心理科学进展 ›› 2025, Vol. 33 ›› Issue (12): 2138-2155.doi: 10.3724/SP.J.1042.2025.2138 cstr: 32111.14.2025.2138
收稿日期:2025-03-03
出版日期:2025-12-15
发布日期:2025-10-27
通讯作者:
骆方, E-mail: Luof@bnu.edu.cn基金资助:
CHEN Yan, TIAN Xuetao, LUO Fang(
)
Received:2025-03-03
Online:2025-12-15
Published:2025-10-27
摘要:
空间导航是保证人们日常工作和生活有效运作的一项重要认知能力。随着虚拟现实技术(Virtual Reality, VR)的不断发展, 其与空间导航研究的适配性逐渐凸显。在当前技术条件下, 个体在VR中与在现实中的空间感知及行为表现尚存在一定差异, 研究人员应在新的技术环境下不断验证并更新其研究结果。基于VR设计空间导航测验, 首先要综合考虑设备的保真度以及受测者对设备的熟悉性与使用感受来选择合适的显示设备与移动技术; 其次应充分了解空间导航范式的设计逻辑, 通常包含“学习”和“测试”两个阶段, 并保证各阶段任务设计的科学性; 在设计场景与任务时, 应通过操控影响空间导航的环境因素来调节测验难度。鉴于虚拟现实测评工具的复杂性, 研究人员应从多个维度把控和评价测评工具的质量。
中图分类号:
陈彦, 田雪涛, 骆方. (2025). 面向空间导航能力的虚拟现实测验设计. 心理科学进展 , 33(12), 2138-2155.
CHEN Yan, TIAN Xuetao, LUO Fang. (2025). The design of virtual reality tests for spatial navigation ability. Advances in Psychological Science, 33(12), 2138-2155.
| 空间知识 | 任务名称 | 任务内容 |
|---|---|---|
| 地标知识 | 地标识别任务 (Landmark recognition task) | 依次呈现一系列照片, 要求受测者判断照片中的建筑或物体是否在先前学习的时候出现过(Stites et al., |
| 同时呈现两张照片, 一张是目标区域内的某个建筑或地点, 另一张是相似的干扰项, 要求受测者选择哪一张照片来自目标区域(Pullano et al., | ||
| 路径知识 | 路线重走任务 (Route repetition task) | 以第一人称视角将学习阶段走过的路线重走一遍(Muffato et al., |
| 路径知识任务 (Route knowledge task) | 以照片形式呈现由起点通往终点过程中的各段路径, 要求受测者将这些路径按照空间上的先后顺序进行排序(Pullano et al., | |
| 路径选择任务 (Path-route task) | 在某一位置让受测者从2或3个方向中选择, 通往目标地点的路径是哪个方向(van der Ham et al., | |
| 测绘知识 | 捷径任务(Shortcut task) | 要求受测者用最短的路径到达目标地点, 且最近的那条路线在学习阶段未曾直接走过 (He et al., |
| 指向任务(Pointing task)/方向估计任务(Direction estimation task) | 要求受测者站在(或是想象自己站在)某个位置, 指出无法直接看见的某个地标相较于当前位置所在的方向(He et al., | |
| 距离估计任务 (Distance estimation task) | 在一张空白纸上, 用一条标准线表示一定长度的实际距离(例如用2cm长的线段代表0.6km), 要求受测者参照标准线画一条线来表示其估计的两个指定地点间的距离(Ishikawa & Montello, | |
| 呈现三个地标, 要求受测者从俯瞰视角想象并判断其中哪两个地标的距离最近(van der Ham et al., | ||
| 地图绘制任务 (Map drawing task) | 要求受测者在一张空白纸上绘制先前学习过的某个空间的整体布局, 还原其中一些建筑和道路的位置(Ishikawa & Montello, | |
| 地图补全任务 (Map completion task) | 提供一张简化版的地图, 要求受测者将起点、终点、指定的建筑或路线补充完整(Stites et al., | |
| 测绘知识任务 (Survey knowledge task) | 在一张简化版地图上标注若干个区域, 同时在下方呈现若干张照片, 要求受测者将每张照片中的建筑所在的位置对应到地图上相应的区域内(Pullano et al., | |
| 建筑还原任务 (Model-building task) | 呈现一个空白平面和若干个建筑的俯视图, 要求受测者将每个建筑拖拽到空白平面上, 还原场景的空间布局(Pagkratidou et al., |
表1 三类空间知识对应的评估任务
| 空间知识 | 任务名称 | 任务内容 |
|---|---|---|
| 地标知识 | 地标识别任务 (Landmark recognition task) | 依次呈现一系列照片, 要求受测者判断照片中的建筑或物体是否在先前学习的时候出现过(Stites et al., |
| 同时呈现两张照片, 一张是目标区域内的某个建筑或地点, 另一张是相似的干扰项, 要求受测者选择哪一张照片来自目标区域(Pullano et al., | ||
| 路径知识 | 路线重走任务 (Route repetition task) | 以第一人称视角将学习阶段走过的路线重走一遍(Muffato et al., |
| 路径知识任务 (Route knowledge task) | 以照片形式呈现由起点通往终点过程中的各段路径, 要求受测者将这些路径按照空间上的先后顺序进行排序(Pullano et al., | |
| 路径选择任务 (Path-route task) | 在某一位置让受测者从2或3个方向中选择, 通往目标地点的路径是哪个方向(van der Ham et al., | |
| 测绘知识 | 捷径任务(Shortcut task) | 要求受测者用最短的路径到达目标地点, 且最近的那条路线在学习阶段未曾直接走过 (He et al., |
| 指向任务(Pointing task)/方向估计任务(Direction estimation task) | 要求受测者站在(或是想象自己站在)某个位置, 指出无法直接看见的某个地标相较于当前位置所在的方向(He et al., | |
| 距离估计任务 (Distance estimation task) | 在一张空白纸上, 用一条标准线表示一定长度的实际距离(例如用2cm长的线段代表0.6km), 要求受测者参照标准线画一条线来表示其估计的两个指定地点间的距离(Ishikawa & Montello, | |
| 呈现三个地标, 要求受测者从俯瞰视角想象并判断其中哪两个地标的距离最近(van der Ham et al., | ||
| 地图绘制任务 (Map drawing task) | 要求受测者在一张空白纸上绘制先前学习过的某个空间的整体布局, 还原其中一些建筑和道路的位置(Ishikawa & Montello, | |
| 地图补全任务 (Map completion task) | 提供一张简化版的地图, 要求受测者将起点、终点、指定的建筑或路线补充完整(Stites et al., | |
| 测绘知识任务 (Survey knowledge task) | 在一张简化版地图上标注若干个区域, 同时在下方呈现若干张照片, 要求受测者将每张照片中的建筑所在的位置对应到地图上相应的区域内(Pullano et al., | |
| 建筑还原任务 (Model-building task) | 呈现一个空白平面和若干个建筑的俯视图, 要求受测者将每个建筑拖拽到空白平面上, 还原场景的空间布局(Pagkratidou et al., |
| [1] |
张凤翔, 陈美璇, 蒲艺, 孔祥祯. (2023). 空间导航能力个体差异的多层次形成机制. 心理科学进展, 31(9), 1642-1664.
doi: 10.3724/SP.J.1042.2023.01642 |
| [2] |
Adamo D. E., Briceño E. M., Sindone J. A., Alexander N. B., & Moffat S. D. (2012). Age differences in virtual environment and real world path integration. Frontiers in Aging Neuroscience, 4, 26.
