心理学报 ›› 2023, Vol. 55 ›› Issue (1): 106-116.doi: 10.3724/SP.J.1041.2023.00106
收稿日期:
2021-12-09
发布日期:
2022-10-13
出版日期:
2023-01-25
通讯作者:
喻婧
E-mail:helen12@swu.edu.cn
基金资助:
LI Yan1, CHENG Jing-Xuan1, YU Jing1,2()
Received:
2021-12-09
Online:
2022-10-13
Published:
2023-01-25
Contact:
YU Jing
E-mail:helen12@swu.edu.cn
摘要:
记忆更新是获取新知识的一种重要能力。大量研究显示老年人情景记忆受损, 但鲜有研究探讨老年人情景记忆更新模式的改变。研究在匹配了老年人和年轻人编码程度的前提下, 探讨情景记忆更新的老化效应及其潜在的认知机制。我们对AB-AC记忆更新范式进行了创新, 同时考察了在项目改变和位置改变条件下的老化效应, 并在测试阶段纳入诱饵选项, 进一步排除编码程度带来的影响。研究结果显示年轻人能对A-B和A-C记忆分离存储, 而老年人更多地受到回溯性记忆干扰, 即在A-B测试中出现C的闯入, 并且该干扰效应显著地大于诱饵刺激带来的影响。研究结果表明, 在年轻人和老年人编码程度匹配的情况下, 年轻人的记忆更新通过记忆分化来实现, 而老年人更多地受到竞争记忆的回溯性干扰。
中图分类号:
李妍, 程竞暄, 喻婧. (2023). 老年人情景记忆更新的改变:竞争记忆的回溯性干扰. 心理学报, 55(1), 106-116.
LI Yan, CHENG Jing-Xuan, YU Jing. (2023). Aging effect on episodic memory updating: Retrograde interference in competitive memory retrieval. Acta Psychologica Sinica, 55(1), 106-116.
图2 实验流程图和测试阶段选项框架。(a)实验流程:第一天, 被试学习A (场景)-B (项目/位置)连接; 第二天, 被试需首先对A-B连接进行回顾, 然后对新的A-C连接进行学习。所有被试于第三天、第五天返回实验室完成A-B测试(按照第一天的学习进行判断)和A-C测试(按照第二天的学习进行判断)。(b) 测试阶段选项示意图。目标选项指在A-B测试中的B和A-C测试中的C; 竞争选项则是指A-B测试中的C和A-C测试中的B; 诱饵选项是指与目标不同但非常相似的项目或位置, 即A-B测试中的B’和A-C测试中的C’。
变量 | 年轻人(n = 30) | 老年人(n = 30) | t | df | p |
---|---|---|---|---|---|
年龄(岁) | 18.70 ± 0.79 | 64.72 ± 5.04 | ?48.01 | 29.31 | < 0.001*** |
男性(%) | 40 | 17 | 2.70a | 1 | 0.101 |
教育年限 | 12.67 ± 0.80 | 10.76 ± 2.80 | 3.53 | 32.43 | < 0.001*** |
MMSE | ― | 27.21 ± 2.26 | ― | ― | ― |
表1 年轻人和老年人人口统计学信息
变量 | 年轻人(n = 30) | 老年人(n = 30) | t | df | p |
---|---|---|---|---|---|
年龄(岁) | 18.70 ± 0.79 | 64.72 ± 5.04 | ?48.01 | 29.31 | < 0.001*** |
男性(%) | 40 | 17 | 2.70a | 1 | 0.101 |
教育年限 | 12.67 ± 0.80 | 10.76 ± 2.80 | 3.53 | 32.43 | < 0.001*** |
MMSE | ― | 27.21 ± 2.26 | ― | ― | ― |
变量 | 项目改变 | 位置改变 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
F | df | p | ηp2 | 90% CI | F | df | p | ηp2 | 90% CI | |
年龄 | 2.21 | 1 | 0.143 | 0.04 | [0.00, 0.15] | 0.00 | 1 | 0.998 | 0.00 | [0.00, 0.00] |
连接记忆 | 1.14 | 1 | 0.291 | 0.02 | [0.00, 0.12] | 0.00 | 1 | 0.999 | 0.00 | [0.00, 0.00] |
类别 | 535.21 | 2 | < 0.001*** | 0.90 | [0.88, 0.92] | 321.09 | 2 | < 0.001*** | 0.85 | [0.81, 0.88] |
时间 | 0.99 | 1 | 0.323 | 0.02 | [0.00, 0.11] | 0.00 | 1 | 0.981 | 0.00 | [0.00, 0.00] |
