Please wait a minute...
心理学报  2018, Vol. 50 Issue (6): 655-666    DOI: 10.3724/SP.J.1041.2018.00655
     研究报告 本期目录 | 过刊浏览 | 高级检索 |
尾状核-眶部内侧前额叶的功能连接与反应性攻击的关系:基于静息态功能磁共振研究
江琦1(),侯璐璐1,2,邱江3,李长燃1,王焕贞1
1 西南大学心理学部, 心理健康教育中心, 重庆 400715
2 南京大学社会学院心理学系, 南京 210023
3 西南大学心理学部, 认知与人格教育部重点实验室, 重庆 400715
The relationship between the caudate nucleus-orbitomedial prefrontal cortex connectivity and reactive aggression: A resting-state fMRI study
Qi JIANG1(),Lulu HOU1,2,Jiang QIU3,Changran LI1,Huanzhen WANG1
1 Mental Health Research Center of Southwest University, Faculty of Psychology, Southwest University, Chongqing 400715, China
2 Department of Psychology, School of Social and Behavior Sciences, Nanjing University, Nanjing 210023, China
3 Key Laboratory of Cognition and Personality of Southwest University, Faculty of Psychology, Southwest University, Chongqing 400715, China
全文: PDF(1453 KB)   HTML 评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用修改后的Taylor攻击范式, 将被试为虚拟对手选择的白噪音的惩罚强度作为反应性攻击的指标, 选取眶部内侧前额叶(Orbitomedial Prefrontal Cortex, OMPFC)作为种子点, 考察静息状态下正常人群OMPFC与其他脑区的连接及其与反应性攻击之间的关系。功能连接结果表明, 左侧OMPFC与右侧角回(Angular gyrus)、左侧OMPFC与双侧尾状核(Caudate nucleus)、右侧OMPFC与右侧尾状核的功能连接与反应性攻击显著负相关。格兰杰因果分析的结果进一步表明, 右侧尾状核到右侧OMPFC的效应连接与反应性攻击呈显著负相关, 尤其是与激发条件下的反应性攻击呈显著负相关。这表明, 静息状态下OMPFC与尾状核的连接与反应性攻击有着密切的关系。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江琦
侯璐璐
邱江
李长燃
王焕贞
关键词 反应性攻击静息态功能磁共振功能连接效应连接格兰杰因果分析眶部内侧前额叶尾状核    
Abstract

Reactive aggression has been widely concerned by researchers because of its serious impact on society, such as violent crimes. Existing neuroimaging studies using patients with high levels of aggression indicated a network of brain regions subserve reactive aggression, including amygdala, caudate nucleus, and orbitofrontal cortex. Furthermore, researchers believed that reduced prefrontal activity along with heightened subcortical activity in the context of provocative stimuli poses an increased risk for reactive aggression. However, evidence for this theory in healthy population is lacking, especially this independently of the experiment task.

In this study, the modified TAP was used and the punishment levels selected for the virtual opponents serve as indicator of reactive aggression. Based on the previous researches, Orbitomedial Prefrontal (OMPFC) was selected as the seed to investigate the relationship of reactive aggression and the connectivity between OMPFC and other brain regions using resting state fMRI. Thirty-night undergraduates (mean age = 20.05 ± 0.92 years old) were enrolled in the experiment. The resting state functional magnetic resonance (rs-fMRI) data was acquired using Echo Planar Imaging (EPI) sequence from a 3-T Siemens Magnetom Trio scanner (Siemens Medical, Erlangen, Germany). This scanning acquired 242 volumes with TR = 2 s (lasting 8 min and 8 sec). rs-fMRI data was processed and analyzed using the REST (Resting-State fMRI Data Analysis Toolkit) toolbox to calculate Functional Connectivity (FC) and Granger Causality Analysis (GCA), which reflects the functional and effective connectivity among different areas, respectively. The results of FC indicated that the functional connectivity between the left OMPFC and right angular gyrus, left OMPFC and bilateral caudate nucleus, right OMPFC and right caudate nucleus were significantly correlated with the reactive aggression. Furthermore, the follow-up GCA indicated that the effective connectivity of right caudate nucleus to the right OMPFC was correlated significantly with reactive aggression, especially in the provocative condition.

