心理科学进展 ›› 2026, Vol. 34 ›› Issue (2): 191-209.doi: 10.3724/SP.J.1042.2026.0191 cstr: 32111.14.2026.0191
• 第二十七届中国科协年会学术论文 • 下一篇
田柳青, 陈彦霖, 林美玲, 陈栋, 王亮
收稿日期:2025-05-12
出版日期:2026-02-15
发布日期:2025-12-15
通讯作者:
陈栋, E-mail: chend@psych.ac.cn;王亮, E-mail: lwang@psych.ac.cn
基金资助:TIAN Liuqing, CHEN Yanlin, LIN Meiling, CHEN Dong, WANG Liang
Received:2025-05-12
Online:2026-02-15
Published:2025-12-15
摘要: 以记忆障碍为典型症状的阿尔兹海默症和创伤后应激障碍等疾病的治疗是脑机接口研究的关键方向。本文聚焦侵入式脑机接口在情景记忆的空间与情绪信息处理中的应用, 重点阐述如何基于人脑深部脑区局部场电位信号, 结合机器学习算法, 实现对运动状态、环境边界、空间位置及情绪效价等多维度记忆信息的精准解析。基于上述神经特征的调控技术可以实现记忆和情绪的靶向干预。当前技术瓶颈包括个体差异、电极稳定性不足及自适应算法局限。未来需融合动态网络模型与柔性电极技术, 推动临床个性化闭环干预范式的发展。
中图分类号:
田柳青, 陈彦霖, 林美玲, 陈栋, 王亮. (2026). 侵入式脑机接口应用:记忆的解码与调控. 心理科学进展 , 34(2), 191-209.
TIAN Liuqing, CHEN Yanlin, LIN Meiling, CHEN Dong, WANG Liang. (2026). Invasive brain-computer interface applications: Decoding and modulation of memory. Advances in Psychological Science, 34(2), 191-209.
| [1] 肖松, 程和平, 吴朝晖, 张旭, 王以政, 陈婧, .. 王刚. (2024). 脑机接口技术发展现状及未来展望. 科学与社会, 142024.03.002 [2] Adamantidis A. R., Gutierrez Herrera C., & Gent T. C. (2019). Oscillating circuitries in the sleeping brain. Nature Reviews Neuroscience, 20(12), 746-762. https://doi.org/10.1038/s41583-019-0223-4 [3] Aghajan Z. M., Schuette P., Fields T. A., Tran M. E., Siddiqui S. M., Hasulak N. R.,… Suthana, N.(2017). Theta oscillations in the human medial temporal lobe during real-world ambulatory movement. Current Biology, 272017.10.062 [4] Akiki T. J., Jubeir J., Bertrand C., Tozzi L., & Williams L. M. (2025). Neural circuit basis of pathological anxiety. Nature Reviews Neuroscience, 26(1), 5-22. https://doi.org/10.1038/s41583-024-00880-4 [5] Anderson M. C., Crespo-Garcia M., & Subbulakshmi S. (2025). Brain mechanisms underlying the inhibitory control of thought. Nature Reviews Neuroscience, 26(7), 415-437. https://doi.org/10.1038/s41583-025-00929-y [6] Anumanchipalli G. K., Chartier J., & Chang E. F. (2019). Speech synthesis from neural decoding of spoken sentences. Nature, 568(7753), 493-498. https://doi.org/10.1038/s41586-019-1119-1 [7] Bao X., Gjorgieva E., Shanahan L. K., Howard J. D., Kahnt T.,& Gottfried, J. A.(2019). Grid-like neural representations support olfactory navigation of a two- dimensional odor space. Neuron, 1022019.03.034 [8] Barron H. C., Reeve H. M., Koolschijn R. S., Perestenko P. V., Shpektor A., Nili H.,… Dupret, D.(2020). Neuronal computation underlying inferential reasoning in humans and mice. Cell, 1832020.08.035 [9] Behrens T. E. J., Muller T. H., Whittington J. C. R., Mark S., Baram A. B., Stachenfeld K. L., & Kurth-Nelson Z. (2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron, 100(2), 490-509. https://doi.org/10.1016/j.neuron.2018.10.002 [10] Bellmund J. L. S., Gärdenfors P., Moser E. I., & Doeller C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415), eaat6766. https://doi.org/10.1126/science.aat6766 [11] Bhattarai B., Lee J. W., & Jung M. W. (2020). Distinct effects of reward and navigation history on hippocampal forward and reverse replays. Proceedings of the National Academy of Sciences, 117(1), 689-697. https://doi.org/10.1073/pnas.1912533117 [12] Bhaya-Grossman, I., & Chang, E. F. (2022). Speech computations of the human superior temporal gyrus. Annual Review of Psychology, 73, 79-102. https://doi.org/10.1146/annurev-psych-022321-035256 [13] Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21(9), 453-470. https://doi.org/10.1038/s41583-020-0336-9 [14] Bijanzadeh M., Khambhati A. N., Desai M., Wallace D. L., Shafi A., Dawes H. E., Sturm V. E., & Chang E. F. (2022). Decoding naturalistic affective behaviour from spectro-spatial features in multiday human iEEG. Nature Human Behaviour, 6(6), 823-836. https://doi.org/10.1038/s41562-022-01310-0 [15] Boccara C. N., Nardin M., Stella F., O’Neill J., & Csicsvari J. (2019). The entorhinal cognitive map is attracted to goals. Science, 363(6434), 1443-1447. https://doi.org/10.1126/science.aav4837 [16] Bocchio M., Nabavi S.,& Capogna, M.(2017). Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron, 94 2017.03.022 [17] Bohbot V. D., Copara M. S., Gotman J., & Ekstrom A. D. (2017). Low-frequency theta oscillations in the human hippocampus during real-world and virtual navigation. Nature Communications, 8(1), 14415. https://doi.org/10.1038/ncomms14415 [18] Bongioanni A., Folloni D., Verhagen L., Sallet J., Klein-Flügge M. C., & Rushworth, M. F. S. (2021). Activation and disruption of a neural mechanism for novel choice in monkeys. Nature, 591(7849), 270-274. https://doi.org/10.1038/s41586-020-03115-5 [19] Bowen H. J., Ford J. H., Grady C. L.,& Spaniol, J.(2020). Frontostriatal functional connectivity supports reward- enhanced memory in older adults. Neurobiology of Aging, 90, 1-12. https://doi.org/10.1016/j.neurobiolaging.2020.02.013 [20] Boyce R., Glasgow S. D., Williams S., & Adamantidis A. (2016). Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science, 352 (6287), 812-816. https://doi.org/10.1126/science.aad5252 [21] Brewin C. R., Atwoli L., Bisson J. I., Galea S., Koenen K., & Lewis-Fernández R. (2025). Post-traumatic stress disorder: Evolving conceptualization and evidence, and future research directions. World Psychiatry, 24(1), 52-80. https://doi.org/10.1002/wps.21269 [22] Brodt S., Inostroza M., Niethard N.,& Born, J.(2023). Sleep—A brain-state serving systems memory consolidation. Neuron, 1112023.03.005 [23] Bromberg-Martin,E. S., Matsumoto, M., & Hikosaka, O.(2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 682010.11.022 [24] Brown T. I., Gagnon S. A., & Wagner A. D. (2020). Stress disrupts human hippocampal-prefrontal function during prospective spatial navigation and hinders flexible behavior. Current Biology, 30(10), 1821-1833.e8. https://doi.org/10.1016/j.cub.2020.03.006 [25] Bush D., Bisby J. A., Bird C. M., Gollwitzer S., Rodionov R., Diehl B., … Burgess N. (2017). Human hippocampal theta power indicates movement onset and distance travelled. Proceedings of the National Academy of Sciences of the United States of America, 114(46), 12297-12302. https://doi.org/10.1073/pnas.1708716114 [26] Butler W. N., Hardcastle K., & Giocomo L. M. (2019). Remembered reward locations restructure entorhinal spatial maps. Science, 363(6434), 1447-1452. https://doi.org/10.1126/science.aav5297 [27] Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130-138. https://doi.org/10.1038/nn.3304 [28] Buzsáki G.,& Tingley, D.(2018). Space and time: The hippocampus as a sequence generator. Trends in Cognitive Sciences, 222018.07.006 [29] Cantor J. H.,McBain, R. K., & Ho, P.-C.(2023). Telehealth and in-person mental health service utilization and spending, 2019 to 2022. JAMA Health Forum, 42023.2645 [30] Chaaya N., Battle A. R.,& Johnson, L. R.(2018). An update on contextual fear memory mechanisms: Transition between amygdala and hippocampus. Neuroscience & Biobehavioral Reviews, 92, 43-54. https://doi.org/10.1016/j.neubiorev.2018.05.013 [31] Chang E. F., Raygor K. P., & Berger M. S. (2015). Contemporary model of language organization: An overview for neurosurgeons. Journal of Neurosurgery, 122(2), 250-261. https://doi.org/10.3171/2014.10.JNS132647 [32] Chen D., Axmacher N.,& Wang, L.(2024). Grid codes underlie multiple cognitive maps in the human brain. Progress in Neurobiology, 233, 102569. https://doi.org/10.1016/j.pneurobio.2024.102569 [33] Chen D., Kunz L., Lv P., Zhang H., Zhou W., Liang S., Axmacher N., & Wang L. (2021). Theta oscillations coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex. Science Advances, 7(44), eabj0200. https://doi.org/10.1126/sciadv.abj0200 [34] Chen D., Kunz L., Wang W., Zhang H., Wang W.-X.,Schulze-Bonhage, A., … Wang, L.(2018). Hexadirectional modulation of theta power in human entorhinal cortex during spatial navigation. Current Biology, 282018.08.029 [35] Chen X., He Q., Kelly J. W., Fiete I. R.,& McNamara, T. P.(2015). Bias in human path integration is predicted by properties of grid cells. Current Biology, 252015.05.031 [36] Cisler J. M., Dunsmoor J. E., Fonzo G. A.,& Nemeroff, C. B.(2024). Latent-state and model-based learning in PTSD. Trends in Neurosciences, 472023.12.002 [37] Clarke-Williams,C. J., Lopes-dos-Santos, V., Lefèvre, L., Brizee, D., Causse, A. A., Rothaermel, R., … Dupret, D.(2024). Coordinating brain-distributed network activities in memory resistant to extinction. Cell, 1872023.12.018 [38] Colgin L. L., Denninger T., Fyhn M., Hafting T., Bonnevie T., Jensen O., Moser M.