心理科学进展 ›› 2025, Vol. 33 ›› Issue (5): 843-862.doi: 10.3724/SP.J.1042.2025.0843
薛笑然1, 崔伟1, 张丽2
收稿日期:
2024-10-10
出版日期:
2025-05-15
发布日期:
2025-03-20
基金资助:
XUE Xiaoran1, CUI Wei1, ZHANG Li2
Received:
2024-10-10
Online:
2025-05-15
Published:
2025-03-20
摘要: 空间导航是不可或缺的基本认知能力, 尽管已有大量研究探讨其性别差异, 但关于差异的存在和大小尚无定论。本研究对173项研究(总样本量N = 26604)和372个独立效应量进行三水平元分析, 结果表明, 大多数条件下男性的空间导航能力强于女性, 但性别差异受年龄、表征方式、时间限制、任务环境、测试场景、辅+助装备的调节, 在婴幼儿期、成年晚期的人群中, 以及室内-室外双重测试和无辅助设备条件下, 空间导航能力的性别差异不显著。本研究明确了空间导航能力的性别差异及其调节因素, 为教育实践中缩小性别差异提供了参考。
中图分类号:
薛笑然, 崔伟, 张丽. (2025). 空间导航能力性别差异的三水平元分析. 心理科学进展 , 33(5), 843-862.
XUE Xiaoran, CUI Wei, ZHANG Li. (2025). A three-level meta-analysis of gender differences in spatial navigation ability. Advances in Psychological Science, 33(5), 843-862.
*为元分析中使用的文献 [1] *方浩, 宋章通, 杨流, 马义涛, 秦前清. (2019). VR移动城市导航地图设计中的空间认知要素.武汉大学学报: 信息科学版, 44(8), 1124-1130. [2] *房慧聪. (2012). 空间焦虑与导航方式对寻路行为的影响.心理与行为研究, 10(6), 413-418. [3] *房慧聪, 周琳. (2012). 大学生寻路策略与空间焦虑的关系.人类工效学, 18(4), 57-60. [4] *高雪原, 董卫华, 童依依, 崔迪扬. (2016). 场认知方式、性别和惯用空间语对地理空间定向能力影响的实验研究.地球信息科学学报, 18(11), 1513-1521. [5] *李义双, 冯成志, 史新广. (2021). 虚拟三维场景下视听觉地标导航作用差异.人类工效学, 27(2), 27-32. [6] *王芳芳, 梁雪, 刘任远, 武文博, 吴思楚, 陆加明, .. 张冰. (2017). 年轻人海马亚区体积与空间导航的相关性研究.中国CT和MRI杂志, 15(5), 1-4. [7] 王琳, 王亮. (2017). 认知地图的神经环路基础.生物化学与生物物理进展, 44(3), 187-197. [8] *应申, 庄园, 黄丽娜, 陈乃镔, 张雯博. (2020). 性别和认知差异对三维空间寻路结果的影响.武汉大学学报: 信息科学版, 45(3), 317-324. [9] *赵梦雅, 肖承丽. (2019). 大尺度真实环境中多种空间任务的性别差异比较——以商场和办公楼为例.心理研究, 12(3), 262-271. [10] *Acevedo S. F., Piper B. J., Craytor M. J., Benice T. S., & Raber J. (2010). Apolipoprotein E4 and sex affect neurobehavioral performance in primary school children.Pediatric Research, 67(3), 293-299. [11] *Adhanom I. B., Al-Zayer M., Macneilage P., & Folmer E. (2021). Field-of-view restriction to reduce VR sickness does not impede spatial learning in women.ACM Transactions on Applied Perception, 18(2), 1-17. [12] *Allison C., Redhead E. S., & Chan W. (2017). Interaction of task difficulty and gender stereotype threat with a spatial orientation task in a virtual nested environment.Learning and Motivation, 57, 22-35. [13] Amoo E. O., Adekola P. O., Oladosun M., & Ajayi M. P. (2019). Science, technology and poverty eradication: Any connection with demography.International Journal of Civil Engineering and Technology, 10(2), 231-243. [14] Andersen N. E., Dahmani L., Konishi K., & Bohbot V. D. (2012). Eye tracking, strategies, and sex differences in virtual navigation.Neurobiology of Learning and Memory, 97(1), 81-89. [15] Arnold A. E. G. F., Burles F., Krivoruchko T., Liu I., Rey C. D., Levy R. M., & Iaria G. (2013). Cognitive mapping in humans and its relationship to other orientation skills.Experimental Brain Research, 224(3), 359-372. [16] Assink, M., & Wibbelink, C. J. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial.The Quantitative Methods for Psychology, 12(3), 154-174. [17] *Astur R. S., Purton A. J., Zaniewski M. J., Cimadevilla J., & Markus E. J. (2016). Human sex differences in solving a virtual navigation problem.Behavioural Brain Research, 308, 236-243. [18] Barkley, C. L., & Gabriel, K. I. (2007). Sex differences in cue perception in a visual scene: Investigation of cue type.Behavioral Neuroscience, 121(2), 291-300. [19] Bartlett, K. A., & Camba, J. D. (2023). Gender differences in spatial ability: A critical review. Educational Psychology Review, 35(1), Article e8. https://doi.org/10.1007/s10648-023-09728-2 [20] *Bernal, A., Mateo-Martínez, R., & Paolieri, D.(2020). Influence of sex, menstrual cycle, and hormonal contraceptives on egocentric navigation with or without landmarks. Psychoneuroendocrinology, 120, Article e104768. https://doi.org/10.1016/j.psyneuen.2020.104768 [21] Berry, T., & Wilkins, J. (2017). The gendered portrayal of inanimate characters in children’s books. Journal of Children’s Literature, 43(2), 4-15. [22] *Berteau-Pavy F., Park B., & Raber J. (2007). Effects of sex and APOE ε4 on object recognition and spatial navigation in the elderly.Neuroscience, 147(1), 6-17. [23] *Bocchi A., Palermo L., Boccia M., Palmiero M., D’Amico S., & Piccardi L. (2020). Object recognition and location: Which component of object location memory for landmarks is affected by gender? Evidence from four to ten year-old children.Applied Neuropsychology: Child, 9(1), 31-40. [24] *Bocchi A., Palmiero M., Redondo J. M. C., Tascón L., Nori R., & Piccardi L. (2021). The role of gender and familiarity in a modified version of the Almeria Boxes Room Spatial Task. Brain Sciences, 11(6), Article e681. https://doi.org/10.3390/brainsci11060681 [25] *Boccia, M., Vecchione, F., Piccardi, L., & Guariglia, C.(2017). Effect of cognitive style on learning and retrieval of navigational environments. Frontiers in Pharmacology, 8, Article e496. https://doi.org/10.3389/fphar.2017.00496 [26] *Boone A. P., Gong X., & Hegarty M. (2018). Sex differences in navigation strategy and efficiency.Memory and Cognition, 46(6), 909-922. [27] *Boone A. P., Maghen B., & Hegarty M. (2019). Instructions matter: Individual differences in navigation strategy and ability.Memory and Cognition, 47(7), 1401-1414. [28] *Brucato M., Nazareth A., & Newcombe N. S. (2022). Longitudinal development of cognitive mapping from childhood to adolescence. Journal of Experimental Child Psychology, 219, Article e105412. [29] *Brunswick N., Martin G. N., & Marzano L. (2010). Visuospatial superiority in developmental dyslexia: Myth or reality?Learning and Individual Differences, 20(5), 421-426. [30] *Buckley, M. G., & Bast, T. (2018). A new human delayed- matching-to-place test in a virtual environment reverse- translated from the rodent watermaze paradigm: Characterization of performance measures and sex differences.Hippocampus, 28(11), 796-812. [31] Burg, A. (1968). Lateral visual field as related to age and sex.Journal of Applied Psychology, 52, 10-15. [32] *Burkitt J., Widman D., & Saucier D. M. (2007). Evidence for the influence of testosterone in the performance of spatial navigation in a virtual water maze in women but not in men.Hormones and Behavior, 51(5), 649-654. [33] *Burte, H., Turner, B. O., Miller, M. B., & Hegarty, M.(2018). The neural basis of individual differences in directional sense. Frontiers in Human Neuroscience, 12, Article e410. https://doi.org/10.3389/fnhum.2018.00410 [34] Bussey, K., & Bandura, A. (1999). Social cognitive theory of gender development and differentiation.Psychological Review, 106(4), 676-713. [35] *Campos, A., & Campos-Juanatey, D. (2020). Do gender, discipline, and mental rotation influence orientation on "You- Are-Here" maps. SAGE Open, 10(1), Article e215824401989880. https://doi.org/10.1177/215824401989880 [36] *Cánovas R., García R. F., & Cimadevilla J. M. (2011). Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task.Behavioural Brain Research, 216(1), 116-121. [37] *Cashdan E., Marlowe F. W., Crittenden A., Porter C., & Wood B. M. (2012). Sex differences in spatial cognition among Hadza foragers.Evolution and Human Behavior, 33(4), 274-284. [38] *Castelli L., Corazzini L. L., & Geminiani G. C. (2008). Spatial navigation in large-scale virtual environments: Gender differences in survey tasks.Computers in Human Behavior, 24(4), 1643-1667. [39] *Cazzato V., Basso D., Cutini S., & Bisiacchi P. (2010). Gender differences in visuospatial planning: An eye movements study.Behavioural Brain Research, 206(2), 177-183. [40] *Ceccanti M., Coriale G., Hamilton D. A., Carito V., Coccurello R., Scalese B., .. Fiore M. (2018). Virtual Morris task responses in individuals in an abstinence phase from alcohol.Canadian Journal of Physiology and Pharmacology, 96(2), 128-136. [41] *Chai, X. J., & Jacobs, L. F. (2009). Sex differences in directional cue use in a virtual landscape.Behavioral Neuroscience, 123(2), 276-283. [42] *Chai, X. J., & Jacobs, L. F. (2010). Effects of cue types on sex differences in human spatial memory.Behavioural Brain Research, 208(2), 336-342. [43] *Chamizo V. D., Artigas A. A., Sansa J., & Banterla F. (2011). Gender differences in landmark learning for virtual navigation: The role of distance to a goal.Behavioural Processes, 88(1), 20-26. [44] *Chang, W.-T. (2020). The effects of age, gender, and control device in a virtual reality driving simulation. Symmetry, 12(6), Article e995. https://doi.org/10.3390/sym12060995 [45] *Chebat J.-C., Gélinas-Chebat C., & Therrien K. (2008). Gender-related wayfinding time of mall shoppers.Journal of Business Research, 61(10), 1076-1082. [46] *Chen C. H., Chang W. C., & Chang W. T. (2009). Gender differences in relation to wayfinding strategies, navigational support design, and wayfinding task difficulty.Journal of Environmental Psychology, 29(2), 220-226. [47] *Chen, C.-H., & Chen, M.-X. (2020). Wayfinding in virtual environments with landmarks on overview maps.Interacting with Computers, 32(3), 316-329. [48] *Chen W., Liu B., Li X., Wang P., & Wang B. (2020). Sex differences in spatial memory.Neuroscience, 443, 140-147. [49] *Cherep L. A., Kelly J. W., Miller A., Lim A. F., & Gilbert S. B. (2023). Individual differences in teleporting through virtual environments.Journal of Experimental Psychology: Applied, 29(1), 111-123. [50] Cheung, M. W. L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. Psychological Methods, 19(2), 211-229. [51] Cheung, M. W. L. (2019). A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychology Review, 29(4), 387-396. [52] *Chrastil, E. R., & Warren, W. H. (2015). Active and passive spatial learning in human navigation: Acquisition of graph knowledge.Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(4), 1162-1178. [53] *Cimadevilla J. M., Cánovas R., Iribarne L., Soria A., & López L. (2011). A virtual-based task to assess place avoidance in humans.Journal of Neuroscience Methods, 196(1), 45-50. [54] *Coluccia E., Iosue G., & Antonella Brandimonte M. (2007). The relationship between map drawing and spatial orientation abilities: A study of gender differences.Journal of Environmental Psychology, 27(2), 135-144. [55] Coutrot A., Manley E., Goodroe S., Gahnstrom C., Filomena G., Yesiltepe D., .. Spiers H. J. (2022). Entropy of city street networks linked to future spatial navigation ability.Nature, 604, 104-110. [56] *Coutrot A., Schmidt S., Coutrot L., Pittman J., Hong L., Wiener J. M., .. Spiers H. J. (2019). Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE, 14(3), Article e0213272. https://doi.org/10.1371/journal.pone.0213272 [57] Coutrot A., Silva R., Manley E., de Cothi W., Sami S., Bohbot V. D., .. Spiers H. J. (2018). Global determinants of navigation ability.Current Biology, 28(17), 2861-2866. [58] *Cushman, L. A., & Duffy, C. J. (2007). The sex specificity of navigational strategies in Alzheimer disease.Alzheimer Disease and Associated Disorders, 21(2), 122-129. [59] *Dahmani L., Ledoux A. A., Boyer P., & Bohbot V. D. (2012). Wayfinding: The effects of large displays and 3-D perception.Behavior Research Methods, 44(2), 447-454. [60] *Daugherty A. M., Yuan P., Dahle C. L., Bender A. R., Yang Y., & Raz N. (2015). Path complexity in virtual water maze navigation: Differential associations with age, sex, and regional brain volume.Cerebral Cortex, 25(9), 3122-3131. [61] *Davis H. E., Stack J., & Cashdan E. (2021). Cultural change reduces gender differences in mobility and spatial ability among seminomadic pastoralist-forager children in Northern Namibia.Human Nature, 32(1), 178-206. [62] *De Goede, M., & Postma, A.(2015). Learning your way in a city: Experience and gender differences in configurational knowledge of one’s environment. Frontiers in Psychology, 6, Article e402. https://doi.org/10.3389/fpsyg.2015.00402 [63] *Delage V., Trudel G., Retanal F., & Maloney E. A. (2022). Spatial anxiety and spatial ability: Mediators of gender differences in math anxiety.Journal of Experimental Psychology: General, 151(4), 921-933. [64] Dong W., Qin T., Yang T., Liao H., Liu B., Meng L., & Liu Y. (2022). Wayfinding behavior and spatial knowledge acquisition: Are they the same in virtual reality and in real-world environments.Annals of the American Association of Geographers, 112(1), 226-246. [65] *Dong W., Zhan Z., Liao H., Meng L., & Liu J. (2020). Assessing similarities and differences between males and females in visual behaviors in spatial orientation tasks. ISPRS International Journal of Geo-Information, 9(2), Article e115. https://doi.org/10.3390/ijgi9020115 [66] Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.Biometrics, 56(2), 455-463. [67] Ellemers, N. (2018). Gender stereotypes.Annual Review of Psychology, 69(1), 275-298. [68] *Fajnerová, I., Rodriguez, M., Levčík, D., Konrádová, L., Mikoláš, P., Brom, C., .. Horáček, J.(2014). A virtual reality task based on animal research - spatial learning and memory in patients after the first episode of schizophrenia. Frontiers in Behavioral Neuroscience, 8, Article e157. https://doi.org/10.3389/fnbeh.2014.00157 [69] *Fang, H. C., & Zhou, L. (2013). The effect of gender, wayfinding strategy and navigational support on wayfinding behaviour.Acta Psychologica Sinica, 44(8), 1058-1065. [70] *Fang, H., Hu, Y., Yang, L., & Liu, Y.(2020). The role of phonological loop and visuospatial sketchpad in virtual maze wayfinding. Journal of Environmental Psychology, 67, Article e101378. https://doi.org/j.jenvp.2019.101378 [71] *Ferguson T. D., Livingstone-Lee S. A., & Skelton R. W. (2019). Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze.Behavioural Brain Research, 364, 281-295. [72] *Fernandez-Baizan C., Arias J. L., & Mendez M. (2019). Spatial memory in young adults: Gender differences in egocentric and allocentric performance.Behavioural Brain Research, 359, 694-700. [73] *Fernandez-Baizan, C., Arias, J. L., & Mendez, M.(2020). Spatial memory assessment reveals age-related differences in egocentric and allocentric memory performance. Behavioural Brain Research, 388, Article e112646. https://doi.org/10.1016/j.bbr.2020.112646 [74] *Fortenbaugh F. C., Chaudhury S., Hicks J. C., Hao L., & Turano K. A. (2007). Gender differences in cue preference during path integration in virtual environments. ACM Transactions on Applied Perception, 4(1), Article e6. https://doi.org/10.1145/1227134.1227140 [75] *Foti, F., Ruscio, K., Cento, G., Pullano, L., & Di Nuovo, S.(2023). Can an observational training improve the ability of children to navigate in familiar and unfamiliar environments? Journal of Environmental Psychology, 86, Article e101954. https://doi.org/10.1016/j.jenvp.2023.101954 [76] *Gabriel K. I., Hong S. M., Chandra M., Lonborg S. D., & Barkley C. L. (2011). Gender differences in the effects of acute stress on spatial ability.Sex Roles, 64(1-2), 81-89. [77] *Gagnon K. T., Cashdan E. A., Stefanucci J. K., & Creem- Regehr, S. H. (2016). Sex differences in exploration behavior and the relationship to harm avoidance.Human Nature, 27(1), 82-97. [78] *Gagnon K. T., Thomas B. J., Munion A., Creem-Regehr S. H., Cashdan E. A., & Stefanucci J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory.Cognition, 180, 108-117. [79] Gao S., Assink M., Cipriani A., & Lin K. (2017). Associations between rejection sensitivity and mental health outcomes: A meta-analytic review.Clinical Psychology Review, 57, 59-74 [80] *Gazova, I., Laczó, J., Rubinova, E., Mokrisova, I., Hyncicova, E., Andel, R., .. Hort, J.(2013). Spatial navigation in young versus older adults. Frontiers in Aging Neuroscience, 5, Article e94. https://doi.org/10.3389/fnagi.2013.00094 [81] *Gerven D. V., Schneider A. N., Wuitchik D. M., & Skelton R. W. (2012). Direct measurement of spontaneous strategy selection in a virtual Morris water maze shows females choose an allocentric strategy at least as often as males do.Behavioral Neuroscience, 126(3), 465-478. [82] *Goeke C., Kornpetpanee S., Köster M., Fernández-Revelles A. B., Gramann K., & König P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific Reports, 5(1), Article e11426. https://doi.org/10.1038/srep11426 [83] Grön G., Wunderlich A. P., Spitzer M., Tomczak R., & Riepe M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance.Nature Neuroscience, 3(4), 404-408. [84] Hafting T., Fyhn M., Molden S., Moser M. B., & Moser E. I. (2005). Microstructure of a spatial map in the entorhinal cortex.Nature, 436(7052), 801-806. [85] Halpern, D. F. (2011). Sex differences in cognitive abilities (4th ed.). Erlbaum. [86] Harrer M., Cuijpers P., Furukawa T. A., & Ebert, D. D. (2021). Doing meta-analysis with R: A hands-on guide. Chapman and Hall/CRC Press. [87] *Harris T., Scheuringer A., & Pletzer B. (2019). Perspective and strategy interactively modulate sex differences in a 3D navigation task. Biology of Sex Differences, 10(1), Article e17. https://doi.org/10.1186/s13293-019-0232-z [88] *Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills.Behavioural Brain Research, 209(1), 49-58. [89] *Hedge C., Weaver R., & Schnall S. (2017). Spatial learning and wayfinding in an immersive environment: The digital fulldome.Cyberpsychology, Behavior, and Social Networking, 20(5), 327-333. [90] Hemmer I., Hemmer M., Neidhardt E., Obermaier G., Uphues R., & Wrenger K. (2013). The influence of children’s prior knowledge and previous experience on their spatial orientation skills in an urban environment.Education 3-13, 43(2), 184-196. [91] *Hilliard D., Passow S., Thurm F., Schuck N. W., Garthe A., Kempermann G., & Li S.-C. (2019). Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults. Scientific Reports, 9(1), Article e9310. https://doi.org/10.1038/s41598-019-45757-0 [92] Hills T. T., Todd P. M., Lazer D., Redish A. D., & Couzin I. D. (2015). Exploration versus exploitation in space, mind, and society.Trends in Cognitive Sciences, 19(1), 46-54. [93] Hofstede, G. (1984). Culture’s consequences: International differences in work-related values. Sage Publications. [94] *Holden, M. P., & Hampson, E.(2021). Endogenous variation in estradiol in women affects the weighting of metric and categorical information in spatial location memory. Hormones and Behavior, 128, Article e104909. https://doi.org/10.1016/j.yhbeh.2020.104909 [95] *Hölscher C., Büchner S. J., Meilinger T., & Strube G. (2009). Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information.Journal of Environmental Psychology, 29(2), 208-219. [96] Hox J. J., Moerbeek M., & van de Schoot, R. (2017). Multilevel analysis: Techniques and applications. Routledge. [97] *Huang, X., & Voyer, D. (2017). Timing and sex effects on the "Spatial Orientation Test": A World War II map reading test.Spatial Cognition and Computation, 17(4), 251-272. [98] Hults C. M., Francis R. C., Clint E. K., Smith W., Sober E. R., Garland Jr T., & Rhodes J. S. (2024). Still little evidence sex differences in spatial navigation are evolutionary adaptations. Royal Society Open Science, 11(1), Article e231532. https://doi.org/10.1098/rsos.231532 [99] *Hund, A. M., & Gill, D. M. (2014). What constitutes effective wayfinding directions: The interactive role of descriptive cues and memory demands.Journal of Environmental Psychology, 38, 217-224. [100] Hund, A. M., & Minarik, J. L. (2006). Getting from here to there: Spatial anxiety, wayfinding strategies, direction type, and wayfinding efficiency.Spatial Cognition and Computation, 6(3), 179-201. [101] Hund, A. M., & Padgitt, A. J. (2010). Direction giving and following in the service of wayfinding in a complex indoor environment.Journal of Environmental Psychology, 30(4), 553-564. [102] Hyde, J. S. (2005). The gender similarities hypothesis.American Psychologist, 60(6), 581-592. [103] *Irving S., Schöberl F., Pradhan C., Brendel M., Bartenstein P., Dieterich M., Brandt T., & Zwergal A. (2018). A novel real-space navigation paradigm reveals age- and gender-dependent changes of navigational strategies and hippocampal activation.Journal of Neurology, 265(1), 113-126. [104] *Ishikawa, T., & Takahashi, K. (2014). Relationships between methods for presenting information on navigation tools and users’ wayfinding behavior.Cartographic Perspectives, 75, 17-28. [105] Jang H., Boesch C., Mundry R., Kandza V.,& Janmaat, K. R.