心理学报 ›› 2023, Vol. 55 ›› Issue (6): 968-977.doi: 10.3724/SP.J.1041.2023.00968
收稿日期:
2022-06-16
发布日期:
2023-03-06
出版日期:
2023-06-25
通讯作者:
刘洁
E-mail:ljier06@gmail.com
基金资助:
CUI Fang1, LIAO Xinming2, YANG Jiawang1, LIU Jie1()
Received:
2022-06-16
Online:
2023-03-06
Published:
2023-06-25
摘要:
数学焦虑是一种对数学感到紧张焦虑的情绪反应。以往研究发现, 个体的数学焦虑水平越高, 在包括数学概念知识在内的不同类型数学任务中的表现就越差。本研究旨在探讨数学焦虑影响数学概念知识加工的脑机制。在控制广泛性焦虑的影响后, 筛选出92名健康成年人, 对其数学焦虑水平、语言理解能力、智力及其在数学概念知识任务中的表现进行了测量和分析。结果发现, 在控制了语言理解能力和智力的影响后, 个体的数学焦虑水平与其在数学概念知识任务中的成绩呈现显著负相关。对静息态功能磁共振数据的分析发现, 个体右侧水平段顶内沟与右侧脑岛之间的功能连接强度可以显著预测其数学概念知识成绩, 且该功能连接完全中介了数学焦虑水平与数学概念知识成绩之间的相关。这一结果表明, 数学/计算相关脑区(顶内沟)与焦虑相关脑区(脑岛)之间的相互作用可能是数学焦虑干扰数学概念知识任务的神经基础。
中图分类号:
崔芳, 廖心明, 杨嘉望, 刘洁. (2023). 数学焦虑影响数学概念知识加工的脑机制:静息态功能磁共振研究. 心理学报, 55(6), 968-977.
CUI Fang, LIAO Xinming, YANG Jiawang, LIU Jie. (2023). The neural mechanism of the impact of mathematical anxiety on the math conceptual knowledge: Evidence from a resting-state fMRI study. Acta Psychologica Sinica, 55(6), 968-977.
脑区名称 | MNI坐标[x, y, z] | 选取来源 |
---|---|---|
左侧水平段顶内沟(lHIPS) | [−34, −54, 46] | (Boccia et al., |
右侧水平段顶内沟(rHIPS) | [32, −56, 52] | (Boccia et al., |
左侧颞中回(MTG) | [−58, −44, 0] | (Wu et al., |
左侧眶额下回(IFG) | [−46, 28, −4] | (Binder et al., |
表1 感兴趣脑区(ROI)信息
脑区名称 | MNI坐标[x, y, z] | 选取来源 |
---|---|---|
左侧水平段顶内沟(lHIPS) | [−34, −54, 46] | (Boccia et al., |
右侧水平段顶内沟(rHIPS) | [32, −56, 52] | (Boccia et al., |
左侧颞中回(MTG) | [−58, −44, 0] | (Wu et al., |
左侧眶额下回(IFG) | [−46, 28, −4] | (Binder et al., |
测试 | 指标 | M (SD) | 得分范围 | 偏度 | 峰度 | 正态性检验(K-S检验) | 内部一致性系数(α) |
---|---|---|---|---|---|---|---|
算术原理测验 | 正确回 答次数 | 18.98(5.87) | 5~32 | −0.16 | −0.74 | p > 0.05 | 0.84 |
词汇语义测验 | 40.43(7.68) | 13~56 | −0.43 | 0.59 | p > 0.05 | 0.83 | |
非语言矩阵推理测验 | 30.40(6.76) | 12~51 | 0.61 | 1.45 | p > 0.05 | 0.71 |
表2 认知测验的描述性统计
测试 | 指标 | M (SD) | 得分范围 | 偏度 | 峰度 | 正态性检验(K-S检验) | 内部一致性系数(α) |
---|---|---|---|---|---|---|---|
算术原理测验 | 正确回 答次数 | 18.98(5.87) | 5~32 | −0.16 | −0.74 | p > 0.05 | 0.84 |
词汇语义测验 | 40.43(7.68) | 13~56 | −0.43 | 0.59 | p > 0.05 | 0.83 | |
非语言矩阵推理测验 | 30.40(6.76) | 12~51 | 0.61 | 1.45 | p > 0.05 | 0.71 |
[1] | Alexander L., & Martray C. (1989). The development of an abbreviated version of the mathematics anxiety rating scale. Measurement and Evaluation in Counseling and Development, 22(3), 143-150. |
[2] |
Ansari D., Fugelsang J. A., Dhital B., & Venkatraman V. (2006). Dissociating response conflict from numerical magnitude processing in the brain: An event-related fMRI study. Neuroimage, 32(2), 799-805.