doi: 10.3389/fnagi.2012.00026 pmid: 23055969 |
| [3] |
Allison S. L., Fagan A. M., Morris J. C., & Head D. (2016). Spatial navigation in preclinical Alzheimer’s disease. Journal of Alzheimer’s Disease, 52(1), 77-90.
doi: 10.3233/JAD-150855 URL |
| [4] |
Allison S. L., Rodebaugh T. L., Johnston C., Fagan A. M., Morris J. C., & Head D. (2019). Developing a spatial navigation screening tool sensitive to the preclinical Alzheimer disease continuum. Archives of Clinical Neuropsychology, 34(7), 1138-1155. https://doi.org/10.1093/arclin/acz019
doi: 10.1093/arclin/acz019 URL pmid: 31197326 |
| [5] |
Bafna S. (2003). Space Syntax: A brief introduction to its logic and analytical techniques. Environment and Behavior, 35(1), 17-29. https://doi.org/10.1177/0013916502238863
doi: 10.1177/0013916502238863 URL |
| [6] |
Barton K. R., Valtchanov D., & Ellard C. (2014). Seeing beyond your visual field: The influence of spatial topology and visual field on navigation performance. Environment and Behavior, 46(4), 507-529. https://doi.org/10.1177/0013916512466094
doi: 10.1177/0013916512466094 URL |
| [7] |
Batty M., Morphet R., Masucci P., & Stanilov K. (2014). Entropy, complexity, and spatial information. Journal of Geographical Systems, 16(4), 363-385. https://doi.org/10.1007/s10109-014-0202-2
URL pmid: 25309123 |
| [8] |
Bayahya A. Y., Alhalabi W., & Alamri S. H. (2021). Smart health system to detect dementia disorders using virtual reality. Healthcare, 9(7), 810. https://doi.org/10.3390/healthcare9070810
doi: 10.3390/healthcare9070810 URL |
| [9] |
Beatini V., Cohen D., Di Tore S., Pellerin H., Aiello P., Sibilio M., & Berthoz A. (2024). Measuring perspective taking with the “virtual class” videogame: A child development study. Computers in Human Behavior, 151, 108012.
doi: 10.1016/j.chb.2023.108012 URL |
| [10] |
Bellassen V., Iglói K., de Souza L. C., Dubois B., & Rondi-Reig L. (2012). Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer’s disease diagnosis. Journal of Neuroscience, 32(6), 1942-1952.
doi: 10.1523/JNEUROSCI.4556-11.2012 pmid: 22323707 |
| [11] | Bhagavathula R., Williams B., Owens J., & Gibbons R. (2018). The reality of virtual reality: A comparison of pedestrian behavior in real and virtual environments. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 62(1), 2056-2060. https://doi.org/10.1177/1541931218621464 |
| [12] | Bierbrauer A., Kunz L., Gomes C. A., Luhmann M., Deuker L., Getzmann S., … Axmacher N. (2020). Unmasking selective path integration deficits in Alzheimer’s disease risk carriers. Science Advances, 6(35), eaba1394. |
| [13] | Boeing G. (2019). Urban spatial order: Street network orientation, configuration, and entropy. Applied Network Science, 4(1), Article 67. |
| [14] |
Botvinick M., & Cohen J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391(6669), 756-756. https://doi.org/10.1038/35784
doi: 10.1038/35784 URL |
| [15] |
Brookes J., Warburton M., Alghadier M., Mon-Williams M., & Mushtaq F. (2020). Studying human behavior with virtual reality: The Unity Experiment Framework. Behavior Research Methods, 52(2), 455-463. https://doi.org/10.3758/s13428-019-01242-0
doi: 10.3758/s13428-019-01242-0 URL pmid: 31012061 |
| [16] |
Brucato M., Frick A., Pichelmann S., Nazareth A., & Newcombe N. S. (2023). Measuring spatial perspective taking: Analysis of four measures using Item Response Theory. Topics in Cognitive Science, 15(1), 46-74. https://doi.org/10.1111/tops.12597
doi: 10.1111/tops.v15.1 URL |
| [17] |
Brunec I. K., Nantais M. M., Sutton J. E., Epstein R. A., & Newcombe N. S. (2023). Exploration patterns shape cognitive map learning. Cognition, 233, 105360.
doi: 10.1016/j.cognition.2022.105360 URL |
| [18] |
Bullens J., Iglói K., Berthoz A., Postma A., & Rondi-Reig L. (2010). Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 107(3), 337-350.
doi: 10.1016/j.jecp.2010.05.010 pmid: 20598705 |
| [19] | Burles F., Liu I., Hart C., Murias K., Graham S. A., & Iaria G. (2020). The emergence of cognitive maps for spatial navigation in 7-to 10-year-old children. Child Development, 91(3), e733-e744. |
| [20] |
Buttussi F., & Chittaro L. (2018). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063-1076. https://doi.org/10.1109/TVCG.2017.2653117
doi: 10.1109/TVCG.2017.2653117 URL |
| [21] |
Buttussi F., & Chittaro L. (2021). Locomotion in place in virtual reality: A comparative evaluation of joystick, teleport, and leaning. IEEE Transactions on Visualization and Computer Graphics, 27(1), 125-136. https://doi.org/10.1109/TVCG.2019.2928304
doi: 10.1109/TVCG.2945 URL |
| [22] |
Buttussi F., & Chittaro L. (2023). Acquisition and retention of spatial knowledge through virtual reality experiences: Effects of VR setup and locomotion technique. International Journal of Human-Computer Studies, 177, 103067. https://doi.org/10.1016/j.ijhcs.2023.103067
doi: 10.1016/j.ijhcs.2023.103067 URL |
| [23] |
Caffò A. O., De Caro M. F., Picucci L., Notarnicola A., Settanni A., Livrea P., Lancioni G. E., & Bosco A. (2012). Reorientation deficits are associated with amnestic mild cognitive impairment. American Journal of Alzheimer’s Disease and Other Dementias, 27(5), 321-330.
doi: 10.1177/1533317512452035 URL |
| [24] |
Caffò A. O., Lopez A., Spano G., Serino S., Cipresso P., Stasolla F., … Bosco A. (2018). Spatial reorientation decline in aging: The combination of geometry and landmarks. Aging and Mental Health, 22(10), 1372-1383. https://doi.org/10.1080/13607863.2017.1354973
doi: 10.1080/13607863.2017.1354973 URL |
| [25] |
Castegnaro A., Howett D., Li A., Harding E., Chan D., Burgess N., & King J. (2022). Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus, 32(9), 660-678. https://doi.org/10.1002/hipo.23458
doi: 10.1002/hipo.23458 URL pmid: 35916343 |
| [26] |
Chan H. M., Ding J., & Saunders J. A. (2023). Does viewing an environment without occluders improve spatial learning of a large-scale virtual environment? Journal of Environmental Psychology, 92, 102156. https://doi.org/10.1016/j.jenvp.2023.102156
doi: 10.1016/j.jenvp.2023.102156 URL |
| [27] |
Chang E., Kim H. T., & Yoo B. (2020). Virtual reality sickness: A review of causes and measurements. International Journal of Human-Computer Interaction, 36(17), 1658-1682.