The caudate nucleus plays an important role in flexibly responding to the environment. It is activated in response to reward. When the individuals thought the aggression was valuable and seemed to receive reward after the aggression, the caudate nucleus was also activated. Furthermore, a study combined PET and fMRI and revealed a strong relationship between the caudate nucleus and cortical areas associated with executive functioning (i.e., the function of prefrontal cortex). Another study demonstrated that violent offenders behaved more aggressively and showed significantly higher brain reactivity to provocations within the caudate nucleus, as well as reduced caudate nucleus-prefrontal cortex connectivity. To sum up, these results suggest that the connectivity between OMPFC and caudate nucleus is closely related to reactive aggression. It provides some evidence for further revealing the neural mechanism of reactive aggression, and firstly made a systematic analysis of reactive aggression using resting state functional connectivity and effective connectivity.

Key wordsreactive aggression    resting-state fMRI    functional connectivity    effective connectivity    Granger causality analysis    OMPFC    caudate nucleus
收稿日期: 2016-07-23      出版日期: 2018-04-28
ZTFLH:  B845  
通讯作者: 江琦     E-mail: jiangqi@swu.edu.cn
作者简介: 江琦为共同第一作者。|侯璐璐为共同第一作者。
引用本文:   
江琦,侯璐璐,邱江,李长燃,王焕贞. 尾状核-眶部内侧前额叶的功能连接与反应性攻击的关系:基于静息态功能磁共振研究[J]. 心理学报, 2018, 50(6): 655-666.
Qi JIANG,Lulu HOU,Jiang QIU,Changran LI,Huanzhen WANG. The relationship between the caudate nucleus-orbitomedial prefrontal cortex connectivity and reactive aggression: A resting-state fMRI study. Acta Psychologica Sinica, 2018, 50(6): 655-666.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2018.00655      或      http://journal.psych.ac.cn/xlxb/CN/Y2018/V50/I6/655
  实验流程图
脑区 半球 MNI坐标 体素数量 t
种子点:左侧OMPFC
角回 48, -63, 51 51 5.58
尾状核 -12, 15, 3 30 4.85
18, -15, 21 27 4.37
内侧前额叶 33, 48, -6 74 5.66
51, 30, 33 32 4.95
-42, 48, 3 88 4.55
种子点:右侧OMPFC
尾状核 12, 0, 15 54 4.41
内侧前额叶 33, 51, -6 69 5.92
42, 33, 39 48 4.75
-36, 45, 3 45 4.32
  双侧OMPFC功能连接结果
  左侧OMPFC-右侧角回的功能连接与反应性攻击相关显著(FC值使用z转化之后的值注:彩图见电子版, 下同
  左侧OMPFC-左侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)
  左侧OMPFC-右侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)
  右侧OMPFC-右侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)
功能连接 反应性攻击
(非激发条件)
反应性攻击
(激发条件)
反应性
攻击(总)
左侧OMPFC-
右侧角回.
-0.43** -0.36* -0.44***
左侧OMPFC-
左侧尾状核
-0.50** -0.46** -0.53***
左侧OMPFC-
右侧尾状核
-0.51** -0.54*** -0.59***
右侧OMPFC-
右侧尾状核
-0.54** -0.55*** -0.61***
  功能连接值与反应性攻击的相关矩阵
  右侧尾状核→右侧OMPFC的效应连接与反应性攻击相关显著(左为反应性攻击、右为激发条件下的反应性攻击)
效应连接 反应性攻击
(非激发条件)
反应性攻击
(激发条件)
反应
性攻击(总)
左侧OMPFC
→右侧角回
-0.05 0.02 -0.01
左侧OMPFC
→左侧尾状核
0.02 -0.09 -0.04
左侧OMPFC
→右侧尾状核
0.21 -0.01 0.11
右侧角回→
左侧OMPFC
0.08 0.02 0.05
左侧尾状核→
左侧OMPFC
-0.21 -0.16 -0.20
右侧尾状核→
左侧OMPFC
-0.19 -0.17 -0.20
右侧OMPFC
→右侧尾状核
0.24 0.10 0.19
右侧尾状核→
右侧OMPFC
-0.31 -0.33* -0.36*
  效应连接值与反应性攻击的相关性统计
[1] Anderson C. A., & Bushman B. J . ( 2002). Human aggression. Annual Review of Psychology, 53(1), 27-51.