pmid: 16731007 |
[3] |
Ashcraft M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181-185.
doi: 10.1111/1467-8721.00196 URL |
[4] | Ashcraft M. H., Donley R. D., Halas M. A., & Vakali M. (1992). Working memory, automaticity, and problem difficulty. In J. I. D. Campbell (Ed.), The nature and origins of mathematical skills (pp. 301-329). North-Holland. |
[5] |
Ashcraft M. H., & Moore A. M. (2009). Mathematics anxiety and the affective drop in performance. Journal of Psychoeducational Assessment, 27(3), 197-205.
doi: 10.1177/0734282908330580 URL |
[6] |
Barroso C., Ganley C. M., McGraw A. L., Geer E. A., Hart S. A., & Daucourt M. C. (2021). A meta-analysis of the relation between math anxiety and math achievement. Psychological Bulletin, 147(2), 134-168.
doi: 10.1037/bul0000307 pmid: 33119346 |
[7] |
Basten U., Stelzel C., & Fiebach C. J. (2011). Trait anxiety modulates the neural efficiency of inhibitory control. Journal of Cognitive Neuroscience, 23(10), 3132-3145.
doi: 10.1162/jocn_a_00003 pmid: 21391763 |
[8] |
Binder J. R., Desai R. H., Graves W. W., & Conant L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767-2796.
doi: 10.1093/cercor/bhp055 URL |
[9] |
Bishop S. J. (2007). Neurocognitive mechanisms of anxiety: An integrative account. Trends in Cognitive Sciences, 11(7), 307-316.
doi: 10.1016/j.tics.2007.05.008 pmid: 17553730 |
[10] |
Bishop S. J. (2009). Trait anxiety and impoverished prefrontal control of attention. Nature Neuroscience, 12(1), 92-98.
doi: 10.1038/nn.2242 pmid: 19079249 |
[11] |
Boccia M., Nemmi F., & Guariglia C. (2014). Neuropsychology of environmental navigation in humans: Review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review, 24(2), 236-251.
doi: 10.1007/s11065-014-9247-8 pmid: 24488500 |
[12] |
Ching B. H. H., Kong K. H. C., Wu H. X., & Chen T. T. (2020). Examining the reciprocal relations of mathematics anxiety to quantitative reasoning and number knowledge in Chinese children. Contemporary Educational Psychology, 63, 101919.
doi: 10.1016/j.cedpsych.2020.101919 URL |
[13] | Choe K. W., Jenifer J. B., Rozek C. S., Berman M. G., & Beilock S. L. (2019). Calculated avoidance: Math anxiety predicts math avoidance in effort-based decision-making. Science Advances, 5(11), eaay1062. |
[14] |
Cohen Kadosh R., Henik A., Rubinsten O., Mohr H., Dori H., van de Ven V., … Linden D. E. (2005). Are numbers special?: The comparison systems of the human brain investigated by fMRI. Neuropsychologia, 43 (9), 1238-1248.
pmid: 15949508 |
[15] | Daker R. J., Gattas S. U., Sokolowski H. M., Green A. E., & Lyons I. M. (2021). First-year students’ math anxiety predicts STEM avoidance and underperformance throughout university, independently of math ability. Science of Learning, 6(1), 1-13. |
[16] |
Dehaene S., Spelke E., Pinel P., Stanescu R., & Tsivkin S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970-974.
doi: 10.1126/science.284.5416.970 pmid: 10320379 |
[17] |
di Martino A., Ross K., Uddin L. Q., Sklar A. B., Castellanos F. X., & Milham M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65(1), 63-74.
doi: 10.1016/j.biopsych.2008.09.022 URL |
[18] |
Dosenbach N. U., Fair D. A., Cohen A. L., Schlaggar B. L., & Petersen S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99-105.
doi: 10.1016/j.tics.2008.01.001 pmid: 18262825 |
[19] |
Eger E., Sterzer P., Russ M. O., Giraud A. L., & Kleinschmidt A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719-726.
doi: 10.1016/s0896-6273(03)00036-9 pmid: 12597867 |
[20] |
Etkin A., Prater K. E., Schatzberg A. F., Menon V., & Greicius M. D. (2009). Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Archives of General Psychiatry, 66(12), 1361-1372.
doi: 10.1001/archgenpsychiatry.2009.104 pmid: 19996041 |
[21] |
Faul F., Erdfelder E., Buchner A., & Lang A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160.
doi: 10.3758/BRM.41.4.1149 pmid: 19897823 |
[22] |
Friston K. J., Williams S., Howard R., Frackowiak R. S., & Turner R. (1996). Movement-related effects in fMRI time- series. Magnetic Resonance in Medicine, 35(3), 346-355.
doi: 10.1002/mrm.1910350312 pmid: 8699946 |
[23] |
Hartley C. A., & Phelps E. A. (2012). Anxiety and decision- making. Biological psychiatry, 72(2), 113-118.
doi: 10.1016/j.biopsych.2011.12.027 URL |
[24] |
Hembree R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21(1), 33-46
doi: 10.2307/749455 URL |
[25] |
Kazelskis R., Reeves C., Kersh M. E., Bailey G., Cole K., Larmon M., Hall L., & Holliday D. C. (2001). Mathematics anxiety and test anxiety: Separate constructs? Journal of Experimental Education, 68(2), 137-146.
doi: 10.1080/00220970009598499 URL |
[26] | Khoule A., Bonsu N. O., & El Houari H. (2017). Impact of conceptual and procedural knowledge on students mathematics anxiety. International Journal of Educational Studies in Mathematics, 4(1), 8-17. |
[27] |
Kim M. J., & Whalen P. J. (2009). The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. Journal of Neuroscience, 29(37), 11614-11618.
doi: 10.1523/JNEUROSCI.2335-09.2009 pmid: 19759308 |
[28] | LeFevre J. A., DeStefano D., Coleman B., & Shanahan T. (2004). Mathematical cognition and working memory. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 361-377). Psychology Press, New York. |
[29] |
Liu J., Yuan L., Chen C., Cui J., Zhang H., & Zhou X. (2019). The semantic system supports the processing of mathematical principles. Neuroscience, 404, 102-118.
doi: S0306-4522(19)30070-3 pmid: 30710668 |
[30] |
Liu J., Zhang H., Chen C., Chen H., Cui J., & Zhou X. (2017). The neural circuits for arithmetic principles. Neuroimage, 147, 432-446.
doi: S1053-8119(16)30757-1 pmid: 27986609 |
[31] | Lyons I. M., & Beilock S. L. (2012). When math hurts: Math anxiety predicts pain network activation in anticipation of doing math. PloS One, 7(10), e48076. |
[32] |
Maclellan E. (2001). Mental calculation: Its place in the development of numeracy. Westminster Studies in Education, 24(2), 145-154.
doi: 10.1080/0140672010240205 URL |
[33] |
Nieder A., & Dehaene S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185-208.
doi: 10.1146/annurev.neuro.051508.135550 pmid: 19400715 |
[34] |
Oathes D. J., Patenaude B., Schatzberg A. F., & Etkin A. (2015). Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biological Psychiatry, 77(4), 385-393.
doi: 10.1016/j.biopsych.2014.08.006 pmid: 25444162 |
[35] |
Paulus M. P., & Stein M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60(4), 383-387.
doi: 10.1016/j.biopsych.2006.03.042 pmid: 16780813 |
[36] |
Piazza M., Pinel P., Le Bihan D., & Dehaene S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 293-305.
doi: 10.1016/j.neuron.2006.11.022 pmid: 17224409 |
[37] |
Pinel P., Dehaene S., Riviere D., & LeBihan D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14(5), 1013-1026.
pmid: 11697933 |
[38] |
Pizzie R. G., & Kraemer D. J. (2017). Avoiding math on a rapid timescale: Emotional responsivity and anxious attention in math anxiety. Brain and Cognition, 118, 100-107.
doi: S0278-2626(17)30088-X pmid: 28826050 |
[39] | Pizzie R. G., Raman N., & Kraemer D. J. (2020). Math anxiety and executive function: Neural influences of task switching on arithmetic processing. Cognitive, Affective, & Behavioral Neuroscience, 20(2), 309-325. |
[40] |
Preacher K. J., & Hayes A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891.
doi: 10.3758/brm.40.3.879 pmid: 18697684 |
[41] | Rittle-Johnson B., & Siegler R. S. (1998). The relation between conceptual and procedural knowledge in learning mathematics:A review. In C. Donlan (Ed.), The development of mathematical skills (pp. 75-110). Psychology Press/Taylor & Francis (UK). |
[42] |
Rittle-Johnson B., Siegler R. S., & Alibali M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346-362.
doi: 10.1037/0022-0663.93.2.346 URL |
[43] |
Santens S., Roggeman C., Fias W., & Verguts T. (2010). Number processing pathways in human parietal cortex. Cerebral Cortex, 20(1), 77-88.
doi: 10.1093/cercor/bhp080 URL |
[44] |
Sarkar A., Dowker A., & Kadosh R. C. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34(50), 16605-16610.
doi: 10.1523/JNEUROSCI.3129-14.2014 pmid: 25505313 |
[45] |
Somerville L. H., Wagner D. D., Wig G. S., Moran J. M., Whalen P. J., & Kelley W. M. (2013). Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cerebral Cortex, 23(1), 49-60.
doi: 10.1093/cercor/bhr373 URL |
[46] | Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., & Jacobs G. A. (1983). Manual for the state-trait anxiety scale. Palo Alto, CA: Consulting Psychologists Press. |
[47] |
Sylvester C. M., Corbetta M., Raichle M. E., Rodebaugh T. L., Schlaggar B. L., Sheline Y. I.,... Lenze E. J. (2012). Functional network dysfunction in anxiety and anxiety disorders. Trends in Neurosciences, 35(9), 527-535.
doi: 10.1016/j.tins.2012.04.012 pmid: 22658924 |
[48] |
Wager T. D., Davidson M. L., Hughes B. L., Lindquist M. A., & Ochsner K. N. (2008). Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron, 59(6), 1037-1050.
doi: 10.1016/j.neuron.2008.09.006 pmid: 18817740 |
[49] |
Wager T. D., Waugh C. E., Lindquist M., Noll D. C., Fredrickson B. L., & Taylor S. F. (2009). Brain mediators of cardiovascular responses to social threat: Part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. Neuroimage, 47(3), 821-835.
doi: 10.1016/j.neuroimage.2009.05.043 pmid: 19465137 |
[50] |
Wu C. Y., Ho M. H. R., & Chen S. H. A. (2012). A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage, 63(1), 381-391.
doi: 10.1016/j.neuroimage.2012.06.047 URL |
[51] |
Xu Y., Lin Q., Han Z., He Y., & Bi Y. (2016). Intrinsic functional network architecture of human semantic processing: Modules and hubs. Neuroimage, 132, 542-555.
doi: 10.1016/j.neuroimage.2016.03.004 URL |
[52] |
Yan C. G., Craddock R. C., Zuo X. N., Zang Y. F., & Milham M. P. (2013). Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80, 246-262.
doi: 10.1016/j.neuroimage.2013.04.081 URL |
[53] |
Yan C. G., Wang X. D., Zuo X. N., & Zang Y. F. (2016). DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339-351.
doi: 10.1007/s12021-016-9299-4 URL |
[54] |
Young C. B., Wu S. S., & Menon V. (2012). The neurodevelopmental basis of math anxiety. Psychological Science, 23(5), 492-501.
doi: 10.1177/0956797611429134 pmid: 22434239 |
[55] |
Zhang H., Chen C., & Zhou X. (2012). Neural correlates of numbers and mathematical terms. Neuroimage, 60(1), 230-240.
doi: 10.1016/j.neuroimage.2011.12.006 pmid: 22202882 |
[1] | 司继伟, 郭凯玥, 赵晓萌, 张明亮, 李红霞, 黄碧娟, 徐艳丽. 小学儿童数学焦虑的潜在类别转变及其父母教育卷入效应:3年纵向考察[J]. 心理学报, 2022, 54(4): 355-370. |
[2] | 金花, 梁紫平, 朱子良, 严世振, 林琳, 艾克旦·艾斯卡尔, 尹建忠, 姜云鹏, 田鑫. 整体运动知觉老化伴随颞中回静息态功能改变[J]. 心理学报, 2021, 53(1): 38-54. |
[3] | 崔芳, 杨佳苗, 古若雷, 刘洁. 右侧颞顶联合区及道德加工脑网络的功能连接预测社会性框架效应:来自静息态功能磁共振的证据[J]. 心理学报, 2021, 53(1): 55-66. |
[4] | 刘洁, 李瑾琪, 申超然, 胡小惠, 赵庭浩, 关青, 罗跃嘉. 数学焦虑个体近似数量加工的神经机制:一项EEG研究[J]. 心理学报, 2020, 52(8): 958-970. |
[5] | 周衡, 何华, 于薇, 王爱君, 张明. 老年人声音诱发闪光错觉的大脑静息态低频振幅[J]. 心理学报, 2020, 52(7): 823-834. |
[6] | 江琦, 侯璐璐, 邱江, 李长燃, 王焕贞. 尾状核-眶部内侧前额叶的功能连接与反应性攻击的关系:基于静息态功能磁共振研究[J]. 心理学报, 2018, 50(6): 655-666. |
[7] | 刘潞潞, 卢家楣, 和美, 周建设, 肖晶, 罗劲. 先苦后乐:英语乐学大学生在英语学习时情绪反应的脑认知特点[J]. 心理学报, 2017, 49(11): 1414-1427. |
[8] | 司继伟;徐艳丽;封洪敏;许晓华;周超. 不同数学焦虑成人的算术策略运用差异:ERP研究[J]. 心理学报, 2014, 46(12): 1835-1849. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||