(2019). Sun, age and test location affect spatial orientation in human foragers in rainforests. Proceedings of the Royal Society B: Biological Sciences, 2862019.0934 [106] *Jelínek M., Květon P., & Vobořil D. (2015). Innovative testing of spatial ability: Interactive responding and the use of complex stimuli material.Cognitive Processing, 16(1), 45-55. [107] *Kastens, K. A., & Liben, L. S. (2007). Eliciting self- explanations improves children’s performance on a field-based map skills task.Cognition and Instruction, 25(1), 45-74. [108] *Kelly J. W., McNamara T. P., Bodenheimer B., Carr T. H., & Rieser J. J. (2009). Individual differences in using geometric and featural cues to maintain spatial orientation: Cue quantity and cue ambiguity are more important than cue type.Psychonomic Bulletin & Review, 16(1), 176-181. [109] Kim B., Lee S., & Lee J. (2007). Gender differences in spatial navigation.Proceedings of World Academy of Science Engineering and Technology, 25, 297-300. [110] Kimura, D. (1999). Sex and cognition. The MIT Press.. [111] *Kober, S. E., & Neuper, C. (2011). Sex differences in human EEG theta oscillations during spatial navigation in virtual reality.International Journal of Psychophysiology, 79(3), 347-355. [112] Kong X. Z., Huang Y., Hao X., Hu S., & Liu J. (2017). Sex-linked association between cortical scene selectivity and navigational ability.Neuroimage, 158, 397-405. [113] *Kong X. Z., Pu Y., Wang X., Xu S., Hao X., Zhen Z., & Liu J. (2017). Intrinsic hippocampal-caudate interaction correlates with human navigation [Preprint]. BioRxiv, Article e116129. https://doi.org/10.1101/11612 [114] *Korthauer L. E., Nowak N. T., Frahmand M., & Driscoll I. (2017). Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task.Behavioural Brain Research, 317, 470-478. [115] *Koulouri T., Lauria S., Macredie R. D., & Chen S. (2012). Are we there yet?: The role of gender on the effectiveness and efficiency of user-robot communication in navigational tasks.ACM Transactions on Computer-Human Interaction, 19(1), 1-29. [116] *Kremmyda, O., Hüfner, K., Flanagin, V. L., Hamilton, D. A., Linn, J., Strupp, M., Jahn, K., & Brandt, T.(2016). Beyond dizziness: Virtual navigation, spatial anxiety and hippocampal volume in bilateral vestibulopathy. Frontiers in Human Neuroscience, 10, Article e139. https://doi.org/10.3389/fnhum.2016.00139 [117] Labate E., Pazzaglia F., & Hegarty M. (2014). What working memory subcomponents are needed in the acquisition of survey knowledge? Evidence from direction estimation and shortcut tasks.Journal of Environmental Psychology, 37, 73-79. [118] Lauer J., Yhang E., & Lourenco S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537-565. [119] Lavenex, P. B., & Lavenex, P. (2010). Spatial relational learning and memory abilities do not differ between men and women in a real-world, open-field environment.Behavioural Brain Research, 207(1), 125-137. [120] Learmonth A. E., Newcombe N. S., Sheridan N., & Jones M. (2008). Why size counts: Children’s spatial reorientation in large and small enclosures.Developmental Science, 11(3), 414-426. [121] Lee Y., Capraro R. M., & Bicer A. (2019). Gender difference on spatial visualization by college students’ major types as STEM and non-STEM: A meta-analysis.International Journal of Mathematical Education in Science and Technology, 50(8), 1241-1255. [122] *Lemieux C. L., Collin C. A., & Watier N. N. (2019). Gender differences in metacognitive judgments and performance on a goal-directed wayfinding task.Journal of Cognitive Psychology, 31(4), 453-466. [123] *León I., Cimadevilla J. M., & Tascón L. (2014). Developmental gender differences in children in a virtual spatial memory task.Neuropsychology, 28(4), 485-495. [124] *Liang H.-N., Lu F., Shi Y., Nanjappan V., & Papangelis K. (2019). Evaluating the effects of collaboration and competition in navigation tasks and spatial knowledge acquisition within virtual reality environments.Future Generation Computer Systems, 95, 855-866. [125] *Liao, H., & Dong, W. (2017). An exploratory study investigating gender effects on using 3D maps for spatial orientation in wayfinding. ISPRS International Journal of Geo-Information, 6(3), Article e60. https://doi.org/10.3390/ijgi6030060 [126] *Liben L. S., Myers L. J., Christensen A. E., & Bower C. A. (2013). Environmental-scale map use in middle childhood: Links to spatial skills, strategies, and gender.Child Development, 84(6), 2047-2063. [127] *Lin C. T., Huang T. Y., Lin W. J., Chang S. Y., Lin Y. H., Ko L. W., Hung D. L., & Chang E. C. (2012). Gender differences in wayfinding in virtual environments with global or local landmarks.Journal of Environmental Psychology, 32(2), 89-96. [128] *Lind S. E., Williams D. M., Raber J., Peel A., & Bowler D. M. (2013). Spatial navigation impairments among intellectually high-functioning adults with autism spectrum disorder: Exploring relations with theory of mind, episodic memory, and episodic future thinking.Journal of Abnormal Psychology, 122(4), 1189-1199. [129] Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498. [130] Lipsey, M. W., & Wilson, D. B. (2001). Practical meta analysis. Sage Publications. [131] Lithfous S., Dufour A., & Després O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: Insights from imaging and behavioral studies.Ageing Research Reviews, 12(1), 201-213. [132] *Liu I., Levy R. M., Barton J. J. S., & Iaria G. (2011). Age and gender differences in various topographical orientation strategies.Brain Research, 1410, 112-119. [133] Lloyd J., Persaud N. V., & Powell T. E. (2009). Equivalence of real-world and virtual-reality route learning: A pilot study.Cyberpsychology and Behavior, 12(4), 423-427. [134] Long X., Deng B., Young C. K., Liu G. L., Zhong Z., Chen Q., .. Zhang S. J. (2022). Sharp tuning of head direction and angular head velocity cells in the somatosensory cortex. Advanced Science, 9(14), Article e2200020. https://doi.org/10.1002/advs.202200020 [135] Long X., Wang X., Deng B., Shen R., Lv S. Q., & Zhang S. J. (2024). Intrinsic bipolar head‐direction cells in the medial entorhinal cortex.Advanced Science, Article e2401216. https://doi.org/10.1002/advs.202401216 [136] Long, X., & Zhang, S. J. (2021). A novel somatosensory spatial navigation system outside the hippocampal formation.Cell Research, 31(6), 649-663. [137] *Lopez, A., Postma, A., & Bosco, A.