-B., & Moser E. I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353-357. https://doi.org/10.1038/nature08573 [39] Convertino L., Bush D., Zheng F., Adams R. A., & Burgess N. (2023). Reduced grid-like theta modulation in schizophrenia. Brain, 146(5), 2191-2198. https://doi.org/10.1093/brain/awac416 [40] Coughlan G., Coutrot A., Khondoker M., Minihane A.-M., Spiers H., & Hornberger M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proceedings of the National Academy of Sciences, 116(19), 9285-9292. https://doi.org/10.1073/pnas.1901600116 [41] Coughlan G., Laczó J., Hort J., Minihane A.-M., & Hornberger M. (2018). Spatial navigation deficits— Overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496-506. https://doi.org/10.1038/s41582-018-0031-x [42] Dolan R. J.,& Dayan, P.(2013). Goals and habits in the brain. Neuron, 802013.09.007 [43] Edelman B. J., Zhang S., Schalk G., Brunner P.,Müller-Putz, G., Guan, C., & He, B.(2025). Non-Invasive Brain-Computer Interfaces: State of the Art and Trends. IEEE Reviews in Biomedical Engineering, 18, 26-49. https://doi.org/10.1109/RBME.2024.3449790 [44] Eichenbaum, H. (2017a). Memory: Organization and control. Annual Review of Psychology, 68(1), 19-45. https://doi.org/10.1146/annurev-psych-010416-044131 [45] Eichenbaum, H. (2017b). Prefrontal-hippocampal interactions in episodic memory. Nature Reviews Neuroscience, 18(9), 547-558. https://doi.org/10.1038/nrn.2017.74 [46] Ekstrom A. D., Kahana M. J., Caplan J. B., Fields T. A., Isham E. A., Newman E. L., & Fried I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184-188. https://doi.org/10.1038/nature01964 [47] Ezzyat Y., Wanda P. A., Levy D. F., Kadel A., Aka A., Pedisich I., … Kahana M. J. (2018). Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nature Communications, 9(1), 365. https://doi.org/10.1038/s41467-017-02753-0 [48] Fanselow, M. S., & LeDoux, J. E. (1999). Why we think plasticity underlying pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23(2), 229-232. https://doi.org/10.1016/S0896-6273(00)80775-8 [49] Fell J., Staresina B. P.,Do Lam, A. T. A., Widman, G., Helmstaedter, C., Elger, C. E., & Axmacher, N.(2013). Memory modulation by weak synchronous deep brain Stimulation: A pilot study. Brain Stimulation, 62012.08.001 [50] Fenster R. J., Lebois L. A. M., Ressler K. J., & Suh J. (2018). Brain circuit dysfunction in post-traumatic stress disorder: From mouse to man. Nature Reviews Neuroscience, 19(9), 535-551. https://doi.org/10.1038/s41583-018-0039-7 [51] Figee, M., & Mayberg, H. (2021). The future of personalized brain stimulation. Nature Medicine, 27(2), 196-197. https://doi.org/10.1038/s41591-021-01243-7 [52] Fink J.,& Exner, C.(2019). Does transcranial direct current stimulation (tDCS) improve disgust regulation through imagery rescripting? Frontiers in Human Neuroscience, 13, 192. https://doi.org/10.3389/fnhum.2019.00192 [53] Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680-683. https://doi.org/10.1038/nature04587 [54] Gale G. D., Anagnostaras S. G., Godsil B. P., Mitchell S., Nozawa T., Sage J. R., Wiltgen B., & Fanselow M. S. (2004). Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. Journal of Neuroscience, 24(15), 3810-3815. https://doi.org/10.1523/JNEUROSCI.4100-03.2004 [55] Gao X., Wang Y., Chen X.,& Gao, S.(2021). Interface, interaction, and intelligence in generalized brain- computer interfaces. Trends in Cognitive Sciences, 252021.04.003 [56] Geva-Sagiv M., Mankin E. A., Eliashiv D., Epstein S., Cherry N., Kalender G., … Fried I. (2023). Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nature Neuroscience, 26(6), 1100-1110. https://doi.org/10.1038/s41593-023-01324-5 [57] Girardeau G., Inema I., & Buzsáki G. (2017). Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nature Neuroscience, 20(11), 1634-1642. https://doi.org/10.1038/nn.4637 [58] Girardeau, G., & Lopes-dos-Santos, V. (2021). Brain neural patterns and the memory function of sleep. Science, 374(6567), 560-564. https://doi.org/10.1126/science.abi8370 [59] Griffiths B. J.,& Jensen, O.(2023). Gamma oscillations and episodic memory. Trends in Neurosciences, 462023.07.003 [60] Gruber M. J., Ritchey M., Wang S.-F., Doss M. K.,& Ranganath, C.(2016). Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron, 892016.01.017 [61] Hampson R. E., Song D., Robinson B. S., Fetterhoff D., Dakos A. S., Roeder B. M., … Deadwyler S. A. (2018). Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. Journal of Neural Engineering, 15(3), 036014. https://doi.org/10.1088/1741-2552/aaaed7 [62] Hardcastle K., Ganguli S.,& Giocomo, L. M.(2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 862015.03.039 [63] Hassabis D., Chu C., Rees G., Weiskopf N., Molyneux P. D.,& Maguire, E. A.(2009). Decoding neuronal ensembles in the human hippocampus. Current Biology, 192009.02.033 [64] He Z., Li S., Mo L., Zheng Z., Li Y., Li H., & Zhang D. (2023). The VLPFC-engaged voluntary emotion regulation: Combined TMS-fMRI evidence for the neural circuit of cognitive reappraisal. The Journal of Neuroscience, 43(34), 6046-6060. https://doi.org/10.1523/JNEUROSCI.1337-22.2023 [65] Herweg N. A., Solomon E. A.,& Kahana, M. J.(2020). Theta oscillations in human memory. Trends in Cognitive Sciences, 24 2019.12.006 [66] Heusser A. C., Poeppel D., Ezzyat Y., & Davachi L. (2016). Episodic sequence memory is supported by a theta-gamma phase code. Nature Neuroscience, 19(10), 1374-1380. https://doi.org/10.1038/nn.4374 [67] Hu P., He Y., Liu X., Ren Z.,& Liu, S.(2021). Modulating emotion processing using transcranial alternating current stimulation (tACS)-A sham-controlled study in healthy human participants. Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 2021 43rd, 6667-6670. https://doi.org/10.1109/EMBC46164.2021.9630564 [68] Hunt L. T., Daw N. D., Kaanders P., MacIver M. A., Mugan U., Procyk E., … Kolling N. (2021). Formalizing planning and information search in naturalistic decision- making. Nature Neuroscience, 24(8), 1051-1064. https://doi.org/10.1038/s41593-021-00866-w [69] Igarashi K. M.(2023). Entorhinal cortex dysfunction in Alzheimer’s disease. Trends in Neurosciences, 46(2), 124-136. https://doi.org/10.1016/j.tins.2022.11.006 [70] Ikemoto, S. (2010). Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neuroscience & Biobehavioral Reviews, 35(2), 129-150. https://doi.org/10.1016/j.neubiorev.2010.02.001 [71] Inman C. S., Manns J. R., Bijanki K. R., Bass D. I., Hamann S., Drane D. L., … Willie J. T. (2018). Direct electrical stimulation of the amygdala enhances declarative memory in humans. Proceedings of the National Academy of Sciences of the United States of America, 115(1), 98-103. https://doi.org/10.1073/pnas.1714058114 [72] Isserles M., Tendler A., Roth Y., Bystritsky A., Blumberger D. M., Ward H.,… Ressler, K. J.(2021). Deep transcranial magnetic stimulation combined with brief exposure for posttraumatic stress disorder: A prospective multisite randomized trial. Biological Psychiatry, 902021.04.019 [73] Jackson A. D., Cohen J. L., Phensy A. J., Chang E. F., Dawes H. E.,& Sohal, V. S.(2024). Amygdala- hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state. Neuron, 1122023.12.017 [74] Jacobs J., Miller J., Lee S. A., Coffey T., Watrous A. J., Sperling M. R.,… Rizzuto, D. S.(2016). Direct electrical stimulation of the human entorhinal region and hippocampus impairs memory. Neuron, 922016.10.062 [75] Jacobs J., Weidemann C. T., Miller J. F., Solway A., Burke J. F., Wei X.-X., … Kahana M. J. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 16(9), 1188-1190. https://doi.org/10.1038/nn.3466 [76] Jin J., Allison B. Z., Kaufmann T., Kübler A., Zhang Y., Wang X., & Cichocki A. (2012). The changing face of p300 BCIs: A comparison of stimulus changes in a p300 BCI involving faces, emotion, and movement. PLoS ONE, 7(11), e49688. https://doi.org/10.1371/journal.pone.0049688 [77] Julian, J. B., & Doeller, C. F. (2021). Remapping and realignment in the human hippocampal formation predict context-dependent spatial behavior. Nature Neuroscience, 24(6), 863-872. https://doi.org/10.1038/s41593-021-00835-3 [78] Kahana M. J., Ezzyat Y., Wanda P. A., Solomon E. A.,Adamovich-Zeitlin, R., Lega, B. C., … Diaz-Arrastia, R. R.(2023). Biomarker-guided neuromodulation aids memory in traumatic brain injury. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 162023.07.002 [79] Killian N. J., Jutras M. J., & Buffalo E. A. (2012). A map of visual space in the primate entorhinal cortex. Nature, 491(7426), 761-764. https://doi.org/10.1038/nature11587 [80] Kim K., Schedlbauer A., Rollo M., Karunakaran S., Ekstrom A. D.,& Tandon, N.