年龄×连接记忆 | 2.29 | 1 | 0.135 | 0.04 | [0.00, 0.15] | 0.00 | 1 | 0.991 | 0.00 | [0.00, 0.00] |
年龄×类别 | 30.92 | 2 | < 0.001*** | 0.35 | [0.24, 0.45] | 32.84 | 2 | < 0.001*** | 0.37 | [0.25, 0.46] |
年龄×时间 | 2.28 | 1 | 0.137 | 0.04 | [0.00, 0.18] | 0.00 | 1 | 0.991 | 0.00 | [0.00, 0.00] |
连接记忆×类别 | 25.48 | 2 | < 0.001*** | 0.31 | [0.19, 0.40] | 7.38 | 2 | 0.001** | 0.12 | [0.03, 0.20] |
连接记忆×时间 | 1.16 | 1 | 0.286 | 0.02 | [0.00, 0.12] | 0.00 | 1 | 0.999 | 0.00 | [0.00, 0.00] |
类别×时间 | 0.55 | 1.51 | 0.577 | 0.01 | [0.00, 0.05] | 0.54 | 1.51 | 0.597 | 0.01 | [0.00, 0.04] |
年龄×连接记忆×类别 | 14.20 | 2 | < 0.001*** | 0.20 | [0.09, 0.30] | 9.69 | 2 | < 0.001*** | 0.15 | [0.05, 0.24] |
年龄×连接记忆×时间 | 2.33 | 1 | 0.133 | 0.04 | [0.00, 0.15] | 0.00 | 1 | 0.991 | 0.00 | [0.00, 0.00] |
年龄×类别×时间 | 0.04 | 2 | 0.965 | 0.00 | [0.00, 0.00] | 2.03 | 2 | 0.137 | 0.03 | [0.00, 0.11] |
连接记忆×类别×时间 | 6.67 | 2 | 0.002** | 0.10 | [0.03, 0.19] | 5.71 | 2 | 0.005** | 0.09 | [0.02, 0.17] |
年龄×连接记忆×类别×时间 | 0.26 | 2 | 0.771 | 0.01 | [0.00, 0.03] | 2.28 | 2 | 0.107 | 0.04 | [0.00, 0.10] |
表2 重复测量方差分析结果
变量 | 项目改变 | 位置改变 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
F | df | p | ηp2 | 90% CI | F | df | p | ηp2 | 90% CI | |
年龄 | 2.21 | 1 | 0.143 | 0.04 | [0.00, 0.15] | 0.00 | 1 | 0.998 | 0.00 | [0.00, 0.00] |
连接记忆 | 1.14 | 1 | 0.291 | 0.02 | [0.00, 0.12] | 0.00 | 1 | 0.999 | 0.00 | [0.00, 0.00] |
类别 | 535.21 | 2 | < 0.001*** | 0.90 | [0.88, 0.92] | 321.09 | 2 | < 0.001*** | 0.85 | [0.81, 0.88] |
时间 | 0.99 | 1 | 0.323 | 0.02 | [0.00, 0.11] | 0.00 | 1 | 0.981 | 0.00 | [0.00, 0.00] |
年龄×连接记忆 | 2.29 | 1 | 0.135 | 0.04 | [0.00, 0.15] | 0.00 | 1 | 0.991 | 0.00 | [0.00, 0.00] |
年龄×类别 | 30.92 | 2 | < 0.001*** | 0.35 | [0.24, 0.45] | 32.84 | 2 | < 0.001*** | 0.37 | [0.25, 0.46] |
年龄×时间 | 2.28 | 1 | 0.137 | 0.04 | [0.00, 0.18] | 0.00 | 1 | 0.991 | 0.00 | [0.00, 0.00] |
连接记忆×类别 | 25.48 | 2 | < 0.001*** | 0.31 | [0.19, 0.40] | 7.38 | 2 | 0.001** | 0.12 | [0.03, 0.20] |
连接记忆×时间 | 1.16 | 1 | 0.286 | 0.02 | [0.00, 0.12] | 0.00 | 1 | 0.999 | 0.00 | [0.00, 0.00] |
类别×时间 | 0.55 | 1.51 | 0.577 | 0.01 | [0.00, 0.05] | 0.54 | 1.51 | 0.597 | 0.01 | [0.00, 0.04] |