(2020). Categorical & coordinate spatial information: Can they be disentangled in sketch maps?Journal of Environmental Psychology,68, Article e101392. https://doi.org/10.1016/j.jenvp.2020.101392 [138] *Lourenco S. F., Addy D., Huttenlocher J., & Fabian L. (2011). Early sex differences in weighting geometric cues.Developmental Science,14(6), 1365-1378. [139] *Lövdén M., Herlitz A., Schellenbach M., Grossman-Hutter B., Krüger A., & Lindenberger U. (2007). Quantitative and qualitative sex differences in spatial navigation.Scandinavian Journal of Psychology, 48(5), 353-358. [140] Lyons I. M., Ramirez G., Maloney E. A., Rendina D. N., Levine S. C., & Beilock S. L. (2018). Spatial anxiety: A novel questionnaire with subscales for measuring three aspects of spatial anxiety.Journal of Numerical Cognition, 4(3), 526-553. [141] Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R).Educational Psychology Review, 25(1), 69-94. [142] *Mandolesi L., Petrosini L., Menghini D., Addona F., & Vicari S. (2009). Children’s radial arm maze performance as a function of age and sex.International Journal of Developmental Neuroscience,27(8), 789-797. [143] Marchette S. A., Bakker A., & Shelton A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. Journal of Neuroscience, 31(43), 15264-15268. [144] Martens, J., & Antonenko, P. D. (2012). Narrowing gender- based performance gaps in virtual environment navigation.Computers in Human Behavior, 28(3), 809-819. [145] McKinney S., Tomovic C., Grant M., & Hinton K. (2017). Increasing STEM competence in urban, high poverty elementary school populations.K-12 Stem Education, 3(4), 267-282. [146] *Meilinger T., Riecke B. E., & Bülthoff H. H. (2014). Local and global reference frames for environmental spaces.Quarterly Journal of Experimental Psychology,67(3), 542-569. [147] *Memikoglu, I., & Demirkan, H.(2020). Exploring staircases as architectural cues in virtual vertical navigation.International Journal of Human-Computer Studies, 138, Article e102397. https://doi.org/10.1016/j.ijhcs.2020.102397 [148] Mendez-Lopez M., Fidalgo C., Osma J., & Juan M.C. (2020). Wayfinding strategy and gender-testing the mediating effects of wayfinding experience, personality and emotions.Psychology Research and Behavior Management, 13, 119-131. [149] Meneghetti C., Pazzaglia F., & De Beni R. (2011). Spatial mental representations derived from survey and route descriptions: When individuals prefer extrinsic frame of reference.Learning and Individual Differences, 21(2), 150-157. [150] Merhav, M., & Wolbers, T. (2019). Aging and spatial cues influence the updating of navigational memories. Scientific Reports, 9(1), Article e11469. https://doi.org/10.1038/s41598-019-47971-2 [151] *Merrill, E. C., Yang, Y., Roskos, B., & Steele, S.(2016). Sex differences in using spatial and verbal abilities influence route learning performance in a virtual environment: A comparison of 6- to 12-year old boys and girls.Frontiers in Psychology,7, Article e258. https://doi.org/10.3389/fpsyg.2016.00258 [152] Min, Y. H., & Ha, M. (2021). Contribution of colour-zoning differentiation to multidimensional spatial knowledge acquisition in symmetrical hospital wards.Indoor and Built Environment, 30(6), 787-800. [153] Moffat S. D., Hampson E., & Hatzipantelis M. (1998). Navigation in a "virtual" maze: Sex differences and correlation with psychometric measures of spatial ability in humans.Evolution and Human Behavior, 19, 73-87. [154] Moser, M. B., & Moser, E. L. (2016). Where am I? Where am I going?Scientific American, 314(1), 26-33. [155] *Mueller S. C., Verwilst T., Van Branteghem A., T’Sjoen G., & Cools M. (2016). The contribution of the androgen receptor (AR) in human spatial learning and memory: A study in women with complete androgen insensitivity syndrome (CAIS).Hormones and Behavior,78, 121-126. [156] *Munion A. K., Stefanucci J. K., Rovira E., Squire P., & Hendricks M. (2019). Gender differences in spatial navigation: Characterizing wayfinding behaviors.Psychonomic Bulletin and Review,26(6), 1933-1940. [157] *Munoz-Montoya, F., Fidalgo, C., Juan, M.-C., & Mendez-Lopez, M.(2019). Memory for object location in augmented reality: The role of gender and the relationship among spatial and anxiety outcomes.Frontiers in Human Neuroscience,13, Article e113. https://doi.org/10.3389/fnhum.2019.00113 [158] *Münzer, S., & Stahl, C. (2011). Learning routes from visualizations for indoor wayfinding: Presentation modes and individual differences.Spatial Cognition and Computation,11(4), 281-312. [159] *Münzer, S., & Zadeh, M. V. (2016). Acquisition of spatial knowledge through self-directed interaction with a virtual model of a multi-level building: Effects of training and individual differences.Computers in Human Behavior,64, 191-205. [160] *Nardi D., Meloni R., Orlandi M., & Olivetti-Belardinelli M. (2014). Where is uphill? Exploring sex differences when reorienting on a sloped environment presented through 2-D images.Perception,43(4), 249-264. [161] *Nardi D., Newcombe N. S., & Shipley T. F. (2013). Reorienting with terrain slope and landmarks.Memory and Cognition,41(2), 214-228. [162] Nazareth A., Huang X., Voyer D., & Newcombe N. (2019). A meta-analysis of sex differences in human navigation skills.Psychonomic Bulletin and Review, 26(5), 1503-1528. [163] *Nazareth A., Weisberg S. M., Margulis K., & Newcombe N. S. (2018). Charting the development of cognitive mapping.Journal of Experimental Child Psychology,170, 86-106. [164] *Němá E., Kalina A., Nikolai T., Vyhnálek M., Meluzínová E., & Laczó J. (2021). Spatial navigation in early multiple sclerosis: A neglected cognitive marker of the disease?Journal of Neurology,268(1), 77-89. [165] *New J., Krasnow M. M., Truxaw D., & Gaulin, S. J. C. (2007). Spatial adaptations for plant foraging: Women excel and calories count.Proceedings of the Royal Society B: Biological Sciences,274(1626), 2679-2684. [166] *Newhouse P., Newhouse C., & Astur R. (2007). Sex differences in visual-spatial learning using a virtual water maze in pre-pubertal children.Behavioural Brain Research,183(1), 1-7. [167] Noachtar I., Harris T. A., Hidalgo-Lopez E., & Pletzer B. (2022). Sex and strategy effects on brain activation during a 3D-navigation task. Communications Biology, 5(1), Article e234. https://doi.org/10.1038/s42003-022-03147-9 [168] Nori R., Mercuri N., Giusberti F., Bensi L., & Gambetti E. (2009). Influences of gender role socialization and anxiety on spatial cognitive style.The American Journal of Psychology, 122(4), 497-505. [169] *Nori, R., & Piccardi, L. (2015). I believe I’m good at orienting myself… But is that true?Cognitive Processing,16(3), 301-307. [170] *Nori, R., Piccardi, L., Maialetti, A., Goro, M., Rossetti, A., Argento, O., & Guariglia, C.