心理科学进展 ›› 2021, Vol. 29 ›› Issue (9): 1607-1616.doi: 10.3724/SP.J.1042.2021.01607
收稿日期:
2020-12-28
发布日期:
2021-07-22
基金资助:
LIU Wei1, ZHENG Peng2, GU Qi3, WANG Chunhui1, ZHAO Yajun4()
Received:
2020-12-28
Published:
2021-07-22
摘要:
数值加工的机制是数量认知领域的核心科学问题之一。三数值加工系统假说从新的角度阐释了各种数值加工机制的关系, 它认为认知系统通过三种不同的机制来快速分析非符号刺激的数值:感数(subitizing)机制精确地分析1~4个刺激的数值; 数量(numerosity)机制分析密度适中的刺激点阵的数量, 加工误差正比于被分析的数量, 符合韦伯定律; 当刺激的密度超出一定范围时, 密度(density)机制通过分析刺激密度来推断刺激的数量关系, 加工误差正比于被加工数值的平方根。一系列研究证实, 这三种数值加工机制具有不同的行为规律和脑电特征。未来研究需要探讨数量机制是否分别与感数机制、密度机制存在平行激活, 从而阐明三种数值加工机制的作用关系。
中图分类号:
刘炜, 郑鹏, 谷淇, 王春辉, 赵亚军. (2021). 三数值加工系统假说:数值加工机制新探. 心理科学进展 , 29(9), 1607-1616.
LIU Wei, ZHENG Peng, GU Qi, WANG Chunhui, ZHAO Yajun. (2021). Three number processing systems: Different features and parallel activation. Advances in Psychological Science, 29(9), 1607-1616.
[1] | 刘炜, 王苗, 张智君, 赵亚军. (2016). 数量认知和密度认知的关系. 心理科学进展, 24(6), 885-891. |
[2] | 刘炜, 张智君, 赵亚军. (2012). 基于数量感知的数量适应. 心理学报, 44(10), 1297-1308. |
[3] | 罗跃嘉, 南云, 李红. (2004). ERP研究反映感数与计数的不同脑机制. 心理学报, 36(4), 434-441. |
[4] |
Agrillo C., & Bisazza A. (2017). The contribution of fish studies to the “number sense” debate. Behavioral and Brain Sciences, 40, e165.
doi: 10.1017/S0140525X16002053 URL |
[5] |
Anobile G., Arrighi R., & Burr D. C. (2019). Simultaneous and sequential subitizing are separate systems, and neither predicts math abilities. Journal of Experimental Child Psychology, 178, 86-103.
doi: 10.1016/j.jecp.2018.09.017 URL |
[6] |
Anobile G., Castaldi E., Turi M., TinelliF. & Burr D. C. (2016). Numerosity but not texture-density discrimination correlates with math ability in children. Developmental Psychology, 52(8), 1206-1216.
doi: 10.1037/dev0000155 URL |
[7] |
Anobile G., Cicchini G. M., & Burr D. C. (2014). Separate mechanisms for perception of numerosity and density. Psychological Science, 25(1), 265-270.
doi: 10.1177/0956797613501520 URL |
[8] |
Anobile G., Cicchini G. M., & Burr D. C. (2015a). Number as a primary perceptual attribute: A review. Perception, 45(1-2), 5-31.
doi: 10.1177/0301006616671273 URL |
[9] |
Anobile G., Cicchini G. M., Pomè A., & Burr D. C. (2017). Connecting visual objects reduces perceived numerosity and density for sparse but not dense patterns. Journal of Numerical Cognition, 3(2), 133-146.
doi: 10.5964/jnc.v3i2.38 URL |
[10] |
Anobile G., Tomaiuolo F., Campana S., & Cicchini G. M. (2020). Three-systems for visual numerosity: A single case study. Neuropsychologia, 136, 107259.
doi: S0028-3932(19)30301-X pmid: 31726066 |
[11] | Anobile G., Turi M., Cicchini G. M., & Burr D. C. (2015b). Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects. Journal of Vision, 15(5), 4, 5-31. |
[12] | Arrighi R., Togoli I., & Burr D. C. (2014). A generalized sense of number. Proceedings of the Royal Society B, 281(1797), 20141791. |
[13] |
Beran M. J., & Parrish A. E. (2017). The number sense is neither last resort nor of primary import. Behavioral and Brain Sciences, 40, e164.
doi: 10.1017/S0140525X16000960 URL |
[14] | Burr D. C. (2008). Response: Visual number. Current Biology, 18(18), 857-858. |
[15] |
Burr D. C. (2017). Evidence for a number sense. Behavioral and Brain Sciences, 40, e164.
doi: 10.1017/S0140525X16000960 URL |
[16] |
Burr D. C., & Ross J. (2008). A visual sense of number. Current Biology, 18(6), 425-428.