(2018). Network-based brain stimulation selectively impairs spatial retrieval. Brain Stimulation, 112017.09.016 [81] Kim S. A., Shin D., Ham H., Kim Y., Gu Y., Kim H. J.,… Kim, Y.(2025). Physical activity, Alzheimer plasma biomarkers, and cognition. JAMA Network Open, 82025. 0096 [82] Kirkby L. A., Luongo F. J., Lee M. B., Nahum M., Van Vleet T. M., Rao V. R., … Sohal V. S. (2018). An amygdala-hippocampus subnetwork that encodes variation in human mood. Cell, 175(6), 1688-1700.e14. https://doi.org/10.1016/j.cell.2018.10.005 [83] Klein-Flügge,M. C., Bongioanni, A., & Rushworth, M. F. S.(2022). Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron, 1102022.05.022 [84] Klinzing J. G., Niethard N., & Born J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598-1610. https://doi.org/10.1038/s41593-019-0467-3 [85] Knowlton, B. J., & Castel, A. D. (2022). Memory and reward-based learning: A value-directed remembering perspective. Annual Review of Psychology, 73(1), 25-52. https://doi.org/10.1146/annurev-psych-032921-050951 [86] Knudsen, E. B., & Wallis, J. D. (2022). Taking stock of value in the orbitofrontal cortex. Nature Reviews Neuroscience, 23(7), 428-438. https://doi.org/10.1038/s41583-022-00589-2 [87] Kragel J. E., Lurie S. M., Issa N. P., Haider H. A., Wu S., Tao J. X., … Voss J. L. (2025). Closed-loop control of theta oscillations enhances human hippocampal network connectivity. Nature Communications, 16(1), 4061. https://doi.org/10.1038/s41467-025-59417-7 [88] Kucewicz M. T., Berry B. M., Miller L. R., Khadjevand F., Ezzyat Y., Stein J. M., … Worrell G. A. (2018). Evidence for verbal memory enhancement with electrical brain stimulation in the lateral temporal cortex. Brain, 141(4), 971-978. https://doi.org/10.1093/brain/awx373 [89] Kumar R., Waisberg E., Ong J.,& Lee, A. G.(2025). The potential power of Neuralink-how brain-machine interfaces can revolutionize medicine. Expert Review of Medical Devices, 222025.2498457 [90] Kunz L., Maidenbaum S., Chen D., Wang L., Jacobs J.,& Axmacher, N.(2019). Mesoscopic neural representations in spatial navigation. Trends in Cognitive Sciences, 232019.04.011 [91] Lebedev, M. A., & Nicolelis, M. A. L. (2017). Brain- machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiological Reviews, 97(2), 767-837. https://doi.org/10.1152/physrev.00027.2016 [92] Lee S. A., Miller J. F., Watrous A. J., Sperling M. R., Sharan A., Worrell G. A., … Jacobs J. (2018). Electrophysiological signatures of spatial boundaries in the human subiculum. The Journal of Neuroscience, 38(13), 3265-3272. https://doi.org/10.1523/JNEUROSCI.3216-17.2018 [93] Lester A. W., Moffat S. D., Wiener J. M., Barnes C. A.,& Wolbers, T.(2017). The aging navigational system. Neuron, 952017.06.037 [94] Lisman J. E.,& Jensen, O.(2013). The theta-gamma neural code. Neuron, 772013.03.007 [95] Liu J., Chen D., Xiao X., Zhang H., Zhou W., Liang S.,… Wang, L.(2023). Multi-scale goal distance representations in human hippocampus during virtual spatial navigation. Current Biology, 332023.04.033 [96] Lloyd, B., & Nieuwenhuis, S. (2024). The effect of reward-induced arousal on the success and precision of episodic memory retrieval. Scientific Reports, 14(1), Article 1. https://doi.org/10.1038/s41598-024-52486-6 [97] Long X., Deng B., Shen R., Yang L., Chen L., Ran Q., Du X., & Zhang S.-J. (2024). Border cells without theta rhythmicity in the medial prefrontal cortex. Proceedings of the National Academy of Sciences, 121(25), e2321614121. https://doi.org/10.1073/pnas.2321614121 [98] Luo A. H., Tahsili-Fahadan P., Wise R. A., Lupica C. R., & Aston-Jones G. (2011). Linking context with reward: A functional circuit from hippocampal CA3 to ventral tegmental area. Science, 333(6040), 353-357. https://doi.org/10.1126/science.1204622 [99] Maidenbaum S., Miller J., Stein J. M., & Jacobs J. (2018). Grid-like hexadirectional modulation of human entorhinal theta oscillations. Proceedings of the National Academy of Sciences, 115(42), 10798-10803. https://doi.org/10.1073/pnas.1805007115 [100] Maingret N., Girardeau G., Todorova R., Goutierre M., & Zugaro M. (2016). Hippocampo-cortical coupling mediates memory consolidation during sleep. Nature Neuroscience, 19(7), 959-964. https://doi.org/10.1038/nn.4304 [101] Mankin E. A.,& Fried, I.