(2018). No gender differences in egocentric and allocentric environmental transformation after compensating for male advantage by manipulating familiarity.Frontiers in Neuroscience,12, Article e204. https://doi.org/10.3389/fnins.2018.00204 [171] *Nori R., Piccardi L., Migliori M., Guidazzoli A., Frasca F., De Luca D., & Giusberti F. (2015). The virtual reality Walking Corsi Test.Computers in Human Behavior,48, 72-77. [172] *Nowak N. T., Diamond M. P., Land S. J., & Moffat S. D. (2014). Contributions of sex, testosterone, and androgen receptor CAG repeat number to virtual Morris water maze performance.Psychoneuroendocrinology,41, 13-22. [173] *Nowak, N. T., & Moffat, S. D. (2011). The relationship between second to fourth digit ratio, spatial cognition, and virtual navigation.Archives of Sexual Behavior,40(3), 575-585. [174] *Nowak N. T., Murali A., & Driscoll I. (2015). Factors related to sex differences in navigating a computerized maze.Journal of Environmental Psychology,43, 136-144. [175] *Pacheco-Cobos L., Rosetti M., Cuatianquiz C., & Hudson R. (2010). Sex differences in mushroom gathering: Men expend more energy to obtain equivalent benefits.Evolution and Human Behavior,31(4), 289-297. [176] *Padilla L. M., Creem-Regehr S. H., Stefanucci J. K., & Cashdan E. A. (2017). Sex differences in virtual navigation influenced by scale and navigation experience.Psychonomic Bulletin and Review,24(2), 582-590. [177] *Palermo L., Iaria G., & Guariglia C. (2008). Mental imagery skills and topographical orientation in humans: A correlation study.Behavioural Brain Research,192(2), 248-253. [178] *Palmiero M., Nori R., Rogolino C., D’amico S., & Piccardi L. (2016). Sex differences in visuospatial and navigational working memory: The role of mood induced by background music.Experimental Brain Research,234(8), 2381-2389. [179] *Paperno N., Rupp M. A., Parkhurst E. L., Maboudou- Tchao E. M., Smither J. A.-A., Bricout J., & Behal A. (2019). Age and gender differences in performance for operating a robotic manipulator.IEEE Transactions on Human-Machine Systems,49(2), 137-149. [180] Persson J., Herlitz A., Engman J., Morell A., Sjölie D., Wikström J., & Söderlund H. (2013). Remembering our origin: Gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behavioural Brain Research, 256, 219-228. [181] *Piber D., Nowacki J., Mueller S. C., Wingenfeld K., & Otte C. (2018). Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.Behavioural Brain Research,336, 44-50. [182] *Piccardi L., Bianchini F., Iasevoli L., Giannone G., & Guariglia C. (2011). Sex differences in a landmark environmental re-orientation task only during the learning phase.Neuroscience Letters,503(3), 181-185. [183] *Piccardi L., Iaria G., Ricci M., Bianchini F., Zompanti L., & Guariglia C. (2008). Walking in the Corsi test: Which type of memory do you need?Neuroscience Letters,432(2), 127-131. [184] *Piccardi L., Leonzi M., D’Amico S., Marano A., & Guariglia C. (2014). Development of navigational working memory: Evidence from 6- to 10-year-old children.British Journal of Developmental Psychology,32(2), 205-217. [185] *Piccardi L., Risetti M., Nori R., Tanzilli A., Bernardi L., & Guariglia C. (2011). Perspective changing in primary and secondary learning: A gender difference study.Learning and Individual Differences,21(1), 114-118. [186] *Picucci L., Caffò A. O., & Bosco A. (2011). Besides navigation accuracy: Gender differences in strategy selection and level of spatial confidence.Journal of Environmental Psychology,31(4), 430-438. [187] Pintzka C. W. S., Evensmoen H. R., Lehn H., & Håberg A. K. (2016). Changes in spatial cognition and brain activity after a single dose of testosterone in healthy women.Behavioural Brain Research, 298, 78-90. [188] *Pletzer, B., Steinbeisser, J., van Laak, L., & Harris, T.(2019). Beyond biological sex: Interactive effects of gender role and sex hormones on spatial abilities.Frontiers in Neuroscience,13, Article e675. https://doi.org/10.3389/fnins.2019.00675 [189] Postma A., van Oers M., Back F., & Plukaard S. (2012). Losing your car in the parking lot: Spatial memory in the real world.Applied Cognitive Psychology, 26(5), 680-686. [190] Poulter S., Hartley T., & Lever C. (2018). The neurobiology of mammalian navigation.Current Biology, 28(17), 1023-1042. [191] Pruden S. M., Levine S. C., & Huttenlocher J. (2011). Children’s spatial thinking: Does talk about the spatial world matter?Developmental Science, 14(6), 1417-1430. [192] Pruden S. M., Nazareth A., Odean R., Abad C., Bravo E., & Garcia N. (2020). Movement, space, and the development of spatial thinking.The Encyclopedia of Child and Adolescent Development,1-15. https://doi.org/10.1002/9781119171492.wecad029 [193] *Pu, Y., Cornwell, B. R., Cheyne, D., & Johnson, B. W.(2020). Gender differences in navigation performance are associated with differential theta and high-gamma activities in the hippocampus and parahippocampus.Behavioural Brain Research,391, Article e112664. https://doi.org/10.1016/j.bbr.2020.112664 [194] *Rahman, Q., & Koerting, J. (2008). Sexual orientation-related differences in allocentric spatial memory tasks.Hippocampus,18(1), 55-63. [195] *Richardson A. E., Powers M. E., & Bousquet L. G. (2011). Video game experience predicts virtual, but not real navigation performance.Computers in Human Behavior,27(1), 552-560. [196] *Richardson, A. E., & VanderKaay Tomasulo, M. M. (2011). Influence of acute stress on spatial tasks in humans.Physiology and Behavior,103(5), 459-466. [197] *Rodriguez-Andres, D., Mendez-Lopez, M., Juan, M.-C., & Perez-Hernandez, E.(2018). A virtual object-location task for children: Gender and videogame experience influence navigation; age impacts memory and completion time.Frontiers in Psychology,9, Article e451. https://doi.org/10.3389/fpsyg.2018.00451 [198] *Rosenthal H. E. S., Norman L., Smith S. P., & McGregor A. (2012). Gender-based navigation stereotype improves men’s search for a hidden goal.Sex Roles,67(11-12), 682-695. [199] Santos B. S., Dias P., Pimentel A., Baggerman J. W., Ferreira C., & Silva S., & Madeira J. (2008). Head-mounted display versus desktop for 3D navigation in virtual reality: A user study.Multimedia Tools and Applications, 37(2), 161-181. [200] *Sargent J. Q., Zacks J. M., Hambrick D. Z., & Lin N. (2019). Event memory uniquely predicts memory for large-scale space.Memory and Cognition,47(2), 212-228. [201] *Scheuringer, A., & Pletzer, B.