doi: 10.1080/10447318.2020.1778351 URL |
| [28] |
Cherep L. A., Kelly J. W., Miller A., Lim A. F., & Gilbert S. B. (2022). Individual differences in teleporting through virtual environments. Journal of Experimental Psychology: Applied, 29(1), 111-123
doi: 10.1037/xap0000396 URL |
| [29] |
Cherep L. A., Lim A. F., Kelly J. W., Acharya D., Velasco A., Bustamante E., Ostrander A. G., & Gilbert S. B. (2020). Spatial cognitive implications of teleporting through virtual environments. Journal of Experimental Psychology: Applied, 26(3), 480-492. https://doi.org/10.1037/xap0000263
doi: 10.1037/xap0000263 URL |
| [30] |
Cogné M., Taillade M., N’Kaoua B., Tarruella A., Klinger E., Larrue F., … Sorita E. (2017). The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Annals of Physical and Rehabilitation Medicine, 60(3), 164-176.
doi: S1877-0657(16)00002-6 pmid: 27017533 |
| [31] |
Colmant L., Bierbrauer A., Bellaali Y., Kunz L., Van Dongen J., Sleegers K., … Hanseeuw B. (2023). Dissociating effects of aging and genetic risk of sporadic Alzheimer’s disease on path integration. Neurobiology of Aging, 131, 170-181.
doi: 10.1016/j.neurobiolaging.2023.07.025 pmid: 37672944 |
| [32] |
Colombo G., Minta K., Grübel J., Tai W. L. E., Hölscher C., & Schinazi V. R. (2024). Detecting cognitive impairment through an age-friendly serious game: The development and usability of the Spatial Performance Assessment for Cognitive Evaluation (SPACE). Computers in Human Behavior, 160, 108349. https://doi.org/10.1016/j.chb.2024.108349
doi: 10.1016/j.chb.2024.108349 URL |
| [33] |
Commins S., Duffin J., Chaves K., Leahy D., Corcoran K., Caffrey M., … Thornberry C. (2020). NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments. Behavior Research Methods, 52(3), 1189-1207. https://doi.org/10.3758/s13428-019-01310-5
doi: 10.3758/s13428-019-01310-5 URL pmid: 31637666 |
| [34] | Conroy R. (2001). Spatial navigation in immersive virtual environments. Istanbul Technical University. |
| [35] | Coughlan G., Coutrot A., Khondoker M., Minihane A. M., Spiers H., & Hornberger M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9285-9292. https://doi.org/10.1073/pnas.1901600116 |
| [36] |
Coughlan G., Laczó J., Hort J., Minihane A. M., & Hornberger M. (2018). Spatial navigation deficits — Overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496-506.
doi: 10.1038/s41582-018-0031-x pmid: 29980763 |
| [37] |
Coughlan G., Puthusseryppady V., Lowry E., Gillings R., Spiers H., Minihane A. M., & Hornberger M. (2020). Test-retest reliability of spatial navigation in adults at-risk of Alzheimer’s disease. PLoS ONE, 15(9), e0239077. https://doi.org/10.1371/journal.pone.0239077
doi: 10.1371/journal.pone.0239077 URL |
| [38] |
Coutrot A., Manley E., Goodroe S., Gahnstrom C., Filomena G., Yesiltepe D., … Spiers H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604(7904), 104-110.
doi: 10.1038/s41586-022-04486-7 |
| [39] | Coutrot A., Schmidt S., Coutrot L., Pittman J., Hong L., Wiener J. M., … Spiers H. J. (2019). Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PloS One, 14(3), e0213272. |
| [40] |
Cummings J. J., & Bailenson J. N. (2016). How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychology, 19(2), 272-309.
doi: 10.1080/15213269.2015.1015740 URL |
| [41] |
Cushman L. A., Stein K., & Duffy C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71(12), 888-895.
doi: 10.1212/01.wnl.0000326262.67613.fe pmid: 18794491 |
| [42] |
Da Costa R. Q. M., Pompeu J. E., Moretto E., Silva J. M., Dos Santos M. D., Nitrini R., & Brucki S. M. D. (2022). Two immersive virtual reality tasks for the assessment of spatial orientation in older adults with and without cognitive impairment: Concurrent validity, group comparison, and accuracy results. Journal of the International Neuropsychological Society, 28(5), 460-472. https://doi.org/10.1017/S1355617721000655
doi: 10.1017/S1355617721000655 URL |
| [43] |
Davis R., & Sikorskii A. (2020). Eye tracking analysis of visual cues during wayfinding in early stage Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 49(1), 91-97.
doi: 10.1159/000506859 URL |
| [44] | Diersch N., Wolbers T., el Jundi B., Kelber A., & Webb B. (2019). The potential of virtual reality for spatial navigation research across the adult lifespan. Journal of Experimental Biology, 222(Suppl_1), jeb 187252. |
| [45] |
Dong W., Qin T., Yang T., Liao H., Liu B., Meng L., & Liu Y. (2022). Wayfinding behavior and spatial knowledge acquisition: Are they the same in virtual reality and in real-world environments? Annals of the American Association of Geographers, 112(1), 226-246.
doi: 10.1080/24694452.2021.1894088 URL |
| [46] | Elmqvist N., Tudoreanu M. E., Tsigas P. (2008). Evaluating motion constraints for 3D wayfinding in immersive and desktop virtual environments. In: Proceeding of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing Systems - CHI’08 (pp. 1769-1778). ACM Press, New York. |
| [47] | Emo B., Hoelscher C., Wiener J., & Dalton R. (2012). Wayfinding and spatial configuration:Evidence from street corners. Proceedings of the 8th International Space Syntax Symposium (pp. 1-16). Santiago de Chile: PUC. |
| [48] |
Epstein R. A., Patai E. Z., Julian J. B., & Spiers H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504-1513.
doi: 10.1038/nn.4656 pmid: 29073650 |
| [49] |
Ewart I. J., & Johnson H. (2021). Virtual reality as a tool to investigate and predict occupant behaviour in the real world: The example of wayfinding. ITcon, 26, 286-302.
doi: 10.36680/j.itcon URL |
| [50] |
Farr A. C., Kleinschmidt T., Yarlagadda P., & Mengersen K. (2012). Wayfinding: A simple concept, a complex process. Transport Reviews, 32(6), 715-743. https://doi.org/10.1080/01441647.2012.712555
doi: 10.1080/01441647.2012.712555 URL |
| [51] |
Farran E. K., Purser H. R. M., Courbois Y., Balle M., Sockeel P., Mellier D., & Blades M. (2015). Route knowledge and configural knowledge in typical and atypical development: A comparison of sparse and rich environments. Journal of Neurodevelopmental Disorders, 7, 37.
doi: 10.1186/s11689-015-9133-6 pmid: 26870305 |
| [52] |
Feng Y., Duives D. C., & Hoogendoorn S. P. (2022). Wayfinding behaviour in a multi-level building: A comparative study of HMD VR and desktop VR. Advanced Engineering Informatics, 51, 101475.
doi: 10.1016/j.aei.2021.101475 URL |
| [53] |
Gagnon K. T., Thomas B. J., Munion A., Creem-Regehr S. H., Cashdan E. A., & Stefanucci J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108-117.
doi: S0010-0277(18)30173-2 pmid: 30015210 |
| [54] |
Galbraith C., Zetzsche C., Schill K., & Wolter J. (2009). Representation of space: Image-like or sensorimotor? Spatial Vision, 22(5), 409-424. https://doi.org/10.1163/156856809789476074
doi: 10.1163/156856809789476074 URL pmid: 19814904 |
| [55] |
García-Betances R. I., Arredondo Waldmeyer M. T., Fico G., & Cabrera-Umpiérrez M. F. (2015). A succinct overview of virtual reality technology use in Alzheimer's disease. Frontiers in Aging Neuroscience, 7, 80.