[2] Bettencourt B. A., Talley A., Benjamin A. J., & Valentine J . ( 2006). Personality and aggressive behavior under provoking and neutral conditions: A meta-analytic review. Psychological Bulletin, 132(5), 751-777.
pmid: 16910753
[3] Beyer F., Münte T. F., Erdmann C., & Kr?mer U. M . ( 2014). Emotional reactivity to threat modulates activity in mentalizing network during aggression. Social Cognitive and Affective Neuroscience, 9(10), 1552-1560.
pmid: 23986265
[4] Beyer F., Münte T. F., G?ttlich M., & Kr?mer U. M . ( 2015). Orbitofrontal cortex reactivity to angry facial expression in a social interaction correlates with aggressive behavior. Cerebral Cortex, 25(9), 3057-3063.
pmid: 24842782
[5] Bj?rklund A., & Dunnett S. B . ( 2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194-202.
pmid: 17408759
[6] Blair, R. J. R . ( 2012). Considering anger from a cognitive neuroscience perspective. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 65-74.
pmid: 22267973
[7] Brett M., Anton J. L., Valabregue R., & Poline J. B . ( 2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), S497.
[8] Chen G., Hamilton J. P., Thomason M. E., Gotlib I. H., Saad Z. S., & Cox R. W . ( 2009). Granger causality via vector auto-regression tuned for fMRI data analysis. In Proceedings of the 17th annual scientific meeting and exhibition (Vol. 17, p. 1718). Honolulu, Hawaii.
[9] Coccaro E. F., McCloskey M. S., Fitzgerald D. A., & Phan K. L . ( 2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168-178.
pmid: 17210136
[10] Coccaro E. F., Sripada C. S., Yanowitch R. N., & Phan K. L . ( 2011). Corticolimbic function in impulsive aggressive behavior. Biological Psychiatry, 69(12), 1153-1159.
pmid: 21531387
[11] da Cunha-Bang S., Fisher P. M., Hjordt L. V., Perfalk E., Skibsted A. P., Bock C., .. Knudsen G. M . ( 2017). Violent offenders respond to provocations with high amygdala and striatal reactivity. Social Cognitive and Affective Neuroscience, 12(5), 802-810.
pmid: 28338916
[12] Damasio H., Grabowski T., Frank R., Galaburda A. M., & Damasio A. R . ( 1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264(5162), 1102-1105.
pmid: 8178168
[13] Davis M., & Whalen P. J . ( 2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13-34.
pmid: 11244481
[14] D?biec, J. ( 2005). Peptides of love and fear: Vasopressin and oxytocin modulate the integration of information in the amygdala. BioEssays, 27(9), 869-873.
pmid: 16108061
[15] Finger E. C., Marsh A. A., Mitchell D. G., Reid M. E., Sims C., Budhani S., .. Blair J. R . ( 2008). Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning. Archives of General Psychiatry, 65(5), 586-594.
[16] Fite P. J., Rubens S. L., Preddy T. M., Raine A., & Pardini D. A . ( 2014). Reactive/proactive aggression and the development of internalizing problems in males: The moderating effect of parent and peer relationships. Aggressive Behavior, 40(1), 69-78.
pmid: 23868672
[17] Fulwiler C. E., King J. A., & Zhang N. Y . ( 2012). Amygdala- orbitofrontal resting state functional connectivity is associated with trait anger. Neuroreport, 23(10), 606-610.
pmid: 22617448
[18] Gatzke-Kopp L. M., & Beauchaine T. P . ( 2007). Central nervous system substrates of impulsivity: Implications for the development of attention-deficit/hyperactivity disorder and conduct disorder. In D. Coch, G. Dawson, & K. W. Fischer (Eds.), Human behavior, Learning, and the developing brain: Atypical development (pp. 239-263). New York: Guilford.
