心理科学进展 ›› 2018, Vol. 26 ›› Issue (11): 1901-1914.doi: 10.3724/SP.J.1042.2018.01901
• 主编特邀 • 下一篇
收稿日期:
2018-06-20
出版日期:
2018-11-15
发布日期:
2018-09-26
通讯作者:
傅世敏
E-mail:fusm@gzhu.edu.cn
基金资助:
FU Shimin(), CHEN Xiaowen, LIU Yuqi
Received:
2018-06-20
Online:
2018-11-15
Published:
2018-09-26
Contact:
FU Shimin
E-mail:fusm@gzhu.edu.cn
摘要:
视觉注意的事件相关电位研究中, 对源于V1的C1成分是否受空间注意调制存在争议。多数派观点认为C1不受空间注意直接调制, 但存在对V1的延迟反馈调节; 少数派观点则认为在一定的实验条件下, 空间注意可以在视觉信息加工的早期前馈加工阶段直接调制C1成分。近期双方就此问题展开了讨论。本综述中, 我们首先概述了双方基本观点和实验证据。其次, 简要概括了C1注意效应的多个影响因素。再次, 就近期关于C1注意效应的可重复性、注意负载与知觉负载对诱发C1注意效应的作用、极性翻转与源于V1的关系这三方面的争论进行了述评。最后, 针对该研究争论我们提出了两个原创性观点:其一, 需以开放而又谨慎的态度对待C1注意效应; 其二, 有些方法和技巧可能有助于观察到潜在的C1注意效应。综上, 多数派观点已得到大量实验证据支持, 而少数派观点尚需提供更加决定性的实验证据; 该项争论还将继续。
中图分类号:
傅世敏, 陈晓雯, 刘雨琪. (2018). 研究争论:空间注意是否调制C1成分?. 心理科学进展 , 26(11), 1901-1914.
FU Shimin, CHEN Xiaowen, LIU Yuqi. (2018). Research debate: Does spatial attention modulate C1 component?. Advances in Psychological Science, 26(11), 1901-1914.
[1] |
陈建, 袁杰, 汪海玲, 王妍, 傅世敏 . ( 2013). C1 调制效应的理论评述及影响因素. 心理科学进展, 21( 3), 407-417
doi: 10.3724/SP.J.1042.2013.00407 URL |
[2] |
Ales, J. M., Yates, J. L., & Norcia, A. M. ( 2010). V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli. Neuroimage, 52( 4), 1401-1409.
doi: 10.1016/j.neuroimage.2010.05.016 URL |
[3] |
Ales, J. M., Yates, J. L., & Norcia, A. M. ( 2013). On determining the intercranial sources of visual evoked potentials from scalp topography: A reply to Kelly et al. (this issue). Neuroimage, 64, 703-711.
doi: 10.1016/j.neuroimage.2012.09.009 URL |
[4] |
Bahrami, B., Carmel, D., Walsh, V., Rees, G., & Lavie, N. ( 2008). Spatial attention can modulate unconscious orientation processing. Perception, 37( 10), 1520-1528.
doi: 10.1068/p5999 URL pmid: 19065856 |
[5] |
Baumgartner, H. M., Graulty, C. J., Hillyard, S. A., & Pitts, M. A. ( 2018). Does spatial attention modulate the C1 component? The jury continues to deliberate. Cognitive Neuroscience, 9( 1-2), 34-37.
doi: 10.1080/17588928.2017.1386169 URL pmid: 28956499 |
[6] | Bayer, M., Rossi, V., Vanlessen, N., Grass, A., Schacht, A., & Pourtois, G. ( 2017). Independent effects of motivation and spatial attention in the human visual cortex. Social Cognitive and Affective Neuroscience, 12( 1), 146-156. |
[7] |
Clark, V.P., & Hillyard, S.A . ( 1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of Cognitive Neuroscience, 8( 5), 387-402.
doi: 10.1162/jocn.1996.8.5.387 URL |
[8] |
Dassanayake, T. L., Michie, P. T., & Fulham, R. ( 2016). Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex. International Journal of Psychophysiology, 105, 9-16.
doi: 10.1016/j.ijpsycho.2016.04.007 URL |
[9] |
Desimone, R., & Duncan, J.( 1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.
doi: 10.1146/annurev.ne.18.030195.001205 URL |
[10] |
Di Russo, F., Martinez, A., & Hillyard, S. A. ( 2003). Source analysis of event-related cortical activity during visuo- spatial attention. Cerebral Cortex, 13( 5), 486-499.