doi: 10.3389/fnagi.2015.00080 pmid: 26029101 |
| [56] | Gellersen H. M., Coughlan G., Hornberger M., & Simons J. S. (2021). Memory precision of object-location binding is unimpaired in APOE ϵ4-carriers with spatial navigation deficits. Brain Communications, 3(2), fcab087. https://doi.org/10.1093/braincomms/fcab087 |
| [57] | Grübel J., Thrash T., Hölscher C., & Schinazi V. R. (2017). Evaluation of a conceptual framework for predicting navigation performance in virtual reality. PLoS One, 12(9), e0184682. |
| [58] |
He C., Boone A. P., & Hegarty M. (2023). Measuring configural spatial knowledge: Individual differences in correlations between pointing and shortcutting. Psychonomic Bulletin & Review, 30(5), 1802-1813.
doi: 10.3758/s13423-023-02266-6 |
| [59] |
He Q., & Brown T. I. (2019a). Environmental barriers disrupt grid-like representations in humans during navigation. Current Biology, 29(16), 2718-2722.e3. https://doi.org/10.1016/j.cub.2019.06.072
doi: 10.1016/j.cub.2019.06.072 URL |
| [60] |
He Q., Han A. T., Churaman T. A., & Brown T. I. (2020). The role of working memory capacity in spatial learning depends on spatial information integration difficulty in the environment. Journal of Experimental Psychology: General, 150(4), 666-685.
doi: 10.1037/xge0000972 URL |
| [61] |
He Q., & McNamara T. P. (2018). Spatial updating strategy affects the reference frame in path integration. Psychonomic Bulletin & Review, 25(3), 1073-1079. https://doi.org/10.3758/s13423-017-1307-7
doi: 10.3758/s13423-017-1307-7 URL |
| [62] |
He Q., McNamara T. P., Bodenheimer B., & Klippel A. (2019c). Acquisition and transfer of spatial knowledge during wayfinding. Journal of Experimental Psychology. Learning, Memory, and Cognition, 45(8), 1364-1386. https://doi.org/10.1037/xlm0000654
doi: 10.1037/xlm0000654 URL |
| [63] |
He Q., McNamara T. P., & Brown T. I. (2019b). Manipulating the visibility of barriers to improve spatial navigation efficiency and cognitive mapping. Scientific Reports, 9(1), 11567. https://doi.org/10.1038/s41598-019-48098-0
doi: 10.1038/s41598-019-48098-0 URL |
| [64] |
Hegarty M., Richardson A. E., Montello D. R., Lovelace K., & Subbiah I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447.
doi: 10.1016/S0160-2896(02)00116-2 URL |
| [65] |
Hegarty M., He C., Boone A. P., Yu S., Jacobs E. G., & Chrastil E. R. (2023). Understanding differences in wayfinding strategies. Topics in Cognitive Science, 15(1), 102-119.
doi: 10.1111/tops.v15.1 URL |
| [66] | Hegarty M., & Waller D. A. (2005). Individual differences in spatial abilities. In P. Shah, & A. Miyake (Ed.), The Cambridge handbook of visuospatial thinking (pp. 121-169). Cambridge: Cambridge University Press. |
| [67] |
Horner A. J., Bisby J. A., Wang A., Bogus K., & Burgess N. (2016). The role of spatial boundaries in shaping long-term event representations. Cognition, 154, 151-164. https://doi.org/10.1016/j.cognition.2016.05.013
doi: S0010-0277(16)30128-7 URL pmid: 27295330 |
| [68] |
Ishikawa T. (2023). Individual differences and skill training in cognitive mapping: How and why people differ. Topics in Cognitive Science, 15(1), 163-186.
doi: 10.1111/tops.v15.1 URL |
| [69] |
Ishikawa T., & Montello D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93-129.
pmid: 16375882 |
| [70] |
Jensen L., & Konradsen F. (2018). A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23(4), 1515-1529.
doi: 10.1007/s10639-017-9676-0 URL |
| [71] |
Johanson C., Gutwin C., & Mandryk R. (2023). Trails, rails, and over-reliance: How navigation assistance affects route-finding and spatial learning in virtual environments. International Journal of Human-Computer Studies, 178, 103097. https://doi.org/10.1016/j.ijhcs.2023.103097
doi: 10.1016/j.ijhcs.2023.103097 URL |
| [72] | Kalantari S., Mostafavi A., Xu T. B., Lee A. S., & Yang Q. (2024). Comparing spatial navigation in a virtual environment vs. an identical real environment across the adult lifespan. Computers in Human Behavior, 157, Article 108210. https://doi.org/10.1016/j.chb.2024.108210 |
| [73] |
Kalantari S., & Neo J. R. J. (2020). Virtual environments for design research: Lessons learned from use of fully immersive virtual reality in interior design research. Journal of Interior Design, 45(3), 27-42.
doi: 10.1111/joid.12171 URL |
| [74] |
Kelly J. W., Ostrander A. G., Lim A. F., Cherep L. A., & Gilbert S. B. (2020). Teleporting through virtual environments: Effects of path scale and environment scale on spatial updating. IEEE Transactions on Visualization and Computer Graphics, 26(5), 1841-1850. https://doi.org/10.1109/TVCG.2020.2973051
doi: 10.1109/TVCG.2945 URL |
| [75] |
Kilteni K., Groten R., & Slater M. (2012). The sense of embodiment in virtual reality. Presence : Teleoperators and Virtual Environment, 21(4), 373-387. https://doi.org/10.1162/PRES_a_00124
doi: 10.1162/PRES_a_00124 URL |
| [76] |
Kim K., Rosenthal M. Z., Zielinski D. J., & Brady R. (2014). Effects of virtual environment platforms on emotional responses. Computer Methods and Programs in Biomedicine, 113(3), 882-893.
doi: 10.1016/j.cmpb.2013.12.024 pmid: 24440136 |
| [77] |
Kimura K., Reichert J. F., Olson A., Pouya O. R., Wang X., Moussavi Z., & Kelly D. M. (2017). Orientation in virtual reality does not fully measure up to the real-world. Scientific Reports, 7(1), 18109. https://doi.org/10.1038/s41598-017-18289-8
doi: 10.1038/s41598-017-18289-8 URL |
| [78] |
Konishi K., Joober R., Poirier J., MacDonald K., Chakravarty M., Patel R., Breitner J., & Bohbot V. D. (2018). Healthy versus entorhinal cortical atrophy identification in asymptomatic APOE4 carriers at risk for Alzheimer’s disease. Journal of Alzheimer’s Disease, 61(4), 1493-1507. https://doi.org/10.3233/JAD-170540
doi: 10.3233/JAD-170540 URL |
| [79] |
Krohn S., Tromp J., Quinque E. M., Belger J., Klotzsche F., Rekers S., … Thöne-Otto A. (2020). Multidimensional evaluation of virtual reality paradigms in clinical neuropsychology: Application of the VR-Check framework. Journal of Medical Internet Research, 22(4), e16724. https://doi.org/10.2196/16724
doi: 10.2196/16724 URL |
| [80] |
Kuliga S. F., Thrash T., Dalton R. C., & Hölscher C. (2015). Virtual reality as an empirical research tool — Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54, 363-375. https://doi.org/10.1016/j.compenvurbsys.2015.09.006
doi: 10.1016/j.compenvurbsys.2015.09.006 URL |
| [81] |
Kunz L., Navarro Schröder T., Lee H., Montag C., Lachmann B., Sariyska R., … Axmacher N. (2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science, 350(6259), 430-433. https://doi.org/10.1126/science.aac8128
doi: 10.1126/science.aac8128 URL |
| [82] |
Laczó M., Martinkovic L., Lerch O., Wiener J. M., Kalinova J., Matuskova V., … Laczó J. (2022). Different profiles of spatial navigation deficits in Alzheimer’s disease biomarker-positive versus biomarker-negative older adults with amnestic mild cognitive impairment. Frontiers in Aging Neuroscience, 14, 886778.