doi: 10.1016/j.cub.2008.02.052 URL |
[17] | Burr D. C., Turi M., & Anobile G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10, 1-10. |
[18] | Castaldi E., Piazza M., Dehaene S., Vignaud A., & Eger E. (2019). Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream. Elife Science, 8. |
[19] |
Cicchini G. M., Anobile G., & Burr D. C. (2016). Spontaneous perception of numerosity in humans. Nature Communications, 7, 12536.
doi: 10.1038/ncomms12536 pmid: 27555562 |
[20] |
Cicchini G. M., Anobile G., & Burr D. C. (2019). Spontaneous representation of numerosity in typical and dyscalculic development. Cortex, 114, 151-163.
doi: S0010-9452(18)30398-8 pmid: 30683323 |
[21] |
Clayton S., Gilmore C., & Inglis M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177-184.
doi: 10.1016/j.actpsy.2015.09.007 pmid: 26408864 |
[22] | Dakin S. C., Tibber M. S., Greenwood J. A., Kingdom F. A. A., & Morgan M. J. (2011). A common visual metric for approximate number and density. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19552-19557. |
[23] |
de Hevia, M.D. (2011). Sensitivity to number: Reply to Gebuis and Gevers. Cognition, 121, 253-255.
doi: 10.1016/j.cognition.2011.04.002 URL |
[24] |
de Hevia, M.D., Castaldi, E., Streri, A., Eger, E., & Izard, V. (2017). Perceiving numerosity from birth. Behavioral and Brain Sciences, 40, e169.
doi: 10.1017/S0140525X16002090 URL |
[25] |
Dehaene S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47-68.
doi: 10.1162/jocn.1996.8.1.47 pmid: 23972235 |
[26] | Durgin F. H. (1995). Texture density adaptation and the perceived numerosity and distribution of texture. Journal of Experimental Psychology: Human Perception & Performance, 21(1), 149-169. |
[27] | Durgin F. H. (2008). Texture density adaptation and visual number revisited. Current Biology, 18(18), R855-R856. |
[28] |
Durgin F. H. (2017). Multitudes are adaptable magnitudes in the estimation of number. Behavioral and Brain Sciences, 40, e164.
doi: 10.1017/S0140525X16000960 URL |
[29] |
Feigenson L., Dehaene S., & Spelke E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
pmid: 15242690 |
[30] |
Fornaciai M., & Park J. (2017). Distinct neural signatures for very small and very large numerosities. Frontiers in Human Neuroscience, 11, 21.
doi: 10.3389/fnhum.2017.00021 pmid: 28197086 |
[31] |
Franconeri S. L., Bemis D. K., & Alvarez G. A. (2009). Number estimation relies on a set of segmented objects. Cognition, 113(1), 1-13.
doi: 10.1016/j.cognition.2009.07.002 pmid: 19647817 |
[32] |
Gebuis T., Cohen Kadosh R., & Gevers W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17-35.
doi: S0001-6918(16)30211-6 pmid: 27640140 |
[33] |
Gebuis T., & Reynvoet B. (2012). Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology, 49(11), 1649-1659.
doi: 10.1111/psyp.2012.49.issue-11 URL |
[34] |
Halberda J., Mazzocco M., & Feigenson L. (2008). Individual differences in nonverbal number acuity correlate with maths achievement. Nature, 455, 665-668.
doi: 10.1038/nature07246 URL |
[35] |
Halberda J., Sires S. F., & Feigenson L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576.
pmid: 16866741 |
[36] |
He L., Zhang J., Zhou T., & Chen L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin & Review, 16, 509-517.
doi: 10.3758/PBR.16.3.509 URL |
[37] |
Hyde D. C., & Mou Y. (2017). Magnitude rather than number: More evidence needed. Behavioral and Brain Sciences, 40, e173.
doi: 10.1017/S0140525X16002119 URL |
[38] |
Jevons W. S. (1871). The power of numerical discrimination. Nature, 3, 281-282.
doi: 10.1038/003281a0 URL |
[39] |
Kastner S., de Weerd P., & Ungerleider L. G(2001). Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83(4), 2453-2457.
doi: 10.1152/jn.2000.83.4.2453 URL |
[40] |
Kaufman E. L., & Lord M. W. (1949). The discrimination of visual number. The American Journal of Psychology, 62(4), 498-525.
doi: 10.2307/1418556 URL |
[41] |
Leibovich T., Katzin N., Harel M., & Henik A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.
doi: 10.1017/S0140525X16000960 URL |
[42] |
Liu W., Zhang Z., Zhao Y., Li B., & Wang M. (2017). Distinct mechanisms in the numerosity processing of random and regular dots. Acta Psychologica, 174, 17-30.
doi: 10.1016/j.actpsy.2017.01.006 URL |
[43] |
Liu W., Zhao Y., Wang M., & Zhang Z. (2018). Regular distribution inhibits generic numerosity processing. Frontiers in Psychology, 9, 2080.
doi: 10.3389/fpsyg.2018.02080 URL |
[44] |
Liu W., Zheng P., Huang S., & Cicchini G. M. (2020). Subitizing, unlike estimation, does not process sets in parallel. Scientific Reports, 10, 15689.
doi: 10.1038/s41598-020-72860-4 URL |
[45] | Melcher D., Huber-Huber C., & Wutz A. (2020). Enumerating the forest before the trees: The time courses of estimation-based and individuation-based numerical processing. Attention, Perception, & Psychophysics, 9, 1215-1229. https://doi.org/10.3758/s13414-020-02137-5 |
[46] | Park J., Dewind N. K., Woldorff M. G., & Brannon E. M. (2016). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748-763. |
[47] | Pomè A., Anobile G., Cicchini G. M., & Burr D. C. (2019a). Different reaction-times for subitizing, estimation, and texture. Journal of Vision, 19(6), 14, 1-9. |
[48] |
Pomè A., Anobile G., Cicchini G. M., Scabia A., & Burr D. C. (2019b). Higher attentional costs for numerosity estimation at high densities. Attention, Perception, & Psychophysics, 81, 2604-2611.
doi: 10.3758/s13414-019-01831-3 URL |
[49] | Ross J., & Burr D. C. (2010). Vision senses number directly. Journal of Vision, 10(2), 10.1. |
[50] |
Tokita M., & Ishiguchi A. (2010). How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? Attention, Perception & Psychophysics, 72(7), 1839-1853.
doi: 10.3758/APP.72.7.1839 URL |
[51] |
van Rinsveld, A., Guillaume, M., Kohler, P.J., Schiltz, C., Gevers, W., & Content, A. (2020). The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency- tagged EEG. Proceedings of the National Academy of Sciences, 117(11), 5726-5732.
doi: 10.1073/pnas.1917849117 URL |
[52] |
Yousif S. R., & Keil F. C. (2020). Area, not number, dominates estimates of visual quantities. Scientific Reports, 10, 13407.
doi: 10.1038/s41598-020-68593-z pmid: 32770093 |
[53] |
Zimmermann E. (2018). Small numbers are sensed directly, high numbers constructed from size and density. Cognition, 173, 1-7.
doi: S0010-0277(17)30305-0 pmid: 29275123 |
[1] | 叶舒琪, 尹俊婷, 李招贤, 罗俊龙. 情绪对直觉与分析加工的影响机制[J]. 心理科学进展, 2023, 31(5): 736-746. |
[2] | 李亚丹, 杜颖, 谢聪, 刘春宇, 杨毅隆, 李阳萍, 邱江. 语义距离与创造性思维关系的元分析[J]. 心理科学进展, 2023, 31(4): 519-534. |
[3] | 余婕, 陈有国. 时空干扰效应:基于贝叶斯模型的解释[J]. 心理科学进展, 2023, 31(4): 597-607. |
[4] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
[5] | 杨庆, 李亚琴. 不确定是坏的么?不确定状态中的错误加工特点及其解释机制[J]. 心理科学进展, 2023, 31(3): 338-349. |
[6] | 王旭东, 何雅吉, 范会勇, 罗扬眉, 陈煦海. 人际愤怒的利与弊:来自元分析的证据[J]. 心理科学进展, 2023, 31(3): 386-401. |
[7] | 李清扬, 尹俊婷, 罗俊龙. 才思泉涌“举步”间:体育运动对创造性思维的影响[J]. 心理科学进展, 2023, 31(3): 455-466. |
[8] | 陈子炜, 付迪, 刘勋. 错认总比错过好——面孔视错觉的发生机制及其应用[J]. 心理科学进展, 2023, 31(2): 240-255. |
[9] | 王松雪, 程思, 蒋挺, 刘勋, 张明霞. 外在奖赏对陈述性记忆的影响[J]. 心理科学进展, 2023, 31(1): 78-86. |
[10] | 谢才凤, 邬家骅, 许丽颖, 喻丰, 张语嫣, 谢莹莹. 算法决策趋避的过程动机理论[J]. 心理科学进展, 2023, 31(1): 60-77. |
[11] | 叶伟豪 于美琪 张利会 高琪 傅明珠 卢家楣. 精准的意义:负性情绪粒度的作用机制与干预[J]. 心理科学进展, 0, (): 0-0. |
[12] | 朱传林, 刘电芝, 罗文波. 情绪体验影响估算策略运用的认知与脑机制[J]. 心理科学进展, 2022, 30(12): 2639-2649. |
[13] | 史汉文, 李雨桐, 隋雪. 情绪词类型效应:区分情绪标签词和情绪负载词的行为和神经活动证据[J]. 心理科学进展, 2022, 30(12): 2696-2707. |
[14] | 陈玉田, 陈睿, 李鹏. 工作记忆中“组块”概念的演化及理论模型[J]. 心理科学进展, 2022, 30(12): 2708-2717. |
[15] | 时慧颖, 汤洁, 刘萍萍. 眼睛效应不稳定与感知规范:一个新视角[J]. 心理科学进展, 2022, 30(12): 2718-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||