(2020). Modulation of human memory by deep brain stimulation of the entorhinal- hippocampal circuitry. Neuron, 1062020.02.024 [102] Maoz S. L. L., Stangl M., Topalovic U., Batista D., Hiller S., Aghajan Z. M., … Suthana N. (2023). Dynamic neural representations of memory and space during human ambulatory navigation. Nature Communications, 14(1), 6643. https://doi.org/10.1038/s41467-023-42231-4 [103] Mary A., Dayan J., Leone G., Postel C., Fraisse F., Malle C., … Gagnepain P. (2020). Resilience after trauma: The role of memory suppression. Science, 367(6479), eaay8477. https://doi.org/10.1126/science.aay8477 [104] Mathis M. W.,Perez Rotondo, A., Chang, E. F., Tolias, A. S., & Mathis, A.(2024). Decoding the brain: From neural representations to mechanistic models. Cell, 1872024.08.051 [105] Mattar, M. G., & Daw, N. D. (2018). Prioritized memory access explains planning and hippocampal replay. Nature Neuroscience, 21(11), 1609-1617. https://doi.org/10.1038/s41593-018-0232-z [106] Miendlarzewska E. A., Bavelier D.,& Schwartz, S.(2016). Influence of reward motivation on human declarative memory. Neuroscience & Biobehavioral Reviews, 61, 156-176. https://doi.org/10.1016/j.neubiorev.2015.11.015 [107] Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: Ten years of progress. Annual Review of Psychology, 63, 129-151. https://doi.org/10.1146/annurev.psych.121208.131631 [108] Miller J. P., Sweet J. A., Bailey C. M., Munyon C. N., Luders H. O., & Fastenau P. S. (2015). Visual-spatial memory may be enhanced with theta burst deep brain stimulation of the fornix: A preliminary investigation with four cases. Brain, 138(7), 1833-1842. https://doi.org/10.1093/brain/awv095 [109] Moon H.-J., Albert L., De Falco E., Tasu C., Gauthier B., Park H.-D., & Blanke O. (2024). Changes in spatial self-consciousness elicit grid cell-like representation in the entorhinal cortex. Proceedings of the National Academy of Sciences, 121(12), e2315758121. https://doi.org/10.1073/pnas.2315758121 [110] Nadasdy Z., Nguyen T. P., Török Á., Shen J. Y., Briggs D. E., Modur P. N., & Buchanan R. J. (2017). Context-dependent spatially periodic activity in the human entorhinal cortex. Proceedings of the National Academy of Sciences, 114(17), E3516-E3525. https://doi.org/10.1073/pnas.1701352114 [111] Nicolelis, M. A. L. (2014). Brain-to-brain interfaces: When reality meets science fiction. Cerebrum: The Dana Forum on Brain Science, 2014, 13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445586/ [112] Nitsch A., Garvert M. M., Bellmund J. L. S., Schuck N. W., & Doeller C. F. (2024). Grid-like entorhinal representation of an abstract value space during prospective decision making. Nature Communications, 15(1), 1198. https://doi.org/10.1038/s41467-024-45127-z [113] Nitsche M., Koschack J., Pohlers H., Hullemann S., Paulus W.,& Happe, S.(2012). Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Frontiers in Psychiatry, 3, 58. https://www.frontiersin.org/articles/10.3389/fpsyt.2012.00058 [114] Niv, Y. (2019). Learning task-state representations. Nature Neuroscience, 22(10), 1544-1553. https://doi.org/10.1038/s41593-019-0470-8 [115] Nyberg N., Duvelle É., Barry C.,& Spiers, H. J.(2022). Spatial goal coding in the hippocampal formation. Neuron, 1102021.12.012 [116] Oganesian, L. L., & Shanechi, M. M. (2024). Brain-computer interfaces for neuropsychiatric disorders. Nature Reviews Bioengineering, 2(8), 653-670. https://doi.org/10.1038/s44222-024-00177-2 [117] Ojemann, G. A. (1975). Language and the thalamus: Object naming and recall during and after thalamic stimulation. Brain and Language, 2, 101-120. https://doi.org/10.1016/ S0093-934X(75)80057-5 [118] Ojemann, G. A. (1978). Organization of short-term verbal memory in language areas of human cortex: Evidence from electrical stimulation. Brain and Language, 5(3), 331-340. https://doi.org/10.1016/0093-934X(78)90030-5 [119] Parhizkar S.,& Holtzman, D. M.(2025). The night’s watch: Exploring how sleep protects against neurodegeneration. Neuron, 1132025.02.004 [120] Park S. A., Miller D. S., & Boorman E. D. (2021). Inferences on a multidimensional social hierarchy use a grid-like code. Nature Neuroscience, 24(9), 1292-1301. https://doi.org/10.1038/s41593-021-00916-3 [121] Patai E. Z.,& Spiers, H. J.