| [19] |
Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A matlab toolbox for music information retrieval. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, R. Decker (Eds.), Data analysis, machine learning and applications (pp. 261-268). Springer-Verlag.
|
| [20] |
Lévêque, Y., Lalitte, P., Fornoni, L., Pralus, A., Albouy, P., Bouchet, P., ... Tillmann, B. (2022). Tonal structures benefit short-term memory for real music: Evidence from non- musicians and individuals with congenital amusia. Brain and Cognition, 161, Article 105881. https://doi.org/10.1016/j.bandc.2022.105881
|
| [21] |
Lin, H. R., Kopiez, R., Müllensiefen, D., & Wolf, A. (2021). The Chinese version of the Gold-MSI: Adaptation and validation of an inventory for the measurement of musical sophistication in a Taiwanese sample. Musicae Scientiae, 25(2), 226-251. https://doi.org/10.1177/1029864919871987
|
| [22] |
Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide (2nd ed.). London: Lawrence Erlbaum Associates.
|
| [23] |
Martin, T., Egly, R., Houck, J. M., Bish, J. P., Barrera, B. D., Lee, D. C., & Tesche, C. D. (2005). Chronometric evidence for entrained attention. Perception & Psychophysics, 67(1), 168-184. https://doi.org/10.3758/BF03195020
|
| [24] |
Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLOS ONE, 9(2), Article e89642. https://doi.org/10.1371/journal.pone.0089642
|
| [25] |
Povel, D.-J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2(4), 411-440. https://doi.org/10.2307/40285311
|
| [26] |
Prince, J. B. (2011). The integration of stimulus dimensions in the perception of music. Quarterly Journal of Experimental Psychology, 64(11), 2125-2152. https://doi.org/10.1080/17470218.2011.573080
|
| [27] |
Prince, J. B., & Pfordresher, P. Q. (2012). The role of pitch and temporal diversity in the perception and production of musical sequences. Acta Psychologica, 141(2), 184-198. https://doi.org/10.1016/j.actpsy.2012.07.013
doi: 10.1016/j.actpsy.2012.07.013
URL
pmid: 22968192
|
| [28] |
Prince, J. B., Schmuckler, M. A., & Thompson, W. F. (2009). The effect of task and pitch structure on pitch-time interactions in music. Memory & Cognition, 37(3), 368-381. https://doi.org/10.3758/MC.37.3.368
|
| [29] |
Prince, J. B., Thompson, W. F., & Schmuckler, M. A. (2009). Pitch and time, tonality and meter: How do musical dimensions combine? Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1598-1617. https://doi.org/10.1037/a0016456
doi: 10.1037/a0016456
URL
pmid: 19803659
|
| [30] |
Raven, J. (2000). The Raven’s progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1-48. https://doi.org/10.1006/cogp.1999.0735
doi: 10.1006/cogp.1999.0735
URL
pmid: 10945921
|
| [31] |
Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Tamada, T., Iwata, N. K., & Nielsen, M. (1999). Neural representation of a rhythm depends on its interval ratio. Journal of Neuroscience, 19(22), 10074-10081. https://doi.org/10.1523/JNEUROSCI.19-22-10074.1999
URL
pmid: 10559415
|
| [32] |
Schulze, K., Dowling, W. J., & Tillmann, B. (2012). Working memory for tonal and atonal sequences during a forward and a backward recognition task. Music Perception, 29(3), 255-267. https://doi.org/10.1525/mp.2012.29.3.255
|
| [33] |
Schulze, K., Müller, K., & Koelsch, S. (2011). Neural correlates of strategy use during auditory working memory in musicians and non-musicians. European Journal of Neuroscience, 33(1), 189-196. https://doi.org/10.1111/j.1460-9568.2010.07470.x
doi: 10.1111/j.1460-9568.2010.07470.x
URL
pmid: 21073548
|
| [34] |
Schwartze, M., & Kotz, S. A. (2013). A dual-pathway neural architecture for specific temporal prediction. Neuroscience & Biobehavioral Reviews, 37(10), 2587-2596. https://doi.org/10.1016/j.neubiorev.2013.08.005
|
| [35] |
Sun, L., Liu, F., Zhou, L., & Jiang, C. (2018). Musical training modulates the early but not the late stage of rhythmic syntactic processing. Psychophysiology, 55(2), Article e12983. https://doi.org/10.1111/psyp.12983
|
| [36] |
Sun, L., Thompson, W. F., Liu, F., Zhou, L., & Jiang, C. (2020). The human brain processes hierarchical structures of meter and harmony differently: Evidence from musicians and nonmusicians. Psychophysiology, 57(9) Article e13598. https://doi.org/10.1111/psyp.13598
|
| [37] |
Tillmann, B., & Lebrun-Guillaud, G. (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70(5), 345-358. https://doi.org/10.1007/s00426-005-0222-0
|
| [38] |
Thompson, W. F., Hall, M. D., & Pressing, J. (2001). Illusory conjunctions of pitch and duration in unfamiliar tone sequences. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 128-140. https://doi.org/10.1037//0096-1523.27.1.128
|
| [39] |
Yang, X., Shen, X., Zhang, Q., Wang, C., Zhou, L., & Chen, Y. (2022). Music training is associated with better clause segmentation during spoken language processing. Psychonomic Bulletin & Review, 29(4), 1472-1479. https://doi.org/10.3758/s13423-022-02076-2
|
| [40] |
Zhang, J., Che, X., & Yang, Y. (2019). Event-related brain potentials suggest a late interaction of pitch and time in music perception. Neuropsychologia, 132, 107118. https://doi.org/10.1016/j.neuropsychologia.2019.107118
|
| [41] |
Zhang. J., Jiang. C., Zhou. L., & Yang. Y.(2016). Perception of hierarchical boundaries in music and its modulation by expertise. Neuropsychologia, 91, 490-498. https://doi.org/10.1016/j.neuropsychologia.2016.09.013
doi: S0028-3932(16)30350-5
URL
pmid: 27659874
|
| [42] |
Zhou, L., Zhao, H., & Jiang, C. (2017). Neural plasticity to musical performance training: A meta-analysis study. Advances in Psychological Science, 25(11), 1877-1887. https://doi.org/10.3724/SP.J.1042.2017.01877
|
|
[周临舒, 赵怀阳, 蒋存梅. (2017). 音乐表演训练对神经可塑性的影响: 元分析研究. 心理科学进展, 25(11), 1877-1887.]