doi: 10.3389/fnagi.2022.886778 URL |
| [83] | Laczó M., Wiener J. M., Kalinova J., Matuskova V., Vyhnalek M., Hort J., & Laczó J. (2021). Spatial navigation and visuospatial strategies in typical and atypical aging. Brain Sciences, 11(11), 1421. |
| [84] | Ladouce S., Donaldson D. I., Dudchenko P. A., & Ietswaart M. (2017). Understanding minds in real-world environments: Toward a mobile cognition approach. Frontiers in Human Neuroscience, 10, 694-694. https://doi.org/10.3389/fnhum.2016.00694 |
| [85] | Langbehn E., Lubos P., Steinicke F. (2018). Evaluation of locomotion techniques for room-scale VR:Joystick, teleportation, and redirected walking. In: Proceedings of ACM Virtual Reality International Conference (VRIC’18). ACM, New York, NY, USA. https://doi.org/10.1145/3234253.3234291 |
| [86] |
Lapointe J.-F., Savard P., & Vinson N. G. (2011). A comparative study of four input devices for desktop virtual walkthroughs. Computers in Human Behavior, 27(6), 2186-2191. https://doi.org/10.1016/j.chb.2011.06.014
doi: 10.1016/j.chb.2011.06.014 URL |
| [87] |
Lawton C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11), 765-779.
doi: 10.1007/BF01544230 URL |
| [88] |
Lee J., Kho S., Yoo H. B., Park S., Choi J., Kwon J. S., Cha K. R., & Jung H.-Y. (2014). Spatial memory impairments in amnestic mild cognitive impairment in a virtual radial arm maze. Neuropsychiatric Disease and Treatment, 10, 653-660. https://doi.org/10.2147/NDT.S58185
doi: 10.2147/NDT.S58185 URL pmid: 24790448 |
| [89] |
Lesk V. E., Wan Shamsuddin S. N., Walters E. R., & Ugail H. (2014). Using a virtual environment to assess cognition in the elderly. Virtual Reality, 18(4), 271-279. https://doi.org/10.1007/s10055-014-0252-2
doi: 10.1007/s10055-014-0252-2 URL |
| [90] |
Lester A. W., Moffat S. D., Wiener J. M., Barnes C. A., & Wolbers T. (2017). The aging navigational system. Neuron, 95(5), 1019-1035.
doi: S0896-6273(17)30561-5 pmid: 28858613 |
| [91] |
Levine T. F., Allison S. L., Stojanovic M., Fagan A. M., Morris J. C., & Head D. (2020). Spatial navigation ability predicts progression of dementia symptomatology. Alzheimer’s and Dementia, 16(3), 491-500. https://doi.org/10.1002/alz.12031
doi: 10.1002/alz.v16.3 URL |
| [92] |
Li R., & Klippel A. (2016). Wayfinding behaviors in complex buildings: The impact of environmental legibility and familiarity. Environment and Behavior, 48(3), 482-510. https://doi.org/10.1177/0013916514550243
doi: 10.1177/0013916514550243 URL |
| [93] | Lim A. F., Kelly J. W., Sepich N. C., Cherep L. A., Freed G. C., & Gilbert S. B. (2020). Rotational self-motion cues improve spatial learning when teleporting in virtual environments. In: Proceedings of the 2020 ACM Symposium on spatial user interaction, SUI ’20 (pp. 1-7). ACM, New York, NY, USA. https://doi.org/10.1145/3385959.3418443 |
| [94] |
Liu C.-L. (2014). A study of detecting and combating cybersickness with fuzzy control for the elderly within 3d virtual stores. International Journal of Human-Computer Studies, 72(12), 796-804.
doi: 10.1016/j.ijhcs.2014.07.002 URL |
| [95] | Lloyd J., Persaud N. V., & Powell T. E. (2009). Equivalence of real-world and virtual-reality route learning: A pilot study. Journal of Cybertherapy and Rehabilitation, 12(4), 423-427. |
| [96] |
Loomis J. M., Klatzky R. L., Golledge R. G., Cicinelli J. G., Pellegrino J. W., & Fry P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General, 122(1), 73-91.
doi: 10.1037/0096-3445.122.1.73 URL |
| [97] | Lövdén M., Schellenbach M., Grossman-Hutter B., Krüger A. & Lindenberger U. (2005). Environmental topography and postural control demands shape aging-associated decrements in spatial navigation performance. Psychology & Aging, 20(4), 683-694. |
| [98] |
Marín-Morales J., Higuera-Trujillo J. L., De-Juan-Ripoll C., Llinares C., Guixeres J., Iñarra S., & Alcañiz M. (2019). Navigation comparison between a real and a virtual museum: Time-dependent differences using a head mounted display. Interacting with Computers, 31(2), 208-220. https://doi.org/10.1093/iwc/iwz018
doi: 10.1093/iwc/iwz018 URL |
| [99] | Marquardt G., & Schmieg P. (2009). Dementia-friendly architecture: Environments that facilitate wayfinding in nursing homes. American Journal of Alzheimer’s Disease & Other Dementias, 24(4), 333-340. https://doi.org/10.1177/1533317509334959 |
| [100] |
Maxim P., & Brown T. I. (2023). Toward an understanding of cognitive mapping ability through manipulations and measurement of schemas and stress. Topics in Cognitive Science, 15(1), 75-101.
doi: 10.1111/tops.v15.1 URL |
| [101] |
Meilinger T., Strickrodt M., & Bülthoff H. H. (2016). Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition, 155, 77-95. https://doi.org/10.1016/j.cognition.2016.06.003
doi: S0010-0277(16)30150-0 URL pmid: 27367592 |
| [102] | Migo E. M., O'Daly O., Mitterschiffthaler M., Antonova E., Dawson G. R., Dourish C. T., ... Morris R. G. (2016). Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI. Neuropsychol, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 23(2), 196-217. https://doi.org/10.1080/13825585.2015.1073218 |
| [103] |
Mohammadi A., Kargar M., & Hesami E. (2018). Using virtual reality to distinguish subjects with multiple- but not single-domain amnestic mild cognitive impairment from normal elderly subjects. Psychogeriatrics, 18(2), 132-142. https://doi.org/10.1111/psyg.12301
doi: 10.1111/psyg.12301 URL pmid: 29409155 |
| [104] |
Mokkink L. B., de Vet H. C. W., Prinsen C. A. C., Patrick D. L., Alonso J., Bouter L. M., & Terwee C. B. (2018). COSMIN risk of bias checklist for systematic reviews of patient-reported outcome measures. Quality of Life Research, 27(5), 1171-1179. https://doi.org/10.1007/s11136-017-1765-4
doi: 10.1007/s11136-017-1765-4 URL pmid: 29260445 |
| [105] | Montello D. R. (2005). Navigation. In P. Shah, & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 257-294). New York: Cambridge University Press. |
| [106] |
Moon H.-J., Gauthier B., Park H.-D., Faivre N., & Blanke O. (2022). Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex. Communications Biology, 5(1), 406-406. https://doi.org/10.1038/s42003-022-03361-5
doi: 10.1038/s42003-022-03361-5 URL |
| [107] |
Morganti F., Stefanini S., & Riva G. (2013). From allo- to egocentric spatial ability in early Alzheimer’s disease: A study with virtual reality spatial tasks. Cognitive Neuroscience, 4(3-4), 171-180.
