171), 675-679.
doi: 10.1126/science.1247190 pmid: 24503856 |
[107] |
*Wan, G., Kong, X., Sun, B., Yu, S., Tu, Y., Park, J., … Kong, J. (2019). Applying eye tracking to identify autism spectrum disorder in children. Journal of Autism and Developmental Disorders, 49(1), 209-215.
doi: 10.1007/s10803-018-3690-y pmid: 30097760 |
[108] |
Wolff, J. J., Gerig, G., Lewis, J. D., Soda, T., Styner, M. A., Vachet, C.,… the IBIS Network. (2015). Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain, 138(7), 2046-2058.
doi: 10.1093/brain/awv118 URL |
[109] |
*Wedyan, M., Al-Jumaily, A., & Crippa, A. (2019). Using machine learning to perform early diagnosis of autism spectrum disorder based on simple upper limb movements. International Journal of Hybrid Intelligent Systems, 15(4), 195-206.
doi: 10.3233/HIS-190278 URL |
[110] |
Wolff, J. J., Gu, H., Gerig, G., Elison, J. T., Styner, M., Gouttard, S.,… the IBIS Network. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry, 169(6), 589-600.
doi: 10.1176/appi.ajp.2011.11091447 pmid: 22362397 |
[111] |
*Wingfield, B., Miller, S., Yogarajah, P., Kerr, D., Gardiner, B., Seneviratne, S., … Coleman, S. (2020). A predictive model for paediatric autism screening. Health Informatics Journal, 26(4), 2538-2553.
doi: 10.1177/1460458219887823 URL |
[112] |
*Yang, Y. (2020). A preliminary evaluation of still face images by deep learning: A potential screening test for childhood developmental disabilities. Medical Hypotheses, 144, 109978.
doi: 10.1016/j.mehy.2020.109978 URL |
[1] | 黄钰杰, 赵荣, 克丽比努尔·艾尔肯, 李晶晶, 王俊琪, 潘海萍, 高军. 自闭症谱系障碍的社会功能障碍:触觉与催产素[J]. 心理科学进展, 2023, 31(5): 800-814. |
[2] | 陈新文, 李鸿杰, 丁玉珑. 探究事件相关脑电/脑磁信号中的神经表征模式:基于分类解码和表征相似性分析的方法[J]. 心理科学进展, 2023, 31(2): 173-195. |
[3] | 寇娟, 杨梦圆, 魏子杰, 雷怡. 自闭症谱系障碍社交动机理论:机制及干预探索[J]. 心理科学进展, 2023, 31(1): 20-32. |
[4] | 徐慧, 王滔. 自闭症谱系障碍个体的社会动机缺陷[J]. 心理科学进展, 2022, 30(5): 1050-1061. |
[5] | 陈光华, 陶冠澎, 翟璐煜, 白学军. 自闭症谱系障碍的早期筛查工具[J]. 心理科学进展, 2022, 30(4): 738-760. |
[6] | 刘笑晗, 陈明隆, 郭静. 机器学习在儿童创伤后应激障碍识别及转归预测中的应用[J]. 心理科学进展, 2022, 30(4): 851-862. |
[7] | 俞稼钰, 靳羽西, 梁丹丹. 自闭症谱系障碍人群词义加工的脑激活模式:基于fMRI研究的元分析[J]. 心理科学进展, 2022, 30(11): 2448-2460. |
[8] | 袁玉琢, 骆方. 人工智能辅助的自闭症早期患者的筛查与诊断[J]. 心理科学进展, 2022, 30(10): 2303-2320. |
[9] | 干加裙, 王恩国. 自闭症谱系障碍个体的注意解离[J]. 心理科学进展, 2022, 30(1): 129-140. |
[10] | 霍超, 李祚山, 孟景. 自闭症谱系障碍个体的共情干预:扬长还是补短?[J]. 心理科学进展, 2021, 29(5): 849-863. |
[11] | 苏悦, 刘明明, 赵楠, 刘晓倩, 朱廷劭. 基于社交媒体数据的心理指标识别建模: 机器学习的方法[J]. 心理科学进展, 2021, 29(4): 571-585. |
[12] | 王磊, 贺荟中, 毕小彬, 周丽, 范晓壮. 社会动机理论视角下自闭症谱系障碍者的社交缺陷[J]. 心理科学进展, 2021, 29(12): 2209-2223. |
[13] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[14] | 范晓壮, 毕小彬, 谢宇, 贺荟中. 高功能自闭症个体对威胁性情绪面孔的注意偏向[J]. 心理科学进展, 2020, 28(7): 1172-1186. |
[15] | 郑泓, 蒲城城, 王毅, 陈楚侨. 基于脑结构像的精神分裂症机器学习分类[J]. 心理科学进展, 2020, 28(2): 252-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||