[19] Gatzke-Kopp L. M., Beauchaine T. P., Shannon K. E., Chipman J., Fleming A. P., Crowell S. E., .. Aylward E . ( 2009). Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders. Journal of Abnormal Psychology, 118(1), 203-213.
pmid: 19222326
[20] Giancola P. R., & Parrott D. J . ( 2008). Further evidence for the validity of the Taylor aggression paradigm. Aggressive Behavior, 34(2), 214-229.
pmid: 17894385
[21] Glenn A. L., & Yang Y. L . ( 2012). The potential role of the striatum in antisocial behavior and psychopathy. Biological Psychiatry, 72(10), 817-822.
pmid: 22672927
[22] Gopal A., Clark E., Allgair A., D'Amato C., Furman M., Gansler D. A., & Fulwiler C . ( 2013). Dorsal/ventral parcellation of the amygdala: Relevance to impulsivity and aggression. Psychiatry Research: Neuroimaging, 211(1), 24-30.
pmid: 23352275
[23] Grahn J. A., Parkinson J. A., & Owen A. M . ( 2009). The role of the basal ganglia in learning and memory: Neuropsychological studies. Behavioural Brain Research, 199(1), 53-60.
pmid: 19059285
[24] Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., .. Schatzberg A. F . ( 2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429-437.
pmid: 17210143
[25] Hahn A., Stein P., Windischberger C., Weissenbacher A., Spindelegger C., Moser E., .. Lanzenberger R . ( 2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage, 56(3), 881-889.
[26] Hamilton J. P., Chen G., Thomason M. E., Schwartz M. E., & Gotlib I. H . ( 2011). Investigating neural primacy in major depressive disorder: Multivariate Granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763-772.
pmid: 2925061
[27] Herpertz S. C., Nagy K., Ueltzh?ffer K., Schmitt R., Mancke F., Schmahl C., & Bertsch K . ( 2017). Brain mechanisms underlying reactive aggression in borderline personality disorder—Sex matters. Biological Psychiatry, 82(4), 257-266.
pmid: 28388995
[28] Hoptman M. J., D'Angelo D., Catalano D., Mauro C. J., Shehzad Z. E., Kelly A. M. C., .. Milham M. P . ( 2010). Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophrenia Bulletin, 36(5), 1020-1028.
pmid: 2930349
[29] Huber D., Veinante P., & Stoop R . ( 2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308(5719), 245-248.
pmid: 15821089
[30] Koenigs M., & Tranel D . ( 2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the ultimatum game. Journal of Neuroscience, 27(4), 951-956.
[31] Kr?mer U. M., Jansma H., Tempelmann C., & Münte T. F . ( 2007). Tit-for-tat: The neural basis of reactive aggression. NeuroImage, 38(1), 203-211.
pmid: 17765572
[32] Kr?mer U. M., Riba J., Richter S., & Münte T. F . ( 2011). An fMRI study on the role of serotonin in reactive aggression. PLoS One, 6(11), e27668.
[33] LeDoux, J. ( 1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44(12), 1229-1238.
pmid: 9861466
[34] LeDoux, J. E . ( 2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155-184.
[35] Lee G. P., Bechara A., Adolphs R., Arena J., Meador K. J., Loring D. W., & Smith J. R . ( 1998). Clinical and physiological effects of stereotaxic bilateral amygdalotomy for intractable aggression. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(4), 413-420.
pmid: 9813786
[36] Liu Y. L., Teng Z. J., Lan H. Y., Zhang X., & Yao D. Z . ( 2015). Short-term effects of prosocial video games on aggression: An event-related potential study. Frontiers in Behavioral Neuroscience, 9, 193.
pmid: 4513560
[37] Lotze M., Veit R., Anders S., & Birbaumer N . ( 2007). Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: An interactive fMRI study. NeuroImage, 34(1), 470-478.
pmid: 17071110
[38] Maren, S. ( 2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897-931.
pmid: 11520922
[39] Mark V. H., Sweet W., & Ervin F . ( 1975). Deep temporal lobe stimulation and destructive lesions in episodically violent temporal lobe epileptics. In W. Fields & W. Sweet (Eds.), Neural bases of violence and aggression (pp. 379-400). St. Louis: Warren H. Greem, Inc.