doi: 10.1080/17588928.2013.854762 URL |
| [108] |
Moussavi Z., Kimura K., & Lithgow B. (2022). Egocentric spatial orientation differences between Alzheimer’s disease at early stages and mild cognitive impairment: A diagnostic aid. Medical and Biological Engineering and Computing, 60(2), 501-509. https://doi.org/10.1007/s11517-021-02478-9
doi: 10.1007/s11517-021-02478-9 URL |
| [109] |
Muffato V., Meneghetti C., & de Beni R. (2016). Not all is lost in older adults' route learning? The role of visuo- spatial abilities and type of task. Journal of Environmental Psychology, 47, 230-241.
doi: 10.1016/j.jenvp.2016.07.003 URL |
| [110] |
Murias K., Kwok K., Castillejo A. G., Liu I., & Iaria G. (2016). The effects of video game use on performance in a virtual navigation task. Computers in Human Behavior, 58, 398-406.
doi: 10.1016/j.chb.2016.01.020 URL |
| [111] | Muryy A. & Glennerster A. (2018). Pointing errors in non-metric virtual environments. In CreemRegehr, S. et al. (Eds.), Spatial Cognition XI (pp. 43-57). Springer. |
| [112] | Muryy A., & Glennerster A. (2018). Pointing errors in non-metric virtual environments. Cold Spring Harbor: https://doi.org/10.1101/273532 |
| [113] |
Natapov A., Kuliga S., Dalton R. C., & Holscher C. (2020). Linking building-circulation typology and wayfinding: Design, spatial analysis, and anticipated wayfinding difficulty of circulation types. Architectural Science Review, 63(1), 34-46. https://doi.org/10.1080/00038628.2019.1675041
doi: 10.1080/00038628.2019.1675041 URL |
| [114] | Newcombe N. S. (2018). Individual variation in human navigation. Current Biology, 28(17), R1004-R1008. |
| [115] |
Newcombe N. S., Hegarty M., & Uttal D. (2023). Building a cognitive science of human variation: Individual differences in spatial navigation. Topics in Cognitive Science, 15(1), 6-14.
doi: 10.1111/tops.v15.1 URL |
| [116] |
Nori R., Zucchelli M. M., Palmiero M., & Piccardi L. (2023). Environmental cognitive load and spatial anxiety: What matters in navigation? Journal of Environmental Psychology, 88, 102032.
doi: 10.1016/j.jenvp.2023.102032 URL |
| [117] |
Pagkratidou M., Galati A., & Avraamides M. (2020). Do environmental characteristics predict spatial memory about unfamiliar environments? Spatial Cognition and Computation, 20(1), 1-32.
doi: 10.1080/13875868.2019.1676248 |
| [118] |
Pan X., & de C Hamilton A. F. (2018). Why and how to use virtual reality to study human social interaction: The challenges of exploring a new research landscape. British Journal of Psychology, 109(3), 395-417. https://doi.org/10.1111/bjop.12290
doi: 10.1111/bjop.12290 URL pmid: 29504117 |
| [119] |
Parizkova M., Lerch O., Moffat S. D., Andel R., Mazancova A. F., Nedelska Z., … Laczó J. (2018). The effect of Alzheimer’s disease on spatial navigation strategies. Neurobiology of Aging, 64, 107-115. https://doi.org/10.1016/j.neurobiolaging.2017.12.019
doi: S0197-4580(17)30416-5 URL pmid: 29358117 |
| [120] |
Park J. H. (2022). Can the virtual reality-based spatial memory test better discriminate mild cognitive impairment than neuropsychological assessment? International Journal of Environmental Research and Public Health, 19(16), 9950. https://doi.org/10.3390/ijerph19169950
doi: 10.3390/ijerph19169950 URL |
| [121] |
Park J. L., Dudchenko P. A., & Donaldson D. I. (2018). Navigation in real-world environments: New opportunities afforded by advances in mobile brain imaging. Frontiers in Human Neuroscience, 12, 361. https://doi.org/10.3389/fnhum.2018.00361
doi: 10.3389/fnhum.2018.00361 URL pmid: 30254578 |
| [122] |
Peer M., Brunec I. K., Newcombe N. S., & Epstein R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37-54.
doi: 10.1016/j.tics.2020.10.004 pmid: 33248898 |
| [123] |
Penelope A., & Emmanuel F. (2022). A scoping review of the educational uses of 6DoF HMDs. Virtual Reality, 26(1), 205-222. https://doi.org/10.1007/s10055-021-00556-9
doi: 10.1007/s10055-021-00556-9 URL |
| [124] | Pink D., Ilkel E., Chandreswaran V., Moser D., Getzmann S., Patrick G., Axmacher N., & Zhang H. (2023). Modeling the impact of genotype, age, sex, and continuous navigation on pathway integration performance. BioRxiv. https://doi.org/10.1101/2023.09.11.556925 |
| [125] |
Plaza-Rosales I., Brunetti E., Montefusco-Siegmund R., Madariaga S., Hafelin R., Ponce D. P., Behrens M. I., Maldonado P. E., & Paula-Lima A. (2023). Visual-spatial processing impairment in the occipital-frontal connectivity network at early stages of Alzheimer’s disease. Frontiers in Aging Neuroscience, 15, 1097577. https://doi.org/10.3389/fnagi.2023.1097577
doi: 10.3389/fnagi.2023.1097577 URL |
| [126] |
Pullano L., Foti F., Liuzza M. T., & Palermo L. (2024). The role of place attachment and spatial anxiety in environmental knowledge. Journal of Environmental Psychology, 94, 102229.
doi: 10.1016/j.jenvp.2024.102229 URL |
| [127] |
Puthusseryppady V., Morrissey S., Spiers H., Patel M., & Hornberger M. (2022). Predicting real world spatial disorientation in Alzheimer’s disease patients using virtual reality navigation tests. Scientific Reports, 12(1), 13397. https://doi.org/10.1038/s41598-022-17634-w
doi: 10.1038/s41598-022-17634-w URL |
| [128] |
Ragan E. D., Bowman D. A., Kopper R., Stinson C., Scerbo S., & McMahan R. P. (2015). Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Transactions on Visualization and Computer Graphics, 21(7), 794-807.
doi: 10.1109/TVCG.2015.2403312 URL |
| [129] |
Ranjbar Pouya O., Byagowi A., Kelly D. M., & Moussavi Z. (2017). Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task. Quarterly Journal of Experimental Psychology, 70(7), 1406-1419.
doi: 10.1080/17470218.2016.1187181 URL |
| [130] |
Richardson A. E., Montello D. R., & Hegarty M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741-750.
doi: 10.3758/BF03211566 URL |
| [131] |
Richardson A. E., Powers M. E., & Bousquet L. G. (2011). Video game experience predicts virtual, but not real navigation performance. Computers in Human Behavior, 27(1), 552-560.