年龄×连接记忆×类别 | 14.20 | 2 | < 0.001*** | 0.20 | [0.09, 0.30] | 9.69 | 2 | < 0.001*** | 0.15 | [0.05, 0.24] |
年龄×连接记忆×时间 | 2.33 | 1 | 0.133 | 0.04 | [0.00, 0.15] | 0.00 | 1 | 0.991 | 0.00 | [0.00, 0.00] |
年龄×类别×时间 | 0.04 | 2 | 0.965 | 0.00 | [0.00, 0.00] | 2.03 | 2 | 0.137 | 0.03 | [0.00, 0.11] |
连接记忆×类别×时间 | 6.67 | 2 | 0.002** | 0.10 | [0.03, 0.19] | 5.71 | 2 | 0.005** | 0.09 | [0.02, 0.17] |
年龄×连接记忆×类别×时间 | 0.26 | 2 | 0.771 | 0.01 | [0.00, 0.03] | 2.28 | 2 | 0.107 | 0.04 | [0.00, 0.10] |
[1] |
Anderson M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language, 49(4), 415-445. https://doi.org/10.1016/j.jml.2003.08.006
doi: 10.1016/j.jml.2003.08.006 URL |
[2] | Anderson M. C., & Neely J. H. (1996). Interference and inhibition in memory retrieval. In E. L. Bjork & R. A. Bjork (Eds.), Memory (pp.237-313). San Diego: CA: Academic Press. https://doi.org/10.1016/B978-012102570-0/50010-0. |
[3] |
Bakker A., Kirwan C. B., Miller M., & Stark C. E. L. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 319(5870), 1640-1642. https://doi.org/10.1126/science.1152882
doi: 10.1126/science.1152882 URL pmid: 18356518 |
[4] |
Brewer N., & Wells G. L. (2006). The confidence-accuracy relationship in eyewitness identification: Effects of lineup instructions, foil similarity, and target-absent base rates. Journal of Experimental Psychology: Applied, 12(1), 11-30. https://doi.org/10.1037/1076-898X.12.1.11
doi: 10.1037/1076-898X.12.1.11 URL |
[5] |
Burton R. L., Lek I., & Caplan J. B. (2017). Associative independence revisited: Competition between conflicting associations can be resolved or even reversed in one trial. Quarterly Journal of Experimental Psychology, 70(4), 832-857. https://doi.org/10.1080/17470218.2016.1171886
doi: 10.1080/17470218.2016.1171886 URL |
[6] |
Burton R. L., Lek I., Dixon R. A., & Caplan J. B. (2019). Associative interference in older and younger adults. Psychology and Aging, 34(4), 558-571. https://doi.org/10.1037/pag0000361
doi: 10.1037/pag0000361 URL pmid: 31094536 |
[7] |
Cansino S. (2009). Episodic memory decay along the adult lifespan: A review of behavioral and neurophysiological evidence. International Journal of Psychophysiology, 71(1), 64-69. https://doi.org/10.1016/j.ijpsycho.2008.07.005.
doi: 10.1016/j.ijpsycho.2008.07.005 URL pmid: 18725253 |
[8] | Craik F. I. M. (1986). A functional account of age differences in memory. In I. F. F. H. Hagendorf (Ed.), Human memory and cognitive capabilities: Mechanisms and performances (pp. 409-422). Amsterdam, the Netherlands: North-Holland. |
[9] |
Dodson C. S., Bawa S., & Krueger L. E. (2007). Aging, metamemory, and high-confidence errors: A misrecollection account. Psychology and Aging, 22(1), 122-133. https://doi.org/10.1037/0882-7974.22.1.122
URL pmid: 17385989 |
[10] |
Dodson C. S., & Krueger L. E. (2006). I misremember it well: Why older adults are unreliable eyewitnesses. Psychonomic Bulletin & Review, 13(5), 770-775. https://doi.org/10.3758/bf03193995
doi: 10.3758/BF03193995 URL |
[11] |
Driscoll I., Hamilton D. A., Petropoulos H., Yeo R. A., Brooks W. M., Baumgartner R. N., & Sutherland R. J. (2003). The aging hippocampus: Cognitive, biochemical and structural findings. Cerebral Cortex, 13(12), 1344-1351. https://doi.org/10.1093/cercor/bhg081
URL pmid: 14615299 |
[12] |
Dudai Y. (2012). The restless engram: Consolidations never end. Annual Review of Neuroscience, 35, 227-247. https://doi.org/10.1146/annurev-neuro-062111-150500
doi: 10.1146/annurev-neuro-062111-150500 URL pmid: 22443508 |
[13] |
Fandakova Y., Shing Y. L., & Lindenberger U. (2013). High-confidence memory errors in old age: The roles of monitoring and binding processes. Memory, 21(6), 732-750. https://doi.org/10.1080/09658211.2012.756038
doi: 10.1080/09658211.2012.756038 URL pmid: 23305088 |
[14] | Faul F., Erdfelder E., Lang A. G., & Buchner A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, (39), 175-191. https://doi.org/10.3758/BF03193146 |
[15] |
Folstein M. F., Folstein S. E., & McHugh P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189-198. https://doi.org/10.1016/0022-3956(75)90026-6
doi: 10.1016/0022-3956(75)90026-6 URL pmid: 1202204 |
[16] |
Holden H. M., Hoebel C., Loftis K., & Gilbert P. E. (2012). Spatial pattern separation in cognitively normal young and older adults. Hippocampus, 22(9), 1826-1832. https://doi.org/10.1002/hipo.22017
doi: 10.1002/hipo.22017 URL pmid: 22467270 |
[17] |
Howe M. L., Akhtar S., Bland C. E., & Hellenthal M. V. (2020). Reconsolidation or interference? Aging effects and the reactivation of novel and familiar episodic memories. Memory, 28(7), 839-849. https://doi.org/10.1080/09658211.2019.1705489
doi: 10.1080/09658211.2019.1705489 URL pmid: 31868120 |
[18] |
Hulbert J. C., & Norman K. A. (2015). Neural Differentiation tracks improved recall of competing memories following interleaved study and retrieval practice. Cerebral Cortex, 25(10), 3994-4008. https://doi.org/10.1093/cercor/bhu284
doi: 10.1093/cercor/bhu284 URL |
[19] |
Hupbach A., Gomez R., Hardt O., & Nadel L. (2007). Reconsolidation of episodic memories: A subtle reminder triggers integration of new information. Learning and Memory, 14(1-2), 47-53. https://doi.org/10.1101/lm.365707
URL pmid: 17202429 |
[20] |
Jacoby L. L., & Rhodes M. G. (2006). False remembering in the aged. Current Directions in Psychological Science, 15(2), 49-53. https://doi.org/10.1111/j.0963-7214.2006.00405.x
doi: 10.1111/j.0963-7214.2006.00405.x URL |
[21] | Jacoby L. L., Wahlheim C., N., & Kelley C.,M. (2015). Memory consequences of looking back to notice change: Retroactive and proactive facilitation. Journal of Experimental Psychology: Learning, Memory and Cognition, 41( 5), 1282-1297. https://doi.org/10.1037/xlm0000123 |
[22] |
Lee J. L. C. (2009). Reconsolidation: Maintaining memory relevance. Trends in Neurosciences, 32(8), 413-420. https://doi.org/10.1016/j.tins.2009.05.002
doi: 10.1016/j.tins.2009.05.002 URL pmid: 19640595 |
[23] |
Lee J. L. C., Nader K., & Schiller D. (2017). An update on memory reconsolidation updating. Trends in Cognitive Science, 21(7), 531-545. https://doi.org/10.1016/j.tics.2017.04.006
doi: 10.1016/j.tics.2017.04.006 URL |
[24] |
McClelland J. L., McNaughton B. L., & O'Reilly R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419-457. https://doi.org/10.1037/0033-295X.102.3.419
doi: 10.1037/0033-295X.102.3.419 URL pmid: 7624455 |
[25] |
Mohanty P. P., Naveh-Benjamin M., & Ratneshwar S. (2016). Beneficial effects of semantic memory support on older adults’ episodic memory: Differential patterns of support of item and associative information. Psychology and Aging, 31(1), 25-36. https://doi.org/10.1037/pag0000059
doi: 10.1037/pag0000059 URL |
[26] |
Norman K. A. (2010). How hippocampus and cortex contribute to recognition memory: Revisiting the complementary learning systems model. Hippocampus, 20(11), 1217-1227. https://doi.org/10.1002/hipo.20855
doi: 10.1002/hipo.20855 URL pmid: 20857486 |
[27] |
Norman K. A., & O'Reilly R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611-646. https://doi.org/10.1037/0033-295x.110.4.611
URL pmid: 14599236 |
[28] |
Nyberg L., Maitland S. B., Rönnlund M., Bäckman L., Dixon R. A., Wahlin A., & Nilsson L. G. (2003). Selective adult age differences in an age-invariant multifactor model of declarative memory. Psychology and Aging, 18(1), 149-160. https://doi.org/10.1037/0882-7974.18.1.149
URL pmid: 12641319 |
[29] |
Old S. R., & Naveh-Benjamin M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104-118. https://doi.org/10.1037/0882-7974.23.1.104
doi: 10.1037/0882-7974.23.1.104 URL pmid: 18361660 |
[30] |
Palmer E. C., David A. S., & Fleming S. M. (2014). Effects of age on metacognitive efficiency. Consciousness and Cognition, 28, 151-160. https://doi.org/10.1016/j.concog.2014.06.007
doi: 10.1016/j.concog.2014.06.007 URL pmid: 25064692 |
[31] |
Runquist W. N. (1975). Interference among memory traces. Memory & Cognition, 3(2), 143-159. https://doi.org/10.3758/BF03212891
doi: 10.3758/BF03212891 URL |
[32] |
Scully I. D., Napper L. E., & Hupbach A. (2017). Does reactivation trigger episodic memory change? A meta- analysis. Neurobiology of Learning and Memory, 142(Part A),99-107. https://doi.org/10.1016/j.nlm.2016.12.012
doi: S1074-7427(16)30404-X URL pmid: 28025069 |
[33] |
Shing Y. L., Werkle-Bergner M., Li S. C., & Lindenberger U. (2009). Committing memory errors with high confidence: Older adults do but children don't. Memory, 17(2), 169-179. https://doi.org/10.1080/09658210802190596
doi: 10.1080/09658210802190596 URL pmid: 18608975 |
[34] |
Small S. A., Wei Y. T., Delapaz R., Mayeux R., & Stern Y. (2002). Imaging hippocampal function across the human life span: Is memory decline normal or not? Annals of Neurology, 51(3), 290-295. https://doi.org/10.1002/ana.10105
URL pmid: 11891823 |
[35] |
Stark S. M., Yassa M. A., Lacy J. W., & Stark C. E. (2013). A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51(12), 2442-2449. https://doi.org/10.1016/j.neuropsychologia.2012.12.014
doi: 10.1016/j.neuropsychologia.2012.12.014 URL pmid: 23313292 |
[36] |
Stawarczyk D., Wahlheim C. N., Etzel J. A., Snyder A. Z., & Zacks J. M. (2020). Aging and the encoding of changes in events: The role of neural activity pattern reinstatement. Proceedings of the National Academy of Sciences of the United States of America, 117(47), 29346-29353. https://doi.org/10.1073/pnas.1918063117
doi: 10.1073/pnas.1918063117 URL pmid: 33229530 |
[37] | Tulving E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory. San Diego: CA: Academic Press. |
[38] |
Vestergren P., & Nilsson L. G. (2011). Perceived causes of everyday memory problems in a population-based sample aged 39-99. Applied Cognitive Psychology, 25(4), 641-646. https://doi.org/10.1002/acp.1734
doi: 10.1002/acp.1734 URL |
[39] |
West M. J. (1993). Regionally specific loss of neurons in the aging human hippocampus. Neurobiology of Aging, 14(4), 287-293. https://doi.org/10.1016/0197-4580(93)90113-P
URL pmid: 8367010 |
[40] |
Xue G. (2018). The neural representations underlying human episodic memory. Trends in Cognitive Science, 22(6), 544-561. https://doi.org/10.1016/j.tics.2018.03.004
doi: 10.1016/j.tics.2018.03.004 URL |
[41] |
Yassa M. A., & Stark C. E. L. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515-525. https://doi.org/10.1016/j.tins.2011.06.006
doi: 10.1016/j.tins.2011.06.006 URL pmid: 21788086 |
[42] |
Ye Z., Shi L., Li A., Chen C., & Xue G. (2020). Retrieval practice facilitates memory updating by enhancing and differentiating medial prefrontal cortex representations. eLife, 9, e57023. https://doi.org/10.7554/eLife.57023
doi: 10.7554/eLife.57023 URL |
[43] |
Zancada-Menendez C., Sampedro-Piquero P., Meneghetti C., Labate E., Begega A., & Lopez L. (2015). Age differences in path learning: The role of interference in updating spatial information. Learning and Individual Differences, 38, 83-89. https://doi.org/10.1016/j.lindif.2015.01.015
doi: 10.1016/j.lindif.2015.01.015 URL |
[1] | 龙翼婷, 姜英杰, 崔璨, 岳阳. 奖赏预测误差对项目和联结记忆影响的分离:元记忆的作用[J]. 心理学报, 2023, 55(6): 877-891. |
[2] | 李建花, 解佳佳, 庄锦英. 生理周期对情景记忆的影响[J]. 心理学报, 2022, 54(5): 466-480. |
[3] | 张环, 王欣, 刘一贝, 曹贤才, 吴捷. 成员关系对协作提取成绩的影响[J]. 心理学报, 2021, 53(5): 481-493. |
[4] | 周文洁, 邓丽群, 丁锦红. 物体颜色对情景记忆的影响[J]. 心理学报, 2021, 53(3): 229-243. |
[5] | 金花, 梁紫平, 朱子良, 严世振, 林琳, 艾克旦·艾斯卡尔, 尹建忠, 姜云鹏, 田鑫. 整体运动知觉老化伴随颞中回静息态功能改变[J]. 心理学报, 2021, 53(1): 38-54. |
[6] | 吴翰林, 于宙, 王雪娇, 张清芳. 语言能力的老化机制:语言特异性与非特异性因素的共同作用[J]. 心理学报, 2020, 52(5): 541-561. |
[7] | 赵瑞瑛, 娄昊, 欧阳明昆, 张清芳. 自然情境下舌尖效应的认知年老化——日记研究[J]. 心理学报, 2019, 51(5): 598-611. |
[8] | 杨群, 张清芳. 汉语图画命名过程的年老化机制:非选择性抑制能力的影响 *[J]. 心理学报, 2019, 51(10): 1079-1090. |
[9] | 周楚, 苏曼, 周冲, 杨艳, 席雅琪, 董群. 想象膨胀范式下错误记忆的老化效应[J]. 心理学报, 2018, 50(12): 1369-1380. |
[10] | 黄婷婷; 刘莉倩;王大华;张文海. 经济地位和计量地位:社会地位比较对主观幸福感的影响及其年龄差异[J]. 心理学报, 2016, 48(9): 1163-1174. |
[11] | 陈栩茜;张积家;朱云霞. 言语产生老化中的抑制损伤:来自不同任务的证据[J]. 心理学报, 2015, 47(3): 329-343. |
[12] | 毛晓飞;彭华茂. 视知觉压力在基本心理能力老化中的作用[J]. 心理学报, 2015, 47(1): 29-38. |
[13] | 刘盼,谢宁,吴艳红. 认知老化中有意控制对自动抑制的调节作用[J]. 心理学报, 2010, 42(10): 981-987. |
[14] | Lars Bä,ckman. 前临床期痴呆的认知特征:当前研究进展和未来研究展望[J]. 心理学报, 2009, 41(11): 1040-1048. |
[15] | Soledad Ballesteros and Julia Mayas. 保留的跨通道启动与老化:对于近期观点的总结[J]. 心理学报, 2009, 41(11): 1063-1074. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||