(2017). Sex differences and menstrual cycle dependent changes in cognitive strategies during spatial navigation and verbal fluency.Frontiers in Psychology,8, Article e381. https://doi.org/10.3389/fpsyg.2017.00381 [202] *Schoedel R., Hilbert S., Bühner M., & Stachl C. (2018). One way to guide them all: Wayfinding strategies and the examination of gender-specific navigational instructions in a real-driving context.Transportation Research Part F: Traffic Psychology and Behaviour,58, 754-768. [203] *Schoenfeld R., Lehmann W., & Leplow B. (2010). Effects of age and sex in mental rotation and spatial learning from virtual environments.Journal of Individual Differences,31(2), 78-82. [204] *Schoenfeld R., Moenich N., Mueller F.-J., Lehmann W., & Leplow B. (2010). Search strategies in a human water maze analogue analyzed with automatic classification methods.Behavioural Brain Research,208(1), 169-177. [205] Schug, M. G. (2016a). Geographical cues and developmental exposure: Navigational style, wayfinding anxiety, and childhood experience in the Faroe Islands.Human Nature, 27(1), 68-81. [206] Schug, M. G. (2016b). Factors in the development of spatial cognition in boys and girls.Boyhood Studies, 9(2), 44-55. [207] Silverman I., Choi J., & Peters M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries.Archives of Sexual Behavior, 36(2), 261-268. [208] Silverman I.,& Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data In J H Barkow, L Cosmides, & J Tooby (Eds), The adapted mind: Evolutionary psychology and the generation of culture (pp 533-549) Oxford University Press Evolutionary theory and data. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 533-549). Oxford University Press. [209] *Slone E., Burles F., & Iaria G. (2016). Environmental layout complexity affects neural activity during navigation in humans.European Journal of Neuroscience,43(9), 1146-1155. [210] *Sneider, J. T., Cohen-Gilbert, J. E., Hamilton, D. A., Stein, E. R., Golan, N., Oot, E. N., Seraikas, A. M., Rohan, M. L., Harris, S. K., Nickerson, L. D., & Silveri, M. M.(2018). Adolescent hippocampal and prefrontal brain activation during performance of the virtual Morris water task.Frontiers in Human Neuroscience,12, Article e238. https://doi.org/10.3389/fnhum.2018.00238 [211] *Sneider J. T., Hamilton D. A., Cohen-Gilbert J. E., Crowley D. J., Rosso I. M., & Silveri M. M. (2015). Sex differences in spatial navigation and perception in human adolescents and emerging adults.Behavioural Processes,111, 42-50. [212] *Sneider J. T., Rogowska J., Sava S., & Yurgelun-Todd D. A. (2011). A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults.Perceptual and Motor Skills,113(2), 461-480. [213] *Sorrentino, P., Lardone, A., Pesoli, M., Liparoti, M., Montuori, S., Curcio, G., Sorrentino, G., Mandolesi, L., & Foti, F.(2019). The development of spatial memory analyzed by means of ecological walking task.Frontiers in Psychology,10, Article e728. https://doi.org/10.3389/fpsyg.2019.00728 [214] *Süzer, Ö. K., & Olguntürk, N. (2018). The aid of colour on visuospatial navigation of elderly people in a virtual polyclinic environment.Color Research and Application, 43. https://doi.org/10.1002/col.22272 [215] Taillade M.,N’Kaoua, B., & Sauzéon, H.(2016). Age-related differences and cognitive correlates of self-reported and direct navigation performance: The effect of real and virtual test conditions manipulation.Frontiers in Psychology, 6, Article e2034. https://doi.org/10.3389/fpsyg.2015.02034 [216] *Tarampi M. R., Heydari N., & Hegarty M. (2016). A tale of two types of perspective taking: Sex differences in spatial ability.Psychological Science,27(11), 1507-1516. [217] *Tascón L., Castillo J., León I., & Cimadevilla J. M. (2018). Walking and non-walking space in an equivalent virtual reality task: Sexual dimorphism and aging decline of spatial abilities.Behavioural Brain Research,347, 201-208. [218] *Tippett W. J., Lee J.-H., Mraz R., Zakzanis K. K., Snyder P. J., Black S. E., & Graham S. J. (2009). Convergent validity and sex differences in healthy elderly adults for performance on 3D virtual reality navigation learning and 2D hidden maze tasks.Cyber Psychology and Behavior,12(2), 169-174. [219] *Tlauka M., Williams J., & Williamson P. (2008). Spatial ability in secondary school students: Intra-sex differences based on self-selection for physical education.British Journal of Psychology,99(3), 427-440. [220] *Török, Á., Nguyen, T. P., Kolozsvári, O., Buchanan, R. J., & Nadasdy, Z.(2014). Reference frames in virtual spatial navigation are viewpoint dependent.Frontiers in Human Neuroscience, 8, Article e646. https://doi.org/doi.org/10.3389/fnhum.2014.00646 [221] Trumble B. C., Gaulin S. J., Dunbar M. D., Kaplan H., & Gurven M. (2016). No sex or age difference in dead- reckoning ability among Tsimane forager-horticulturalists. Human Nature, 27(1), 51-67. https://doi.org/10.1007/s12110-015-9246-3 [222] Uttal D. H., Meadow N. G., Tipton E., Hand L. L., Alden A. R., Warren C., & Newcombe N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies.Psychological Bulletin,139(2), 352-402. [223] *van der Ham, I. J. M., Claessen M. H. G., Evers A. W. M., & van der Kuil, M. N. A. (2020). Large-scale assessment of human navigation ability across the lifespan.Scientific Reports,10(1), Article e3299. https://doi.org/10.1038/s41598-020-60302-0 [224] *van der Ham, I. J. M., van der Kuil, M. N. A., & Claessen, M. H. G. (2021). Quality of self-reported cognition: Effects of age and gender on spatial navigation self-reports.Aging and Mental Health,25(5), 873-878. [225] *van Dun C., van Kraaij A., Wegman J., Kuipers J., Aarts E., & Janzen G. (2020). Sex differences and the role of gaming experience in spatial cognition performance in primary school children: An exploratory study.Brain Sciences,11(7), Article e886. https://doi.org/10.3390/brainsci11070886 [226] *van Hoogmoed A. H., Wegman J., van den Brink D., & Janzen G. (2022). Development of landmark use for navigation in children: Effects of age, sex, working memory and landmark type.Brain Sciences,12(6), Article e776. https://doi.org/10.3390/brainsci12060776 [227] *Vashro L., Padilla L., & Cashdan E. (2016). Sex differences in mobility and spatial cognition: A test of the fertility and parental care hypothesis in Northwestern Namibia.Human Nature,27(1), 16-34. [228] *Ventura, M., Shute, V., Wright, T., & Zhao, W.