doi: 10.1016/j.chb.2010.10.003 URL |
| [132] | Richter K.-F. (2009). Adaptable path planning in regionalized environments. In K. S. Hornsby, C. Claramunt, M. Denis, & G. Ligozat (Eds.), Spatial information theory (pp. 453-470). Heidelberg: Springer Berlin Heidelberg. |
| [133] | Riecke B. E., Bodenheimer B., McNamara T. P., Williams B., Peng P., & Feuereissen D. (2010). Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In Hölscher, C., Shipley, T. F., Olivetti Belardinelli, M., Bateman, J. A., Newcombe, N. S. (Eds.), Spatial Cognition VII (pp. 234-247). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14749-4_21 |
| [134] |
Ritchie K., Carrière I., Howett D., Su L., Hornberger M., O’Brien J. T., Ritchie C. W., & Chan D. (2018). Allocentric and egocentric spatial processing in middle-aged adults at high risk of late-onset Alzheimer’s disease: The PREVENT dementia study. Journal of Alzheimer’s Disease, 65(3), 885-896. https://doi.org/10.3233/JAD-180432
doi: 10.3233/JAD-180432 URL |
| [135] | Rodgers M. K., Sindone III J. A., & Moffat S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33(1), 202.e215-202.e222. |
| [136] |
Ruddle R. A., Payne S. J., & Jones D. M. (2014). Navigating large-scale virtual environments: What differences occur between helmet-mounted and desk-top displays? Presence, 8(2), 157-168.
doi: 10.1162/105474699566143 URL |
| [137] | Ruddle R. A., Volkova E., & Bülthoff H. H. (2013). Learning to walk in virtual reality. ACM Transactions on Applied Perception, 10(2), 1-17. https://doi.org/10.1145/2465780.2465785 |
| [138] |
Ruddle R. A., Volkova E., Mohler B., & Bülthoff H. H. (2011). The effect of landmark and body-based sensory information on route knowledge. Memory & Cognition, 39(4), 686-699. https://doi.org/10.3758/s13421-010-0054-z
doi: 10.3758/s13421-010-0054-z URL |
| [139] |
Sánchez-Escudero J. P., Galvis-Herrera A., Sánchez- Trujillo D., Torres-López L. C., Kennedy C. J., Aguirre- Acevedo D., Garcia-Barrera M., & Trujillo N. (2024). Virtual reality and serious videogame-based instruments for assessing spatial navigation in alzheimer’s disease: A systematic review of psychometric properties. Neuropsychology Review, 35(1), 77-101.
doi: 10.1007/s11065-024-09633-7 |
| [140] | Sanchez-Vives M. V., & Slater M. (2005). From presence to consciousness through virtual reality. Nature Reviews. Neuroscience, 6(4), 332-339. https://doi.org/10.1038/nrn1651 |
| [141] | Savino G.-L., Emanuel N., Kowalzik S., Kroll F., Lange M. C., Laudan M., … Schmeißer M. (2019). Comparing pedestrian navigation methods in virtual reality and real life. 2019 International Conference on Multimodal Interaction. (pp.16-25). Suzhou, China |
| [142] | Schäfer S., Huxhold O., & Lindenberger U. (2006). Healthy mind in healthy body? A review of sensorimotor- cognitive interdependencies in old age. European Review of Aging & Physical Activity, 3(2), 45-54. |
| [143] |
Schellenbach M., Lövdén M., Verrel J., Krüger A., & Lindenberger U. (2010). Adult age differences in familiarization to treadmill walking within virtual environments. Gait & Posture, 31(3), 295-299.
doi: 10.1016/j.gaitpost.2009.11.008 URL |
| [144] | Serino S., Morganti F., Colombo D., & Riva G. (2018). The contribution of allocentric impairments to the cognitive decline in Alzheimer’s disease. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 253, 84-91. https://doi.org/10.1007/978-3-030-01093-5_11 |
| [145] | Serino S., Morganti F., Di Stefano F., & Riva G. (2015). Detecting early egocentric and allocentric impairments deficits in Alzheimer’s disease: An experimental study with virtual reality. Frontiers in Aging Neuroscience, 7, 88. https://doi.org/10.3389/fnagi.2015.00088 |
| [146] |
Shi Y., Kang J., Xia P., Tyagi O., Mehta R. K., & Du J. (2021). Spatial knowledge and firefighters’ wayfinding performance: A virtual reality search and rescue experiment. Safety Science, 139, 105231. https://doi.org/10.1016/j.ssci.2021.105231
doi: 10.1016/j.ssci.2021.105231 URL |
| [147] |
Siegel A. W., & White S. H. (1975). The development of spatial representations of large-scale environments. Advances in Child Development and Behavior, 10, 9-55.
pmid: 1101663 |
| [148] |
Slone E., Burles F., & Iaria G. (2016). Environmental layout complexity affects neural activity during navigation in humans. European Journal of Neuroscience, 43(9), 1146-1155. https://doi.org/10.1111/ejn.13218
doi: 10.1111/ejn.13218 URL pmid: 26990572 |
| [149] |
Sophia R., & Carsten F. (2024). Translating spatial navigation evaluation from experimental to clinical settings: The virtual environments navigation assessment (VIENNA). Behavior Research Methods, 56(3), 2033-2048.
doi: 10.3758/s13428-023-02134-0 |
| [150] |
Sousa Santos B., Dias P., Pimentel A., Baggerman J., Ferreira C., Silva S., & Madeira J. (2009). Head- mounted display versus desktop for 3D navigation in virtual reality: A user study. Multimedia Tools and Applications, 41(1), 161-181. https://doi.org/10.1007/s11042-008-0223-2
doi: 10.1007/s11042-008-0223-2 URL |
| [151] | Spanlang B., Normand J.-M., Borland D., Kilteni K., Giannopoulos E., Pomés A, Slater M. (2014). How to build an embodiment lab: Achieving body representation illusions in virtual reality. Frontiers in Robotics and AI, 1. https://doi.org/10.3389/frobt.2014.00009 |
| [152] |
Spiers H. J., Coutrot A., & Hornberger M. (2023). Explaining world-wide variation in navigation ability from millions of people: Citizen science project Sea Hero Quest. Topics in Cognitive Science, 15(1), 120-138. https://doi.org/10.1111/tops.12590
doi: 10.1111/tops.v15.1 URL |
| [153] | Stites M. C., Matzen L. E., & Gastelum Z. N. (2020). Where are we going and where have we been? Examining the effects of maps on spatial learning in an indoor guided navigation task. Cognitive Research: Principles and Implications, 5(1), 13. |
| [154] |
Tarnanas I., Laskaris N., & Tsolaki M. (2012). On the comparison of VR-responses, as performance measures in prospective memory, with auditory P300 responses in MCI detection. Studies in Health Technology and Informatics, 181, 156-161.
pmid: 22954847 |
| [155] |
Tarnanas I., Papagiannopoulos S., Kazis D., Wiederhold M., Widerhold B., & Tsolaki M. (2015). Reliability of a novel serious game using dual-task gait profiles to early characterize aMCI. Frontiers in Aging Neuroscience, 7, 50. https://doi.org/10.3389/fnagi.2015.00050
doi: 10.3389/fnagi.2015.00050 URL pmid: 25954193 |
| [156] |
Tarr M. J., & Warren W. H. (2002). Virtual reality in behavioral neuroscience and beyond. Nature Neuroscience, 5(Suppl 11), 1089-1092.