[40] McCloskey M. S., Phan K. L., Angstadt M., Fettich K. C., Keedy S., & Coccaro E. F . ( 2016). Amygdala hyperactivation to angry faces in intermittent explosive disorder. Journal of Psychiatric Research, 79, 34-41.
pmid: 27145325
[41] McEwen C. A., & McEwen B. S . ( 2017). Social structure, adversity, toxic stress, and intergenerational poverty: An early childhood model. Annual Review of Sociology, 43, 445-472.
[42] Motzkin J. C., Newman J. P., Kiehl K. A., & Koenigs M . ( 2011). Reduced prefrontal connectivity in psychopathy. Journal of Neuroscience, 31(48), 17348-17357.
pmid: 3311922
[43] Narabayashi H., Nagao T., Saito Y., Yoshida M., & Nagahata M . ( 1963). Stereotaxic amygdalotomy for behavior disorders. Archives of Neurology, 9(1), 1-16.
pmid: 13937583
[44] Nelson R. J., & Trainor B. C . ( 2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8(7), 536-546.
[45] New A. S., Hazlett E. A., Buchsbaum M. S., Goodman M., Mitelman S. A., Newmark R., .. Siever L. J . ( 2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology, 32(7), 1629-1640.
[46] Pietrini P., Guazzelli M., Basso G., Jaffe K., & Grafman J . ( 2000). Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. American Journal of Psychiatry, 157(11), 1772-1781.
[47] Ramirez J. M., & Andreu J. M . ( 2006). Aggression, and some related psychological constructs (anger, hostility, and impulsivity) Some comments from a research project. Neuroscience and Biobehavioral Reviews, 30(3), 276-291.
pmid: 16081158
[48] Riva P., Gabbiadini A., Lauro L. J. R., Andrighetto L., Volpato C., & Bushman B. J . ( 2017). Neuromodulation can reduce aggressive behavior elicited by violent video games. Cognitive, Affective, and Behavioral Neuroscience, 17(2), 452-459.
[49] Rosell D. R., & Siever L. J . ( 2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254-279.
pmid: 25936249
[50] Rudebeck P. H., Bannerman D. M., & Rushworth M. F. S . ( 2008). The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cognitive, Affective, and Behavioral Neuroscience, 8(4), 485-497.
pmid: 19033243
[51] Sagvolden T., Johansen E. B., Aase H., & Russell V. A . ( 2005). A dynamic developmental theory of attention- deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28(3), 397-419.
pmid: 16209748
[52] Sah P., Faber E. S. L., Lopez de Lopez M., & Power J. P . ( 2003). The amygdaloid complex: Anatomy and physiology. Physiological Reviews, 83(3), 803-834.
pmid: 12843409
[53] Shannon K. E., Sauder C., Beauchaine T. P., & Gatzke-Kopp L. M . ( 2009). Disrupted effective connectivity between the medial frontal cortex and the caudate in adolescent boys with externalizing behavior disorders. Criminal Justice and Behavior, 36(11), 1141-1157.
[54] Siever, L. J . ( 2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429-442.
pmid: 18346997
[55] Song X. W., Dong Z. Y., Long X. Y., Li S. F., Zuo X. N., Zhu C. Z., .. Zang Y. F . ( 2011). REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.
pmid: 3176805
[56] Takeuchi H., Taki Y., Hashizume H., Sassa Y., Nagase T., Nouchi R., & Kawashima R . ( 2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921-2929.
pmid: 22235031
[57] Taylor, S. P . ( 1967). Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression. Journal of Personality, 35(2), 297-310.
pmid: 6059850
[58] Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., .. Joliot M . ( 2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273-289.
pmid: 1177199511771995
[59] V?llm B., Richardson P., McKie S., Elliott R., Dolan M., & Deakin B . ( 2007). Neuronal correlates of reward and loss in cluster B personality disorders: A functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 156(2), 151-167.
pmid: 17920821
[60] Wu Q. Z., Li D. M., Kuang W. H., Zhang T. J., Lui S., Huang X. Q., .. Gong Q. Y . ( 2011). Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Human Brain Mapping, 32(8), 1290-1299.