doi: 10.3724/SP.J.1042.2017.01877
|
| [1] |
Albouy, P., Schulze, K., Caclin, A., & Tillmann, B. (2013). Does tonality boost short-term memory in congenital amusia? Brain Research, 1537, 224-232. https://doi.org/10.1016/j.brainres.2013.09.003
doi: 10.1016/j.brainres.2013.09.003
URL
pmid: 24041778
|
| [2] |
Bharucha, J., & Krumhansl, C. L. (1983). The representation of harmonic structure in music: Hierarchies of stability as a function of context. Cognition, 13(1), 63-102. https://doi.org/10.1016/0010-0277(83)90003-3
URL
pmid: 6681743
|
| [3] |
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20(2), 226-239. https://doi.org/10.1162/jocn.2008.20018
doi: 10.1162/jocn.2008.20018
URL
pmid: 18275331
|
| [4] |
Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioural and Brain Sciences, 24(1), 87-185. https://doi.org/10.1017/s0140525x01003922
|
| [5] |
Dowling, W. J. (1991). Tonal strength and melody recognition after long and short delays. Perception & Psychophysics, 50(4), 305-313. https://doi.org/10.3758/bf03212222
|
| [6] |
Essens, P. J., & Povel, D. J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37(1), 1-7. https://doi.org/10.3758/BF03207132
|
| [7] |
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149
doi: 10.3758/BRM.41.4.1149
URL
pmid: 19897823
|
| [8] |
Fitch, W. T. (2013). Rhythmic cognition in humans and animals: Distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 7, Article 68. https://doi.org/10.3389/fnsys.2013.00068
|
| [9] |
Jentschke, S., & Koelsch, S. (2009). Musical training modulates the development of syntax processing in children. NeuroImage, 47(2), 735-744. https://doi.org/10.1016/j.neuroimage.2009.04.090
doi: 10.1016/j.neuroimage.2009.04.090
URL
pmid: 19427908
|
| [10] |
Jerde, T. A., Childs, S. K., Handy, S. T., Nagode, J. C., & Pardo, J. V. (2011). Dissociable systems of working memory for rhythm and melody. NeuroImage, 57(4), 1572-1579. https://doi.org/10.1016/j.neuroimage.2011.05.061
doi: 10.1016/j.neuroimage.2011.05.061
URL
pmid: 21645625
|
| [11] |
Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491. https://doi.org/10.1037/0033-295X.96.3.459
doi: 10.1037/0033-295x.96.3.459
URL
pmid: 2756068
|
| [12] |
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323-355. https://doi.org/10.1037/0033-295X.83.5.323
URL
pmid: 794904
|
| [13] |
Koelsch, S., Gunter, T. C., Friederici, A. D., & Schröger, E. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 12(3), 520-541. https://doi.org/10.1162/089892900562183
URL
pmid: 10931776
|
| [14] |
Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D. (2007). Untangling syntactic and sensory processing: An ERP study of music perception. Psychophysiology, 44(3), 476-490. https://doi.org/10.1111/j.1469-8986.2007.00517.x
URL
pmid: 17433099
|
| [15] |
Koelsch, S., Schmidt, B. H., & Kansok, J. (2002). Effects of musical expertise on the early right anterior negativity: An event-related brain potential study. Psychophysiology, 39(5), 657-663. https://doi.org/10.1111/1469-8986.3950657.
URL
pmid: 12236333
|
| [16] |
Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195148367.001.0001
|
| [17] |
Krumhansl, C. L. (2000). Rhythm and pitch in music cognition. Psychological Bulletin, 126(1), 159-179. https://doi.org/10.1037/0033-2909.126.1.159
URL
pmid: 10668354
|
| [18] |
Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106(1), 119-159. https://doi.org/10.1037/0033-295X.106.1.119
|