doi: 10.1093/cercor/13.5.486 URL |
[11] |
Ding, Y. L., Martinez, A., Qu, Z., & Hillyard, S. A. ( 2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35( 7), 3008-3024.
doi: 10.1002/hbm.22381 URL |
[12] | Fu, S.M. ( 2018a). Open and cautious towards the “minority view”. Cognitive Neuroscience, 9( 1-2), 28-30. |
[13] |
Fu, S.M. ( 2018b). ‘Tricks’ for revealing potential attentional modulations on the C1 component. Cognitive Neuroscience, 9( 1-2), 63-64.
doi: 10.1080/17588928.2017.1384376 URL pmid: 28944720 |
[14] |
Fu, S. M., Caggiano, D. M., Greenwood, P. M., & Parasuraman, R. ( 2005b). Event-related potentials reveal dissociable mechanisms for orienting and focusing visuospatial attention. Cognitive Brain Research, 23( 2-3), 341-353.
doi: 10.1016/j.cogbrainres.2004.11.014 URL |
[15] |
Fu, S. M.,Fan, S. L.,Chen, L., & Zhuo, Y. ( 2001). The attentional effects of peripheral cueing as revealed by two event-related potential studies. Clinical Neurophysiology, 112( 1), 172-185.
doi: 10.1016/S1388-2457(00)00500-9 URL pmid: 11137676 |
[16] |
Fu, S. M., Fedota, J., Greenwood, P. M., & Parasuraman, R. ( 2010a). Early interaction between perceptual load and involuntary attention: An event-related potential study. Neuroscience Letters, 468( 1), 68-71.
doi: 10.1016/j.neulet.2009.10.065 URL |
[17] |
Fu, S. M., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. ( 2010b). Dissociation of visual C1 and P1 components as a function of attentional load: an event-related potential study. Biological Psychology, 85( 1), 171-178.
doi: 10.1016/j.biopsycho.2010.06.008 URL |
[18] |
Fu, S. M., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. ( 2012). Attentional load is not a critical factor for eliciting C1 attentional effect - A reply to Rauss, Pourtois, Vuillenumier, and Schwartz. Biological Psychology, 91( 2), 321-324.
doi: 10.1016/j.biopsycho.2012.03.012 URL |
[19] |
Fu, S.M.,Greenwood, P.M., & Parasuraman, R.( 2005a). Brain mechanisms of involuntary visuospatial attention: An event-related potential study. Human Brain Mapping, 25( 4), 378-390.
doi: 10.1002/(ISSN)1097-0193 URL |
[20] |
Fu, S. M., Huang, Y. X., Luo, Y. J., Wang, Y., Fedota, J., Greenwood, P. M., & Parasuraman, R. ( 2009). Perceptual load interacts with involuntary attention at early processing stages: Event-related potential studies. Neuroimage, 48( 1), 191-199.
doi: 10.1016/j.neuroimage.2009.06.028 URL |
[21] |
Fu, S. M., Zinni, M., Squire, P. N., Kumar, R., Caggiano, D. M., & Parasuraman, R. ( 2008). When and where perceptual load interacts with voluntary visuospatial attention: An event-related potential and dipole modeling study. Neuroimage, 39( 3), 1345-1355.
doi: 10.1016/j.neuroimage.2007.09.068 URL |
[22] |
Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., ... Hillyard, S. A. ( 1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543-546.
doi: 10.1038/372543a0 URL |
[23] |
Herde, L., Rossi, V., Pourtois, G., & Rauss, K. ( 2018). Early retinotopic responses to violations of emotion-location associations may depend on conscious awareness. Cognitive Neuroscience, 9( 1-2), 38-55.
doi: 10.1080/17588928.2017.1338250 URL |
[24] |
Hillyard, S. A., Vogel, E. K., & Luck, S. J. ( 1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 353( 1373), 1257-1270.
doi: 10.1098/rstb.1998.0281 URL |
[25] |
Hopfinger, J.B., & Mangun, G.R . ( 1998). Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychological Science, 9( 6), 441-447.
doi: 10.1111/1467-9280.00083 URL pmid: 4552358 |
[26] | Jeffreys, D.A., & Axford, J.G . ( 1972a). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research, 16( 1), 1-21. |
[27] | Jeffreys, D.A., & Axford, J.G . ( 1972b). Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Experimental Brain Research, 16( 1), 22-40. |
[28] |
Jin, H., Xu, G. P., Zhang, J. X., Ye, Z., Wang, S. F., Zhao, L., ... Mo, L. ( 2010). Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology, 78( 3), 308-314.
doi: 10.1016/j.ijpsycho.2010.09.005 URL |
[29] |
Karns, C.M., & Knight, R.T . ( 2009). Intermodal auditory, visual, and tactile attention modulates early stages of neural processing. Journal of Cognitive Neuroscience, 21( 4), 669-683.
doi: 10.1162/jocn.2009.21037 URL |
[30] |
Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. ( 2008). Spatial attention modulates initial afferent activity in human primary visual cortex. Cerebral Cortex, 18( 11), 2629-2636.
doi: 10.1093/cercor/bhn022 URL |
[31] |
Kelly, S. P., Vanegas, M. I., Schroeder, C. E., & Lalor, E. C. ( 2013). The cruciform model of striate generation of the early VEP, re-illustrated, not revoked: A reply to Ales et al. (2013). Neuroimage, 82, 154-159.
doi: 10.1016/j.neuroimage.2013.05.112 URL |
[32] |
Khoe, W., Mitchell, J. F., Reynolds, J. H., & Hillyard, S. A. ( 2005). Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials. Vision Research, 45( 24), 3004-3014.
doi: 10.1016/j.visres.2005.04.021 URL |
[33] |
Kok, P., Rahnev, D., Jehee, J. F. M., Lau, H. C., & De Lange, F. P..( 2012). Attention reverses the effect of prediction in silencing sensory signals. Cerebral Cortex, 22( 9), 2197-2206.
doi: 10.1093/cercor/bhr310 URL |
[34] |
Lavie, N.( 1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology Human Perception and Performance, 21( 3), 451-468.
doi: 10.1037/0096-1523.21.3.451 URL |
[35] |
Lavie, N., & Tsal, Y.( 1994). Perceptual load as a major determinant of the locus of selection in visual-attention. Perception & Psychophysics, 56( 2), 183-197.
doi: 10.3758/BF03213897 URL pmid: 7971119 |
[36] | Luck, S. J. ( 2005). The Design and interpretation of ERP experiments. In M. S. Gazzaniga (Eds) An introduction to the event-relatedpotential technique. (51-98). Massachusetts: MIT Press,. |
[37] |
Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., ... Hillyard, S. A. ( 1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364-369.
doi: 10.1038/7274 URL |
[38] |
Martínez, A., DiRusso, F., Anllo-Vento, L., Sereno, M. I., Buxton, R. B., & Hillyard, S. A. ( 2001a). Putting spatial attention on the map: Timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Research, 41( 10-11), 1437-1457.
doi: 10.1016/S0042-6989(00)00267-4 URL |
[39] |
Motter, B.C. ( 1993). Focal attention produces spatially seletive processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70( 3), 909-919.
doi: 10.1152/jn.1993.70.3.909 URL |
[40] | Müller, H.J., & Rabbitt, P. M.A . ( 1989). Reflexive and voluntary orienting of visual attention: Timecourse of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception & Performance, 15( 2), 315-330. |
[41] |
Poghosyan, V., & Ioannides, A.A. ( 2008). Attention modulates earliest responses in the primary auditory and visual cortices. Neuron, 58( 5), 802-813.
doi: 10.1016/j.neuron.2008.04.013 URL |
[42] |
Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. ( 2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14( 6), 619-633.
doi: 10.1093/cercor/bhh023 URL |
[43] |
Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30( 5), 1723-1733.
doi: 10.1002/hbm.v30:5 URL |
[44] |
Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2012a). Effects of attentional load on early visual processing depend on stimulus timing. Human Brain Mapping, 33( 1), 63-74.
doi: 10.1002/hbm.21193 URL |
[45] |
Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2012b). Voluntary attention reliably influences visual processing at the level of the C1 component: A commentary on Fu, Fedota, Greenwood, and Parasuram (2010). Biological Psychology, 91( 2), 325-327.
doi: 10.1016/j.biopsycho.2012.03.013 URL |
[46] | Slagter, H. A., Alilovic, J., & Van Gaal, S. ( 2017). How early does attention modulate visual information processing? The importance of experimental protocol and data analysis approach. Cognitive Neuroscience, 9( 1-2), 26-28. |
[47] | Slotnick, S.D. ( 2013). The nature of attentional modulation in V1. In S. Slotnick (Eds.), Controversies in Cognitive Neuroscience ( pp. 44-69). New York, NY:Palgrave Macmillan. |
[48] |
Slotnick, S.D. ( 2018). The experimental parameters that affect attentional modulation of the ERP C1 component. Cognitive Neuroscience, 9( 1-2), 53-62.
doi: 10.1080/17588928.2017.1369021 URL |
[49] |
Stănişor, L., Van Der Togt, C., Pennartz, C. M. A., & Roelfsema, P. R. ( 2013). A unified selection signal for attention and reward in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 110( 22), 9136-9141.
doi: 10.1073/pnas.1300117110 URL |
[50] |
Sylvester, C. M., Shulman, G. L., Jack, A. I., & Corbetta, M. ( 2009). Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal. The Journal of Neuroscience, 29( 34), 10671-10682.
doi: 10.1523/JNEUROSCI.1141-09.2009 URL |
[51] |
Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., & Logothetis, N. ( 2011). Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science, 334( 6057), 829-831.
doi: 10.1126/science.1203161 URL |
[52] |
Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., ... Jerabek, P. ( 1997). Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Human Brain Mapping, 5( 4), 280-286.
doi: 10.1002/(SICI)1097-0193(1997)5:4<>1.0.CO;2-T URL |
[53] | Zani, A., & Proverbio, A.M. ( 2003). Chapter 1 - Cognitive electrophysiology of mind and brain. Cognitive Electrophysiology of Mind & Brain, 3-12. |
[54] |
Zhang, X. L., Zhao, P. L., Zhou, T. G., & Fang, F. ( 2012). Neural activities in V1 create a bottom-up saliency map. Neuron, 73( 1), 183-192.
doi: 10.1016/j.neuron.2011.10.035 URL pmid: 22243756 |
[55] |
Zhu, X.R., & Luo, Y.J . ( 2012). Fearful faces evoke a larger C1 than happy faces in executive attention task: An event-related potential study. Neuroscience Letters, 526( 2), 118-121.
doi: 10.1016/j.neulet.2012.08.011 URL |
[1] | 崔楠, 王久菊, 赵婧. 注意缺陷多动障碍-发展性阅读障碍共患儿童的干预效果及其内在机理[J]. 心理科学进展, 2023, 31(4): 622-630. |
[2] | 蒋涵. 注意缺陷多动障碍儿童教育康复线上模式的构建[J]. 心理科学进展, 2022, 30(8): 1747-1758. |
[3] | 周国梅, 郑若颖, 林佳, 刘心阁. 面孔吸引力的整体表征及其动态性增强[J]. 心理科学进展, 2022, 30(7): 1429-1438. |
[4] | 刘彦秀, 谢桐, 傅世敏. 物体表征强度对基于动态物体的注意的影响[J]. 心理科学进展, 2022, 30(3): 591-600. |
[5] | 叶丽群, 谭欣, 姚堃, 丁玉珑. 正常老化对视觉早期注意的影响——来自ERP的证据[J]. 心理科学进展, 2022, 30(12): 2746-2763. |
[6] | 张雯, 董亓易如, 龚丽娟, 尚琪, 程琛, 丁雪辰. 运算动量效应的理论解释及其发展性预测因素[J]. 心理科学进展, 2022, 30(12): 2777-2788. |
[7] | 殷融. 读心的比较研究:非人灵长类与人类在心理理论上的异同点及其解释[J]. 心理科学进展, 2022, 30(11): 2540-2557. |
[8] | 侯文文, 苏怡. 注意和记忆对孤独症儿童词汇发展滞后的影响[J]. 心理科学进展, 2022, 30(11): 2558-2569. |
[9] | 李婧婷, 东子朝, 刘烨, 王甦菁, 庄东哲. 基于人类注意机制的微表情检测方法[J]. 心理科学进展, 2022, 30(10): 2143-2153. |
[10] | 王紫乐, 张琪. 视觉搜索中注意模板促进搜索的内在机制[J]. 心理科学进展, 2022, 30(10): 2206-2218. |
[11] | 吴瑕, 王浚哲, 王赟, 陈瀛, 杨海波. 类别注意控制定势在注意捕获中的加工机制[J]. 心理科学进展, 2022, 30(10): 2219-2227. |
[12] | 干加裙, 王恩国. 自闭症谱系障碍个体的注意解离[J]. 心理科学进展, 2022, 30(1): 129-140. |
[13] | 李爱梅, 车敬上, 刘楠, 孙海龙, 周玮. 海量信息如何影响跨期决策?基于注意资源的理论视角[J]. 心理科学进展, 2021, 29(9): 1521-1533. |
[14] | 何嘉梅, 金磊. 目标概念的辨析及其对决策的影响[J]. 心理科学进展, 2021, 29(8): 1410-1419. |
[15] | 荆伟, 张婕, 付锦霞, 田琳, 赵微. 婴幼儿面孔注意偏向:先天倾向与发展轨迹——来自正常和孤独症婴幼儿的证据[J]. 心理科学进展, 2021, 29(7): 1216-1230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||