(2013). An investigation of the validity of the virtual spatial navigation assessment.Frontiers in Psychology,4, Article e852. https://doi.org/10.3389/fpsyg.2013.00852 [229] *Verde P., Piccardi L., Bianchini F., Guariglia C., Carrozzo P., Morgagni F., .. Tomao E. (2015). Gender differences in navigational memory: Pilots vs. nonpilots.Aerospace Medicine and Human Performance,86(2), 103-111. [230] Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package.Journal of Statistical Software, 36(3), 1-48. [231] Vieites V., Pruden S. M., Shusterman A., & Reeb-Sutherland B. C. (2020). Using hippocampal-dependent eyeblink conditioning to predict individual differences in spatial reorientation strategies in 3- to 6-year-olds. Developmental Science, 23(1), Article e12867. https://doi.org/10.1111/desc.12867 [232] *Vilar E., Rebelo F., & Noriega P. (2012). Indoor human wayfinding performance using vertical and horizontal signage in virtual reality.Human Factors and Ergonomics in Manufacturing and Service Industries, 24(6), 601-615. [233] *von Stülpnagel, R., & Steffens, M. C. (2013). Active route learning in virtual environments: Disentangling movement control from intention, instruction specificity, and navigation control.Psychological Research,77(5), 555-574. [234] Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: A meta-analysis.Psychonomic Bulletin and Review, 18, 267-277. [235] *Wang C., Chen Y., Zheng S., & Liao H. (2018). Gender and age differences in using indoor maps for wayfinding in real environments.ISPRS International Journal of Geo-Information,8(1), Article e11. https://doi.org/10.3390/ijgi8010011 [236] *Wang J., Wang Y. C., Shen C. W., & Lin P. C. (2020). Who needs automotive on-board navigation systems? Predicting operational performance from spatial anxiety and gender differences.Transportation Planning and Technology,43(6), 539-552. [237] *Weisberg S. M., Nardi D., Newcombe N. S., & Shipley T. F. (2014). Up by upwest: Is slope like north?Quarterly Journal of Experimental Psychology,67(10), 1959-1976. [238] *Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory.Journal of Experimental Psychology: Learning, Memory, and Cognition,42(5), 768-785. [239] *Weisberg S. M., Schinazi V. R., Newcombe N. S., Shipley T. F., & Epstein R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation.Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669-682. [240] *Wiener, J. M., Kmecova, H., & de Condappa, O.(2012). Route repetition and route retracing: Effects of cognitive aging.Frontiers in Aging Neuroscience,4, Article e7. https://doi.org/10.3389/fnagi.2012.00007 [241] *Woods K. J., Thomas K. G. F., Molteno C. D., Jacobson J. L., Jacobson S. W., & Meintjes E. M. (2018). Prenatal alcohol exposure affects brain function during place learning in a virtual environment differently in boys and girls.Brain and Behavior,8(11), Article e01103. https://doi.org/10.1002/brb3.1103 [242] *Woolley D. G., Vermaercke B., de Beeck H. O., Wagemans J., Gantois I., D’Hooge R., Swinnen S. P., & Wenderoth N. (2010). Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge.Behavioural Brain Research,208(2), 408-414. [243] *Wu C., Zhao G., Lin B., & Lee J. (2013). Navigating a car in an unfamiliar country using an internet map: Effects of street language formats, map orientation consistency, and gender on driver performance, workload and multitasking strategy.Behaviour and Information Technology,32(5), 425-437. [244] *Yasen A. L., Raber J., Miller J. K., & Piper B. J. (2015). Sex, but not Apolipoprotein E Polymorphism, differences in spatial performance in young adults.Archives of Sexual Behavior,44(8), 2219-2226. [245] *Youngson N. L., Vollebregt M., & Sutton J. E. (2019). Individual differences in cognitive map accuracy: Investigating the role of landmark familiarity.Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale,73(1), 37-46. [246] *Yu S., Boone A. P., He C., Davis R. C., Hegarty M., Chrastil E. R., & Jacobs E. G. (2021). Age-related changes in spatial navigation are evident by midlife and differ by sex.Psychological Science, 32(5), 692-704. [247] Yuan L., Kong F., Luo Y. M., Zeng S. Y., Lan J. J.,& You, X. Q.(2019). Gender differences in large-scale and small-scale spatial ability: A systematic review based on behavioral and neuroimaging research.Frontiers in Behavioral Neuroscience, 13, Article e128. https://doi.org/10.3389/fnbeh.2019.00128 [248] *Yuan P., Daugherty A. M., & Raz N. (2014). Turning bias in virtual spatial navigation: Age-related differences and neuroanatomical correlates.Biological Psychology,96, 8-19. [249] *Zancada-Menéndez C., Sampedro-Piquero P., Meneghetti C., Labate E., Begega A., & López L. (2015). Age differences in path learning: The role of interference in updating spatial information.Learning and Individual Differences,38, 83-89. [250] Zeng X., Hedge A., & Guimbretière F. (2012). Fitts’ law in 3D space with coordinated hand movements.Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 990-994. [251] Zhong J. Y.,& Moffat, S. D.(2016). Age-related differences in associative learning of landmarks and heading directions in a virtual navigation task.Frontiers in Aging Neuroscience, 8, Article e122. https://doi.org/10.3389/fnagi.2016.00122 [252] *Zhou Y., Cheng X., Zhu L., Qin T., Dong W., & Liu J. (2020). How does gender affect indoor wayfinding under time pressure?Cartography and Geographic Information Science,47(4), 367-380. [253] *Zwergal A., Schöberl F., Xiong G., Pradhan C., Covic A., Werner P., .. Brandt T. (2016). Anisotropy of human horizontal and vertical navigation in real space: Behavioral and PET correlates.Cerebral Cortex,26(11), 4392-4404. |
[1] | 赵子卿, 余锦婷, 陈嘉彦, 王芸茹, 黄佳, 陈楚侨. 精神病临床高危人群的症状和功能改变:一项系统综述和三水平元分析[J]. 心理科学进展, 2025, 33(1): 42-61. |
[2] | 文思雁, 于旭晨, 金磊, 宫俊如, 张晓函, 孙敬林, 张杉, 吕厚超. 儿童青少年家庭功能障碍与心理健康关系的三水平元分析[J]. 心理科学进展, 2024, 32(5): 771-789. |
[3] | 袁悦, 吴志明, 谢秋实. 时间压力对个体工作结果的作用效果: 基于元分析的证据[J]. 心理科学进展, 2024, 32(3): 465-485. |
[4] | 孟现鑫, 陈怡静, 王馨怡, 袁加锦, 俞德霖. 学校联结与抑郁的关系:一项三水平元分析[J]. 心理科学进展, 2024, 32(2): 246-263. |
[5] | 诸彦含, 贺彬, 孙蕾. 状态权力感对亲社会行为的影响:一项三水平元分析[J]. 心理科学进展, 2024, 32(11): 1786-1799. |
[6] | 郭英, 田鑫, 胡东, 白书琳, 周蜀溪. 羞愧对亲社会行为影响的三水平元分析[J]. 心理科学进展, 2023, 31(3): 371-385. |
[7] | 从欣蕊, 武泽宇, 曼祖拉·艾山江, 姜云鹏, 刘妍, 吴瑕. 动作电子游戏对不同注意子网络的影响——来自元分析的证据[J]. 心理科学进展, 2023, 31(10): 1843-1855. |
[8] | 方杰, 温忠麟, 欧阳劲樱, 蔡保贞. 国内调节效应的方法学研究[J]. 心理科学进展, 2022, 30(8): 1703-1714. |
[9] | 方杰, 温忠麟. 基于两水平回归模型的调节效应分析及其效应量[J]. 心理科学进展, 2022, 30(5): 1183-1190. |
[10] | 齐玥, 秦邵天, 王可昕, 陈文锋. 面孔可信度评价调节:经验迁移假说的提出与验证[J]. 心理科学进展, 2022, 30(4): 715-722. |
[11] | 陈静, 冉光明, 张琪, 牛湘. 儿童和青少年同伴侵害与攻击行为关系的三水平元分析[J]. 心理科学进展, 2022, 30(2): 275-290. |
[12] | 方杰, 温忠麟. 纵向数据的调节效应分析[J]. 心理科学进展, 2022, 30(11): 2461-2472. |
[13] | 张建平, 林澍倩, 刘善仕, 张亚, 李焕荣. 领导授权赋能与领导有效性的关系:基于元分析的检验[J]. 心理科学进展, 2021, 29(9): 1576-1598. |
[14] | 汤明, 李伟强, 刘福会, 袁博. 内疚与亲社会行为的关系:来自元分析的证据[J]. 心理科学进展, 2019, 27(5): 773-788. |
[15] | 吴小燕, 封春亮, 徐家华, 何振宏, 罗艺, 罗跃嘉. 垂体后叶加压素对人类社会行为的影响[J]. 心理科学进展, 2019, 27(5): 811-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||