(2021). The versatile wayfinder: Prefrontal contributions to spatial navigation. Trends in Cognitive Sciences, 252021.02.010 [122] Pronier É., Morici J. F.,& Girardeau, G.(2023). The role of the hippocampus in the consolidation of emotional memories during sleep. Trends in Neurosciences, 462023.08.003 [123] Qasim S. E., Fried I.,& Jacobs, J.(2021). Phase precession in the human hippocampus and entorhinal cortex. Cell, 184 2021.04.017 [124] Qasim S. E., Mohan U. R., Stein J. M., & Jacobs J. (2023). Neuronal activity in the human amygdala and hippocampus enhances emotional memory encoding.Nature Human Behaviour,7(5), 754-764. https://doi.org/10.1038/s41562-022-01502-8 [125] Rowland D. C., Roudi Y., Moser M.-B., & Moser E. I. (2016). Ten years of grid cells.Annual Review of Neuroscience,39(1), 19-40. https://doi.org/10.1146/annurev-neuro-070815-013824 [126] Rudoler J. H., Bruska J. P., Chang W., Dougherty M. R., Katerman B. S., Halpern D. J., Diamond N. B.,& Kahana, M. J.(2024). Decoding EEG for optimizing naturalistic memory.Journal of Neuroscience Methods,410, 110220. https://doi.org/10.1016/j.jneumeth.2024.110220 [127] Rueckemann J. W., Sosa M., Giocomo L. M., & Buffalo E. A. (2021). The grid code for ordered experience.Nature Reviews Neuroscience,22(10), 637-649. https://doi.org/10.1038/s41583-021-00499-9 [128] Sani O. G., Yang Y., Lee M. B., Dawes H. E., Chang E. F., & Shanechi M. M. (2018). Mood variations decoded from multi-site intracranial human brain activity.Nature Biotechnology,36(10), 954-961. https://doi.org/10.1038/nbt.4200 [129] Schiller D., Monfils M.-H., Raio C. M., Johnson D. C., LeDoux J. E., & Phelps E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms.Nature,463(7277), 49-53. https://doi.org/10.1038/nature08637 [130] Seeber M., Stangl M., Vallejo Martelo M., Topalovic U., Hiller S., Halpern C. H., … Suthana N. (2025). Human neural dynamics of real-world and imagined navigation.Nature Human Behaviour,9(4), 781-793. https://doi.org/10.1038/s41562-025-02119-3 [131] Shanechi, M. M. (2019). Brain-machine interfaces from motor to mood.Nature Neuroscience,22(10), 1554-1564. https://doi.org/10.1038/s41593-019-0488-y [132] Sharp, P. B. (2025). Anxiety involves altered planning.Trends in Cognitive Sciences,29(2), 118-121. https://doi.org/10.1016/j.tics.2024.11.001 [133] Sheth S. A., Bijanki K. R., Metzger B., Allawala A., Pirtle V., Adkinson J. A.,… Pouratian, N.(2022). Deep brain stimulation for depression informed by intracranial recordings.Biological Psychiatry,922021.11.007 [134] Shigemune Y., Tsukiura T., Nouchi R., Kambara T., & Kawashima R. (2017). Neural mechanisms underlying the reward-related enhancement of motivation when remembering episodic memories with high difficulty.Human Brain Mapping,38(7), 3428-3443. https://doi.org/10.1002/hbm.23599 [135] Shohamy D.,& Adcock, R. A.(2010). Dopamine and adaptive memory.Trends in Cognitive Sciences,142010.08.002 [136] Solstad T., Boccara C. N., Kropff E., Moser M.-B., & Moser E. I. (2008). Representation of geometric borders in the entorhinal cortex.Science,322(5909), 1865-1868. https://doi.org/10.1126/science.1166466 [137] Sonkusare S., Qiong D., Zhao Y., Liu W., Yang R., Mandali A., … Voon V. (2023). Frequency dependent emotion differentiation and directional coupling in amygdala, orbitofrontal and medial prefrontal cortex network with intracranial recordings.Molecular Psychiatry,28(4), 1636-1646. https://doi.org/10.1038/s41380-022-01883-2 [138] Sosa, M., & Giocomo, L. M. (2021). Navigating for reward.Nature Reviews Neuroscience,22(8), 472-487. https://doi.org/10.1038/s41583-021-00479-z [139] Sosa M., Joo H. R.,& Frank, L. M.(2020). Dorsal and ventral hippocampal sharp-wave ripples activate distinct nucleus accumbens networks.Neuron,1052019.11.022 [140] Sparta D. R., Smithuis J., Stamatakis A. M., Jennings J. H., Kantak P. A., Ung R. L.,& Stuber, G. D.(2014). Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear.Frontiers in Behavioral Neuroscience,8, 129. https://www.frontiersin.org/articles/10.3389/fnbeh.2014.00129 [141] Stangl M., Topalovic U., Inman C. S., Hiller S., Villaroman D., Aghajan Z. M., … Suthana N. (2021). Boundary-anchored neural mechanisms of location- encoding for self and others.Nature,589(7842), 420-425. https://doi.org/10.1038/s41586-020-03073-y [142] Suarez-Jimenez B., Bisby J. A., Horner A. J., King J. A., Pine D. S., & Burgess N. (2018). Linked networks for learning and expressing location-specific threat. Proceedings of the National Academy of Sciences, 115(5), E1032-E1040. https://doi.org/10.1073/pnas.1714691115 [143] Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., & Fried I. (2012). Memory Enhancement and deep-brain stimulation of the entorhinal area. New England Journal of Medicine, 366(6), 502-510. https://doi.org/10.1056/NEJMoa1107212 [144] Tomar A.,& McHugh, T. J.(2022). The impact of stress on the hippocampal spatial code.Trends in Neurosciences, 452021.11.005 [145] Tort A. B. L., Komorowski R. W., Manns J. R., Kopell N. J., & Eichenbaum H. (2009). Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences, 106(49), 20942-20947. https://doi.org/10.1073/pnas.0911331106 [146] Viejo, G., & Peyrache, A. (2020). Precise coupling of the thalamic head-direction system to hippocampal ripples.Nature Communications,11(1), 2524. https://doi.org/10.1038/s41467-020-15842-4 [147] Viganò S., Bayramova R., Doeller C. F., & Bottini R. (2023). Mental search of concepts is supported by egocentric vector representations and restructured grid maps.Nature Communications,14(1), 8132. https://doi.org/10.1038/s41467-023-43831-w [148] Vindhya G., Parveen S., Sowmya P., Babu Ch. M.,& Chowdary, P.(2024). Neuralink: Reclassifying the Limits of Human Insight.2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT),Kamand, India. https://doi.org/10.1109/ICCCNT61001.2024.10724926 [149] Wagner I. C., Graichen L. P., Todorova B., Lüttig A., Omer D. B., Stangl M., & Lamm C. (2023). Entorhinal grid-like codes and time-locked network dynamics track others navigating through space.Nature Communications,14(1), 231. https://doi.org/10.1038/s41467-023-35819-3 [150] Wang M. E., Yuan R. K., Keinath A. T., Álvarez M. M. R., & Muzzio I. A. (2015). Extinction of learned fear induces hippocampal place cell remapping.Journal of Neuroscience,35(24), 9122-9136. https://doi.org/10.1523/JNEUROSCI.4477-14.2015 [151] Weigand A., Horn A., Caballero R., Cooke D., Stern A. P., Taylor S. F.,… Fox, M. D.(2018). Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites.Biological Psychiatry,842017.10.028 [152] Whittington J. C. R., McCaffary D., Bakermans J. J. W., & Behrens, T. E. J. (2022). How to build a cognitive map.Nature Neuroscience,25(10), 1257-1272. https://doi.org/10.1038/s41593-022-01153-y [153] Wikenheiser, A. M., & Redish, A. D. (2015). Hippocampal theta sequences reflect current goals.Nature Neuroscience,18(2), 289-294. https://doi.org/10.1038/nn.3909 [154] Wise T., Liu Y., Chowdhury F., & Dolan R. J. (2021). Model-based aversive learning in humans is supported by preferential task state reactivation.Science Advances,7(31), eabf9616. https://doi.org/10.1126/sciadv.abf9616 [155] Wolpaw J.,& Wolpaw, E. W. (2012). Brain-computer interfaces: Principles and practice. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195388855.001.0001 [156] Wu C.-T., Haggerty D., Kemere C., & Ji D. (2017). Hippocampal awake replay in fear memory retrieval.Nature Neuroscience,20(4), 571-580. https://doi.org/10.1038/nn.4507 [157] Xiao J., Provenza N. R., Asfouri J., Myers J., Mathura R. K., Metzger B.,… Sheth, S. A.(2023). Decoding depression severity from intracranial neural activity.Biological Psychiatry,942023.01.020 [158] Zhang J., Ou J., & Liu Y. (2025). Replay and ripples in humans.Annual Review of Neuroscience,48, 65-84. https://doi.org/10.1146/annurev-neuro-112723-024516 |
| [1] | 高可翔, 汤煜尧, 张岳瑶, 张丹丹. 内隐情绪调节的认知神经机制[J]. 心理科学进展, 2026, 34(1): 108-122. |
| [2] | 靳帅, 刘思佳, 李爽, 刘志远, 郭秀艳. 后悔情绪及其调节[J]. 心理科学进展, 2025, 33(12): 2182-2195. |
| [3] | 苑墨桐, 蔡雨霏, 孙宏伟, 李妍妍, 王亮. 幻觉的神经和计算机制[J]. 心理科学进展, 2025, 33(12): 2156-2167. |
| [4] | 陈兆劼, 王国芳. 从读脑到调脑:基于心理学视角的脑机接口神经调控应用与机制[J]. 心理科学进展, 2025, 33(10): 1745-1765. |
| [5] | 王勇丽, 葛胜男, Lancy Lantin Huang, 万勤, 卢海丹. 言语想象的神经机制[J]. 心理科学进展, 2023, 31(4): 608-621. |
| [6] | 冯廷勇, 张碧滢. 拖延行为的认知神经模型及干预[J]. 心理科学进展, 2023, 31(3): 350-359. |
| [7] | 孔祥祯, 张凤翔, 蒲艺. 空间导航的脑网络基础和调控机制[J]. 心理科学进展, 2023, 31(3): 330-337. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||