doi: 10.1038/nn948 |
| [157] | Templeman J. N., Denbrook P. S., & Sibert L. E. (1999). Virtual locomotion: Walking in place through virtual environments. Presence Teleoperators & Virtual Environments, 8(6), 598-617. |
| [158] |
Thornberry C., Cimadevilla J. M., & Commins S. (2021). Virtual Morris water maze: Opportunities and challenges. Reviews in the Neurosciences, 32(8), 887-903.
doi: 10.1515/revneuro-2020-0149 pmid: 33838098 |
| [159] |
Thrash T., Kapadia M., Moussaid M., Wilhelm C., Helbing D., & Sumner R. W. (2015). Evaluation of control interfaces for desktop virtual environments. Presence: Teleoperators and Virtual Environments, 24(4), 322-334.
doi: 10.1162/PRES_a_00237 URL |
| [160] | Uttal D. H., McKee K., Simms N., Hegarty M., & Newcombe N. S. (2024). How can we best assess spatial skills? Practical and conceptual challenges. Journal of Intelligence, 12(1), 8. |
| [161] | van der Ham, I. J. M., Claessen, M. H., G., Evers, A. W. M., & van der Kuil, M. N. A. (2020). Large-scale assessment of human navigation ability across the lifespan. Scientific Reports, 10(1), 3299. |
| [162] |
van der Ham, I. J. M., Faber, A. M. E., Venselaar, M., van Kreveld, M. J., & Löffler, M. (2015). Ecological validity of virtual environments to assess human navigation ability. Frontiers in Psychology, 6, 637. https://doi.org/10.3389/fpsyg.2015.00637
doi: 10.3389/fpsyg.2015.00637 URL pmid: 26074831 |
| [163] |
Vass L. K., Copara M. S., Seyal M., Shahlaie K., Farias S. T., Shen P. Y., & Ekstrom A. D. (2016). Oscillations go the distance: Low-frequency human hippocampal oscillations code spatial distance in the absence of sensory cues during teleportation. Neuron, 89(6), 1180-1186.
doi: S0896-6273(16)00092-1 pmid: 26924436 |
| [164] |
Ventura M., Shute V., Wright T., & Zhao W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4, 852-852. https://doi.org/10.3389/fpsyg.2013.00852
doi: 10.3389/fpsyg.2013.00852 URL pmid: 24379790 |
| [165] |
Warren W. H., Rothman D. B., Schnapp B. H., & Ericson J. D. (2017). Wormholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 166, 152-163. https://doi.org/10.1016/j.cognition.2017.05.020
doi: S0010-0277(17)30137-3 URL pmid: 28577445 |
| [166] |
Weisberg S. M., & Newcombe N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 768-785.
doi: 10.1037/xlm0000200 URL |
| [167] |
Weisberg S. M., Schinazi V. R., Newcombe N. S., Shipley T. F., & Epstein R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669-682.
doi: 10.1037/a0035261 URL |
| [168] |
Wiener J. M., Carroll D., Moeller S., Bibi I., Ivanova D., Allen P., & Wolbers T. (2020). A novel virtual-reality- based route-learning test suite: Assessing the effects of cognitive aging on navigation. Behavior Research Methods, 52(2), 630-640. https://doi.org/10.3758/s13428-019-01264-8
doi: 10.3758/s13428-019-01264-8 URL pmid: 31236900 |
| [169] |
Wolbers T., & Hegarty M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138-146.
doi: 10.1016/j.tics.2010.01.001 pmid: 20138795 |
| [170] |
Xie Y., Bigelow R. T., Frankenthaler S. F., Studenski S. A., Moffat S. D., & Agrawal Y. (2017). Vestibular loss in older adults is associated with impaired spatial navigation: Data from the triangle completion task. Frontiers in Neurology, 8, 173.
doi: 10.3389/fneur.2017.00173 pmid: 28496432 |
| [171] |
Yang Q., & Kalantari S. (2024). Real-time continuous perceived uncertainty annotation for spatial navigation studies in buildings. Journal of Building Engineering, 82, 108250.
doi: 10.1016/j.jobe.2023.108250 URL |
| [172] |
Yesiltepe D., Fernández Velasco P., Coutrot A., Ozbil Torun A., Wiener J. M., Holscher C., … Spiers H. J. (2023). Entropy and a sub-group of geometric measures of paths predict the navigability of an environment. Cognition, 236, 105443-105443. https://doi.org/10.1016/j.cognition.2023.105443
doi: 10.1016/j.cognition.2023.105443 URL |
| [173] | Zen D., Byagowi A., Garcia M., Kelly D., Lithgow B., & Moussavi Z. (2013). The perceived orientation in people with and without Alzheimer's. In 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) (pp. 460-463). IEEE. https://doi.org/10.1109/ner.2013.6695971 |
| [1] | 邓年奇, 唐一凡, 范秀成, 蒋欣羽. 虚拟现实服务中具身参与对数字共情的影响[J]. 心理科学进展, 2025, 33(7): 1140-1154. |
| [2] | 薛笑然, 崔伟, 张丽. 空间导航能力性别差异的三水平元分析[J]. 心理科学进展, 2025, 33(5): 843-862. |
| [3] | 昌思琴, 黄辰, 戴元富, 蒋长好. VR训练对轻度认知障碍老年人认知功能的影响及神经机制[J]. 心理科学进展, 2025, 33(2): 322-335. |
| [4] | 韩明, 蒯曙光. 面向心理学的虚拟现实实验开发工具[J]. 心理科学进展, 2024, 32(11): 1800-1813. |
| [5] | 胡逸斐, 周晨, 缪明诚, 蒯曙光. 他们是一组吗:共同注意社会交互群组知觉的认知启发模型[J]. 心理科学进展, 2019, 27(suppl.): 136-136. |
| [6] | 刘泽民, 陈宥辛. 遮蔽周边视力对虚拟现实中视觉诱导晕动症的影响[J]. 心理科学进展, 2019, 27(suppl.): 16-16. |
| [7] | 张家鑫, 海拉干, 李会杰. 空间导航的测量及其在认知老化中的应用[J]. 心理科学进展, 2019, 27(12): 2019-2033. |
| [8] | 赵佩琼, 陈巍, 张静, 平贤洁. 橡胶手错觉:拥有感研究的实验范式及其应用[J]. 心理科学进展, 2019, 27(1): 37-50. |
| [9] | 林弋琪, 王希, 彭凯平, 倪士光. 虚拟现实技术与自闭症谱系障碍治疗:科技新希望[J]. 心理科学进展, 2018, 26(3): 518-526. |
| [10] | 陈静, 孙伟, 翟广涛, 李黎. 分离光流信息与形状信息对个体朝向目标行进的影响[J]. 心理科学进展, 2017, 25(suppl.): 30-30. |
| [11] | 李明英, 吴惠宁, 蒯曙光, 张畅芯. 虚拟现实技术在执行功能评估中的应用[J]. 心理科学进展, 2017, 25(6): 933-942. |
| [12] | 王广新;李立. 焦虑障碍的虚拟现实暴露疗法研究述评[J]. 心理科学进展, 2012, 20(8): 1277-1286. |
| [13] | 郑霞; SAUZEON Hélène; 周明全; N’KAOUA Bernard. 虚拟现实技术应用于神经心理评估的研究概述[J]. 心理科学进展, 2010, 18(3): 511-521. |
| [14] | 郭建恩,许百华,吴旭晓. 国外隐喻的理论研究与实践应用[J]. 心理科学进展, 2004, 12(4): 615-621. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||