pmid: 20665717
[61] Yan C. G., & Zang Y. F . ( 2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 413.
pmid: 2889691
[62] Zeng L. L., Shen H., Liu L., Wang L. B., Li B. J., Fang P., .. Hu D. W . ( 2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135(5), 1498-1507.
pmid: 22418737
[63] Zink C. F., Pagnoni G., Martin M. E., Dhamala M., & Berns G. S . ( 2003). Human striatal response to salient nonrewarding stimuli. Journal of Neuroscience, 23(22), 8092-8097.
pmid: 12954871
[64] Zink C. F., Pagnoni G., Martin-Skurski M. E., Chappelow J. C., & Berns G. S . ( 2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509-517.
pmid: 15134646
[65] Zuo X. N., Di Martino A., Kelly C., Shehzad Z. E., Gee D. G., Klein D. F., .. Milham M. P . ( 2010). The oscillating brain: Complex and reliable. NeuroImage, 49(2), 1432-1445.
pmid: 2856476
[1] 王思思, 库逸轩.  右侧背外侧前额叶在视觉工作记忆中 的因果性作用[J]. 心理学报, 2018, 50(7): 727-738.
[2] 陈伟, 李俊娇, 曹杨婧文, 杨勇, 胡琰健, 郑希付.  预期错误在复合恐惧记忆提取消退中的作用[J]. 心理学报, 2018, 50(7): 739-749.
[3] 王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响[J]. 心理学报, 2018, 50(6): 647-654.
[4] 杨青青, 胡娜, 陈旭, 牛娟, 翟晶.  恋人亲密情景下的回避型与安全型 依恋个体情绪调节电生理差异[J]. 心理学报, 2018, 50(3): 306-316.
[5] 徐 亮, 谢晓媛, 闫 沛, 李俊娇, 郑希付.  条件性恐惧泛化的性别差异[J]. 心理学报, 2018, 50(2): 197-205.
[6] 甘甜, 石睿, 刘超, 罗跃嘉.  经颅直流电刺激右侧颞顶联合区 对助人意图加工的影响[J]. 心理学报, 2018, 50(1): 36-46.
[7] 田录梅, 袁竞驰, 李永梅.  同伴在场和自尊水平对青少年冒险行为的影响:来自ERPs的证据[J]. 心理学报, 2018, 50(1): 47-57.
[8] 刘潞潞, 卢家楣, 和美, 周建设, 肖晶, 罗劲. 先苦后乐:英语乐学大学生在英语学习时情绪反应的脑认知特点[J]. 心理学报, 2017, 49(11): 1414-1427.
[9] 周雅, 范方, 彭婷, 李媛媛, 龙可, 周洁莹, 梁颖欣.  NR3C1基因多态性及单倍型、父母教养方式 对青少年焦虑障碍的影响[J]. 心理学报, 2017, 49(10): 1287-1301.
[10] 付艺蕾, 罗跃嘉, 崔芳.  选择一致性影响结果评价的ERP研究[J]. 心理学报, 2017, 49(8): 1089-1099.
[11] 王沛, 陈庆伟, 唐晓晨, 罗俊龙, 谈晨皓, 高凡.  中国人三重自我建构加工中的相对优先性: 来自ERP的证据[J]. 心理学报, 2017, 49(8): 1072-1079.
[12] 王益文, 付超, 任相峰, 林羽中, 郭丰波, 张 振, 黄亮, 袁博, 郑玉玮.  自恋人格调节信任博弈的结果评价[J]. 心理学报, 2017, 49(8): 1080-1088.
[13] 王健, 袁立伟, 张芷, 王诗忠.  视觉预期和注意指向对姿势和动作肌肉 预期和补偿姿势调节的影响[J]. 心理学报, 2017, 49(7): 920-927.
[14] 白云静,韩锦,李勇辉,黄砚北,杨晓燕,隋南. 伏隔核和中脑腹侧被盖区内食欲素在吗啡奖赏中的作用[J]. 心理学报, 2009, 41(04): 329-336.
[15]

David Reiss

. 儿童发展中的社会过程和遗传的影响:双生子和养子女设计的新颖方法[J]. 心理学报, 2008, 40(10): 1099-1105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn