心理学报 ›› 2020, Vol. 52 ›› Issue (12): 1365-1376.doi: 10.3724/SP.J.1041.2020.01365
• 研究报告 • 下一篇
收稿日期:
2020-06-14
发布日期:
2020-10-26
出版日期:
2020-12-25
通讯作者:
陈杰
E-mail:xlxchen@163.com
基金资助:
CHEN Jiejia, ZHOU Yi, CHEN Jie()
Received:
2020-06-14
Online:
2020-10-26
Published:
2020-12-25
Contact:
CHEN Jie
E-mail:xlxchen@163.com
摘要:
抑制控制是人类非常重要的认知功能之一, 它对个体适应环境具有重要的意义。本研究将抑制控制细分为反应抑制和冲突控制, 采用Go/No-go和Stroop任务从行为和脑电层面, 考察了音乐训练与抑制控制能力的关系及其认知神经机制。结果发现:在行为指标上, 音乐训练组比控制组的Stroop干扰效应更小, 但两组被试在Go/No-go任务表现上没有差异。在脑电指标上, 在Go/No-go任务中音乐训练组的N2差异波和P3差异波波幅(No-go减Go条件)显著大于控制组, 在Stroop任务中音乐训练组的N450差异波波幅(不一致减一致条件)也显著大于控制组, 但两组被试的SP差异波波幅(不一致减一致条件)无显著差异。结果表明:音乐训练组被试在反应抑制任务中可能具有更强的冲突监控和运动抑制能力, 在冲突控制任务中也具有更强的冲突监控能力。本研究从电生理的层面反映了音乐训练与抑制控制能力的提升具有一定的关联。
中图分类号:
陈洁佳, 周翊, 陈杰. (2020). 音乐训练与抑制控制的关系:来自ERPs的证据. 心理学报, 52(12), 1365-1376.
CHEN Jiejia, ZHOU Yi, CHEN Jie. (2020). The relationship between musical training and inhibitory control: An ERPs study. Acta Psychologica Sinica, 52(12), 1365-1376.
编号 | 年龄(岁) | 社会经济地位 | 智力 | 训练开始 年龄(岁) | 训练时长 (年) | 乐器(首个为主修乐器) | 每周练习 时间(小时) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | C | M | C | M | C | M | C | M | C | M | C | M | C | |
1 | 19 | 23 | 3.5 | 1.5 | 10 | 9 | 5 | 无 | 8 | 无 | 小提琴, 吉他 | 无 | 18 | 无 |
2 | 18 | 18 | 3.0 | 2.5 | 10 | 9 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 陶笛 | 无 | 5 | 无 |
3 | 18 | 18 | 3.5 | 2.5 | 11 | 7 | 5 | 无 | 8 | 无 | 钢琴 | 无 | 6 | 无 |
4 | 22 | 20 | 3.5 | 3.5 | 9 | 12 | 6 | 无 | 15 | 无 | 小提琴, 钢琴 | 无 | 9 | 无 |
5 | 23 | 19 | 3.0 | 2.5 | 11 | 7 | 6 | 无 | 12 | 无 | 钢琴, 小提琴 | 无 | 14 | 无 |
6 | 22 | 23 | 2.0 | 4.0 | 7 | 10 | 12 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
7 | 20 | 20 | 3.0 | 2.0 | 11 | 9 | 10 | 无 | 8 | 无 | 古筝, 钢琴, 手风琴 | 无 | 5 | 无 |
8 | 20 | 17 | 2.5 | 3.5 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 13 | 无 |
9 | 21 | 19 | 3.0 | 2.0 | 3 | 12 | 5 | 无 | 15 | 无 | 钢琴 | 无 | 16 | 无 |
10 | 19 | 19 | 2.0 | 3.0 | 8 | 7 | 7 | 无 | 11 | 无 | 古筝, 钢琴 | 无 | 12 | 无 |
11 | 20 | 18 | 3.5 | 3.0 | 10 | 6 | 11 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
12 | 20 | 20 | 2.0 | 2.5 | 6 | 10 | 10 | 无 | 9 | 无 | 大提琴 | 无 | 9 | 无 |
13 | 20 | 19 | 3.5 | 3.5 | 11 | 11 | 5 | 无 | 14 | 无 | 中提琴, 小提琴, 吉他 | 无 | 8 | 无 |
14 | 20 | 22 | 4.0 | 2.5 | 8 | 9 | 5 | 无 | 13 | 无 | 钢琴 | 无 | 11 | 无 |
15 | 19 | 24 | 3.0 | 2.0 | 7 | 7 | 9 | 无 | 10 | 无 | 小提琴 | 无 | 10 | 无 |
16 | 19 | 19 | 3.0 | 1.5 | 9 | 9 | 6 | 无 | 12 | 无 | 钢琴, 扬琴 | 无 | 15 | 无 |
17 | 20 | 20 | 3.0 | 4.0 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 12 | 无 |
18 | 20 | 19 | 3.5 | 3.0 | 11 | 7 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 扬琴, 大提琴 | 无 | 13 | 无 |
19 | 20 | 18 | 3.5 | 1.5 | 11 | 8 | 12 | 无 | 8 | 无 | 笙, 钢琴, 葫芦丝, 唢呐, 萧 | 无 | 10 | 无 |
20 | 19 | 20 | 3.0 | 2.5 | 10 | 8 | 6 | 无 | 12 | 无 | 钢琴 | 无 | 8 | 无 |
21 | 19 | 18 | 3.0 | 2.5 | 10 | 8 | 7 | 无 | 10 | 无 | 小提琴, 中提琴, 钢琴 | 无 | 6 | 无 |
22 | 20 | 19 | 4.0 | 4.5 | 12 | 5 | 6 | 无 | 13 | 无 | 钢琴 | 无 | 10 | 无 |
23 | 20 | 25 | 2.5 | 3.0 | 11 | 9 | 6 | 无 | 12 | 无 | 小提琴, 钢琴 | 无 | 5 | 无 |
表1 被试人口学资料
编号 | 年龄(岁) | 社会经济地位 | 智力 | 训练开始 年龄(岁) | 训练时长 (年) | 乐器(首个为主修乐器) | 每周练习 时间(小时) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | C | M | C | M | C | M | C | M | C | M | C | M | C | |
1 | 19 | 23 | 3.5 | 1.5 | 10 | 9 | 5 | 无 | 8 | 无 | 小提琴, 吉他 | 无 | 18 | 无 |
2 | 18 | 18 | 3.0 | 2.5 | 10 | 9 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 陶笛 | 无 | 5 | 无 |
3 | 18 | 18 | 3.5 | 2.5 | 11 | 7 | 5 | 无 | 8 | 无 | 钢琴 | 无 | 6 | 无 |
4 | 22 | 20 | 3.5 | 3.5 | 9 | 12 | 6 | 无 | 15 | 无 | 小提琴, 钢琴 | 无 | 9 | 无 |
5 | 23 | 19 | 3.0 | 2.5 | 11 | 7 | 6 | 无 | 12 | 无 | 钢琴, 小提琴 | 无 | 14 | 无 |
6 | 22 | 23 | 2.0 | 4.0 | 7 | 10 | 12 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
7 | 20 | 20 | 3.0 | 2.0 | 11 | 9 | 10 | 无 | 8 | 无 | 古筝, 钢琴, 手风琴 | 无 | 5 | 无 |
8 | 20 | 17 | 2.5 | 3.5 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 13 | 无 |
9 | 21 | 19 | 3.0 | 2.0 | 3 | 12 | 5 | 无 | 15 | 无 | 钢琴 | 无 | 16 | 无 |
10 | 19 | 19 | 2.0 | 3.0 | 8 | 7 | 7 | 无 | 11 | 无 | 古筝, 钢琴 | 无 | 12 | 无 |
11 | 20 | 18 | 3.5 | 3.0 | 10 | 6 | 11 | 无 | 8 | 无 | 钢琴 | 无 | 10 | 无 |
12 | 20 | 20 | 2.0 | 2.5 | 6 | 10 | 10 | 无 | 9 | 无 | 大提琴 | 无 | 9 | 无 |
13 | 20 | 19 | 3.5 | 3.5 | 11 | 11 | 5 | 无 | 14 | 无 | 中提琴, 小提琴, 吉他 | 无 | 8 | 无 |
14 | 20 | 22 | 4.0 | 2.5 | 8 | 9 | 5 | 无 | 13 | 无 | 钢琴 | 无 | 11 | 无 |
15 | 19 | 24 | 3.0 | 2.0 | 7 | 7 | 9 | 无 | 10 | 无 | 小提琴 | 无 | 10 | 无 |
16 | 19 | 19 | 3.0 | 1.5 | 9 | 9 | 6 | 无 | 12 | 无 | 钢琴, 扬琴 | 无 | 15 | 无 |
17 | 20 | 20 | 3.0 | 4.0 | 7 | 6 | 5 | 无 | 14 | 无 | 钢琴 | 无 | 12 | 无 |
18 | 20 | 19 | 3.5 | 3.0 | 11 | 7 | 9 | 无 | 8 | 无 | 古筝, 钢琴, 扬琴, 大提琴 | 无 | 13 | 无 |
19 | 20 | 18 | 3.5 | 1.5 | 11 | 8 | 12 | 无 | 8 | 无 | 笙, 钢琴, 葫芦丝, 唢呐, 萧 | 无 | 10 | 无 |
20 | 19 | 20 | 3.0 | 2.5 | 10 | 8 | 6 | 无 | 12 | 无 | 钢琴 | 无 | 8 | 无 |
21 | 19 | 18 | 3.0 | 2.5 | 10 | 8 | 7 | 无 | 10 | 无 | 小提琴, 中提琴, 钢琴 | 无 | 6 | 无 |
22 | 20 | 19 | 4.0 | 4.5 | 12 | 5 | 6 | 无 | 13 | 无 | 钢琴 | 无 | 10 | 无 |
23 | 20 | 25 | 2.5 | 3.0 | 11 | 9 | 6 | 无 | 12 | 无 | 小提琴, 钢琴 | 无 | 5 | 无 |
图1 Go/No-go和Stroop实验中音乐训练组和控制组行为表现。(a) Go/No-go辨别力指数d'分数 = z(No-go击中率) - z(Go虚报率); (b)反应时的Stroop干扰效应 = 不一致试次反应时减一致试次反应时, 正确率的Stroop干扰效应 = 一致试次正确率减不一致试次正确率。n.s.表示 p > 0.05即没有显著差异, * p < 0.05。
抑制控制 | 控制组M (SD) | 音乐训练组M (SD) | F(1, 44) | p |
---|---|---|---|---|
Go/No-go | ||||
行为 | ||||
Go正确率 | 99.35 (1.72) | 99.83 (0.65) | 1.55 | 0.22 |
No-go正确率 | 96.22 (4.40) | 96.00 (3.93) | 0.03 | 0.86 |
ERP | ||||
Go N2 | 2.72 (3.33) | 7.85 (4.51) | 19.24 | 0.001*** |
No-go N2 | 1.69 (3.62) | 5.27 (5.55) | 6.69 | 0.013* |
Go P3 | 6.49 (3.62) | 11.83 (4.76) | 18.37 | 0.001*** |
No-go P3 | 8.05 (4.12) | 15.27 (5.98) | 22.70 | 0.001*** |
Stroop | ||||
行为 | ||||
一致 正确率 | 89.30 (7.89) | 93.26 (5.11) | 4.07 | 0.05* |
不一致 正确率 | 75.70 (12.91) | 84.48 (8.64) | 7.36 | 0.01** |
一致 反应时 | 636.48 (41.50) | 584.39 (61.18) | 11.42 | 0.002** |
不一致 反应时 | 700.90 (42.88) | 657.93 (70.24) | 6.27 | 0.016* |
ERP | ||||
一致 N450 | 1.20(3.00) | 4.13 (5.13) | 5.62 | 0.022* |
不一致 N450 | 0.41 (2.55) | 2.29 (4.19) | 3.39 | 0.07 |
一致 SP | -5.08 (3.26) | -4.84 (4.40) | 0.04 | 0.84 |
不一致 SP | -3.54 (3.14) | -3.49 (3.88) | 0.003 | 0.96 |
表2 两组被试在Go/No-go和Stroop任务中的正确率(%)、反应时(ms)和ERP波幅(μV)的差异比较
抑制控制 | 控制组M (SD) | 音乐训练组M (SD) | F(1, 44) | p |
---|---|---|---|---|
Go/No-go | ||||
行为 | ||||
Go正确率 | 99.35 (1.72) | 99.83 (0.65) | 1.55 | 0.22 |
No-go正确率 | 96.22 (4.40) | 96.00 (3.93) | 0.03 | 0.86 |
ERP | ||||
Go N2 | 2.72 (3.33) | 7.85 (4.51) | 19.24 | 0.001*** |
No-go N2 | 1.69 (3.62) | 5.27 (5.55) | 6.69 | 0.013* |
Go P3 | 6.49 (3.62) | 11.83 (4.76) | 18.37 | 0.001*** |
No-go P3 | 8.05 (4.12) | 15.27 (5.98) | 22.70 | 0.001*** |
Stroop | ||||
行为 | ||||
一致 正确率 | 89.30 (7.89) | 93.26 (5.11) | 4.07 | 0.05* |
不一致 正确率 | 75.70 (12.91) | 84.48 (8.64) | 7.36 | 0.01** |
一致 反应时 | 636.48 (41.50) | 584.39 (61.18) | 11.42 | 0.002** |
不一致 反应时 | 700.90 (42.88) | 657.93 (70.24) | 6.27 | 0.016* |
ERP | ||||
一致 N450 | 1.20(3.00) | 4.13 (5.13) | 5.62 | 0.022* |
不一致 N450 | 0.41 (2.55) | 2.29 (4.19) | 3.39 | 0.07 |
一致 SP | -5.08 (3.26) | -4.84 (4.40) | 0.04 | 0.84 |
不一致 SP | -3.54 (3.14) | -3.49 (3.88) | 0.003 | 0.96 |
[1] | Arthur W., & Day D. V. (1994). Development of a short form for the raven advanced progressive matrices test. Educational & Psychological Measurement, 54(2), 394-403. |
[2] |
Badzakova-Trajkov G., Barnett K. J., Waldie K. E., & Kirk I. J. (2009). An ERP investigation of the Stroop task: The role of the cingulate in attentional allocation and conflict resolution. Brain Research, 1253, 139-148.
doi: 10.1016/j.brainres.2008.11.069 URL pmid: 19084509 |
[3] |
Baumeister S., Hohmann S., Wolf I., Plichta M. M., Rechtsteiner S., Zangl M., ... Brandeis D. (2014). Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage, 94, 349-359.
doi: 10.1016/j.neuroimage.2014.01.023 URL |
[4] |
Bialystok E., & Depape A.-M. (2009). Musical expertise, bilingualism, and executive functioning. Journal of Experimental Psychology: Human Perception and Performance, 35(2), 565-574.
doi: 10.1037/a0012735 URL pmid: 19331508 |
[5] |
Buckner R. L., Andrews-Hanna J. R., & Schacter D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1-38.
doi: 10.1196/annals.1440.011 URL pmid: 18400922 |
[6] | Carter C. S., & van Veen V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive Affective & Behavioral Neuroscience, 7(4), 367-379. |
[7] |
Chen J., Liu L., Wang R., & Shen H. Z. (2017). The effect of musical training on executive functions. Advances in Psychological Science, 25(11), 1854-1864.
doi: 10.3724/SP.J.1042.2017.01854 URL |
[ 陈杰, 刘雷, 王蓉, 沈海洲. (2017). 音乐训练对执行功能的影响. 心理科学进展, 25(11), 1854-1864.] | |
[8] |
Cheng K. S., Chang Y. F., Han R. P. S., & Lee P. F. (2017). Enhanced conflict monitoring via a short-duration, video-assisted deep breathing in healthy young adults: An event-related potential approach through the Go/NoGo paradigm. Peer J, 5, e3857.
doi: 10.7717/peerj.3857 URL pmid: 29018605 |
[9] |
Corrigall K. A., Schellenberg E. G., & Misura N. M. (2013). Music training, cognition, and personality. Frontiers in Psychology, 4, 222.
doi: 10.3389/fpsyg.2013.00222 URL pmid: 23641225 |
[10] |
Di Russo F., Taddei F., Apnile T., & Spinelli D. (2006). Neural correlates of fast stimulus discrimination and response selection in top-level fencers. Neuroscience Letters, 408(2), 113-118.
doi: 10.1016/j.neulet.2006.08.085 URL pmid: 17018246 |
[11] |
Diamond A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135-168.
doi: 10.1146/annurev-psych-113011-143750 URL |
[12] |
Donkers F. C. L., & van Boxtel G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56(2), 165-176.
doi: 10.1016/j.bandc.2004.04.005 URL |
[13] |
Enriquez-Geppert S., Konrad C., Pantev C., & Huster R. J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. NeuroImage, 51(2), 877-887.
doi: 10.1016/j.neuroimage.2010.02.043 URL |
[14] |
Fauvel B., Groussard M., Chételat G., Fouquet M., Landeau B., Eustache F., ... Platel H. (2014). Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. NeuroImage, 90, 179-188.
doi: 10.1016/j.neuroimage.2013.12.065 URL |
[15] |
Gajewski P. D., & Falkenstein M. (2015). Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain and Cognition, 98, 87-101.
doi: 10.1016/j.bandc.2015.06.004 URL pmid: 26160263 |
[16] |
Gao Q. F., Jia G., Zhao J., & Zhang D. D. (2019). Inhibitory Control in Excessive Social Networking Users: Evidence From an Event-Related Potential-Based Go-Nogo Task. Frontiers in Psychology, 10, 1810.
doi: 10.3389/fpsyg.2019.01810 URL pmid: 31447743 |
[17] |
Guan M., Liao Y., Ren H., Wang X., Yang Q., Liu X., & Wang W. (2015). Impaired response inhibition in juvenile delinquents with antisocial personality characteristics: A preliminary ERP study in a Go/Nogo task. Neuroscience Letters, 603, 1-5.
doi: 10.1016/j.neulet.2015.06.062 URL pmid: 26189594 |
[18] |
Holmes A. J., & Pizzagalli D. A. (2008). Response conflict and frontocingulate dysfunction in unmedicated participants with major depression. Neuropsychologia, 46(12), 2904-2913.
doi: 10.1016/j.neuropsychologia.2008.05.028 URL |
[19] |
James C. E., Oechslin M. S., van de Ville D., Hauert C. A., Descloux C., & Lazeyras F. (2014). Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Structure and Function, 219(1), 353-366.
doi: 10.1007/s00429-013-0504-z URL pmid: 23408267 |
[20] |
Jaschke A. C., Honing H., & Scherder E. J. A. (2018). Longitudinal Analysis of Music Education on Executive Functions in Primary School Children. Frontiers in Neuroscience, 12, 103.
doi: 10.3389/fnins.2018.00103 URL pmid: 29541017 |
[21] |
Jonkman L. M. (2006). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood; a Go/Nogo ERP study. Brain Research, 1097(1), 181-193.
doi: 10.1016/j.brainres.2006.04.064 URL pmid: 16729977 |
[22] |
Joret M.-E., Germeys F., & Gidron Y. (2016). Cognitive inhibitory control in children following early childhood music education. Musicae Scientiae, 21(3), 303-315.
doi: 10.1177/1029864916655477 URL |
[23] |
Lansbergen M. M., van Hell E., & Kenemans J. L. (2007). Impulsivity and conflict in the Stroop task: An ERP study. Journal of Psychophysiology, 21(1), 33-50.
doi: 10.1027/0269-8803.21.1.33 URL |
[24] |
Larson M. J., Clayson P. E., & Clawson A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283-297.
doi: 10.1016/j.ijpsycho.2014.06.007 URL pmid: 24950132 |
[25] |
Larson M. J., Kaufman D. A. S., & Perlstein W. M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47(3), 663-670.
doi: 10.1016/j.neuropsychologia.2008.11.013 URL pmid: 19071142 |
[26] |
Li C. S., Morgan P. T., Matuskey D., Abdelghany O., Luo X., Chang J. L., ... Malison R. (2010). Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proceedings of the National Academy of Sciences, USA, 107 (32), 14455-14459.
doi: 10.1073/pnas.1002467107 URL |
[27] |
Liu P. D., Yang W. J., Tian X., & Chen A.T. (2017). An overview of current studies about the conflict adaptation effect. Advances in Psychological Science, 20(4), 532-541.
doi: 10.3724/SP.J.1042.2012.00532 URL |
[ 刘培朵, 杨文静, 田夏, 陈安涛. (2012). 冲突适应效应研究述评. 心理科学进展, 20(4), 532-541] | |
[28] |
MacLeod C. M. (1991). Half a century of research on the stroop effect: An integrative review. Psychological Bulletin, 109(2), 163-203.
doi: 10.1037/0033-2909.109.2.163 URL pmid: 2034749 |
[29] |
McNeely H. E., West R., Christensen B. K., & Alain C. (2003). Neurophysiological evidence for disturbances of conflict processing in patients with schizophrenia. Journal of Abnormal Psychology, 112(4), 679-688.
doi: 10.1037/0021-843X.112.4.679 URL pmid: 14674879 |
[30] |
Moreno S., Bialystok E., Barac R., Schellenberg E. G., Cepeda N. J., & Chau T. (2011). Short-Term Music Training Enhances Verbal Intelligence and Executive Function. Psychological Science, 22(11), 1425-1433.
doi: 10.1177/0956797611416999 URL pmid: 21969312 |
[31] |
Moreno S., Wodniecka Z., Tays W., Alain C., & Bialystok E. (2014). Inhibitory control in bilinguals and musicians: Event related potential (ERP) evidence for experience- specific effects. PLOS ONE, 9(4), e94169.
doi: 10.1371/journal.pone.0094169 URL pmid: 24743321 |
[32] |
Munakata Y., Herd S. A., Chatham C. H., Depue B. E., Banich M. T., & O'Reilly R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 15(10), 453-459.
doi: 10.1016/j.tics.2011.07.011 URL pmid: 21889391 |
[33] | Nieuwenhuis S., Yeung N., van den Wildenberg W., & Ridderinkhof K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 17-26. |
[34] | Okada B. M. (2016). Musical training and executive functions (Unpublised master’s thesis). University of Maryland, College Park. |
[35] | Okada B. M., & Slevc L. R. (2017). Music training: Contributions to executive function. In M. F. Bunting, J. M. Novick, M. R. Dougherty, & R. W. Engle (Eds.), An integrative approach to cognitive and working memory training: Perspectives from psychology, neuroscience, and human development (pp. 1-16). New York, NY: Oxford University Press. |
[36] |
Pandey A. K., Kamarajan C., Tang Y., Chorlian D. B., Roopesh B. N., Manz N., ... Porjesz B. (2012). Neurocognitive deficits in male alcoholics: An ERP/ sLORETA analysis of the N2 component in an equal probability Go/NoGo task. Biological Psychology, 89(1), 170-182.
doi: 10.1016/j.biopsycho.2011.10.009 URL pmid: 22024409 |
[37] |
Pliszka S. R., Liotti M., Bailey B. Y., Perez III R., Glahn D., & Semrud-Clikeman M. (2007). Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder. Journal of Child & Adolescent Psychopharmacology, 17(3), 356-366.
doi: 10.1089/cap.2006.0081 URL pmid: 17630869 |
[38] |
Sachs M., Kaplan J., der Sarkissian A., & Habibi A. (2017). Increased engagement of the cognitive control network associated with music training in children during an fMRI Stroop task. PLOS ONE, 12(10), e0187254.
doi: 10.1371/journal.pone.0187254 URL pmid: 29084283 |
[39] |
Seinfeld S., Figueroa H., Ortiz-Gil J., & Sanchez-Vives M. V. (2013). Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Frontiers in Psychology, 4, 810.
doi: 10.3389/fpsyg.2013.00810 URL pmid: 24198804 |
[40] |
Simmonds D. J., Pekar J. J., & Mostofsky S. H. (2008). Meta-analysis of Go/No-go tasks, demonstrating that fMRI activation associated with response inhibition is task- dependent. Neuropsychologia, 46(1), 224-232.
doi: 10.1016/j.neuropsychologia.2007.07.015 URL pmid: 17850833 |
[41] |
Slevc L. R., Davey N. S., Buschkuehl M., & Jaeggi S. M. (2016). Tuning the mind: Exploring the connections between musical ability and executive functions. Cognition, 152, 199-211.
doi: 10.1016/j.cognition.2016.03.017 URL pmid: 27107499 |
[42] |
Smith J. L., Jamadar S., Provost A. L., & Michie P. T. (2013). Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. International Journal of Psychophysiology, 87(3), 244-253.
doi: 10.1016/j.ijpsycho.2012.07.185 URL pmid: 22885679 |
[43] |
Smith J. L., Johnstone S. J., & Barry R. J. (2008). Movement-related potentials in the Go/NoGo task: The P3 reflects both cognitive and motor inhibition. Clinical Neurophysiology, 119(3), 704-714.
doi: 10.1016/j.clinph.2007.11.042 URL pmid: 18164657 |
[44] |
Smith J. L., Smith E. A., Provost A. L., & Heathcote A. (2010). Sequence effects support the conflict theory of N2 and P3 in the Go/NoGo task. International Journal of Psychophysiology, 75(3), 217-226.
doi: 10.1016/j.ijpsycho.2009.11.002 URL pmid: 19951723 |
[45] |
Travis F., Harung H. S., & Lagrosen Y. (2011). Moral development, executive functioning, peak experiences and brain patterns in professional and amateur classical musicians: Interpreted in light of a Unified Theory of Performance. Consciousness and Cognition, 20(4), 1256-1264.
doi: 10.1016/j.concog.2011.03.020 URL pmid: 21507681 |
[46] |
West R. (2004). The effects of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neuroscience, 16(1), 103-113.
doi: 10.1162/089892904322755593 URL pmid: 15006040 |
[47] |
West R., & Alain C. (2000a). Effects of task context and fluctuations of attention on neural activity supporting performance of the stroop task. Brain Research, 873(1), 102-111.
doi: 10.1016/s0006-8993(00)02530-0 URL pmid: 10915815 |
[48] |
West R., & Alain C. (2000b). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179-189.
URL pmid: 10731768 |
[49] |
West R., Jakubek K., Wymbs N., Perry M., & Moore K. (2005). Neural correlates of conflict processing. Experimental Brain Research, 167(1), 38-48.
doi: 10.1007/s00221-005-2366-y URL pmid: 16082533 |
[50] | Zhang Z. H., Han M., Zhang F., & Li W.J. (2020). Musical training improves rhythm integrative processing of classical Chinese poem. Acta Psychologica Sinica, 52(7), 847-860. |
[ 张政华, 韩梅, 张放, 李卫君. (2020). 音乐训练促进诗句韵律整合加工的神经过程. 心理学报, 52(7), 847-860.] | |
[51] |
Zuk J., Benjamin C., Kenyon A., & Gaab N. (2014). Behavioral and neural correlates of executive functioning in musicians and non-musicians. PLOS ONE, 9(6), e99868.
doi: 10.1371/journal.pone.0099868 URL pmid: 24937544 |
[1] | 金花, 贾丽娜, 阴晓娟, 严世振, 魏士琳, 陈俊涛. 错误信息持续影响效应的神经基础[J]. 心理学报, 2022, 54(4): 343-354. |
[2] | 杨群, 张积家, 范丛慧. 维吾尔族与汉族的大学生在汉语歧义词消解中的语境促进效应及反应抑制效应[J]. 心理学报, 2021, 53(7): 746-757. |
[3] | 张政华, 韩梅, 张放, 李卫君. 音乐训练促进诗句韵律整合加工的神经过程[J]. 心理学报, 2020, 52(7): 847-860. |
[4] | 张环, 侯双, 王海曼, 廉宇煊, 杨海波. 他人在场条件下的社会分享型提取诱发遗忘[J]. 心理学报, 2020, 52(6): 716-729. |
[5] | 姚尧, 陈晓湘. 音乐训练对4~5岁幼儿普通话声调范畴感知能力的影响[J]. 心理学报, 2020, 52(4): 456-468. |
[6] | 王元, 李柯, 盖笑松, 曹逸飞. 基于即时反馈的反应抑制训练对青少年和成人执行功能的训练效应和迁移效应[J]. 心理学报, 2020, 52(10): 1212-1223. |
[7] | 王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响 *[J]. 心理学报, 2018, 50(6): 647-654. |
[8] | 杨伟星, 张堂正, 李红霞, 张佳佳, 司继伟. 数学困难儿童估算策略运用的 中央执行负荷效应[J]. 心理学报, 2018, 50(5): 504-516. |
[9] | 江荣焕, 李晓东. 比例推理的过度使用及其认知机制: 一项发展性的负启动研究[J]. 心理学报, 2017, 49(6): 745-758. |
[10] | 刘豫;陈红;李书慧;罗念. 在线抑制控制训练对失败的限制性饮食者不健康食物选择的改善[J]. 心理学报, 2017, 49(2): 219-227. |
[11] | 刘英杰;郭春彦;魏萍. 知觉负载影响注意选择和冲突解决的系列效应[J]. 心理学报, 2014, 46(9): 1271-1280. |
[12] | 蒋军;向玲;张庆林;陈安涛. 冲突适应独立于意识:来自行为和ERP的证据[J]. 心理学报, 2014, 46(5): 581-592. |
[13] | 杨文静;刘培朵;崔茜;郝鑫;肖宵;张庆林. 自我参照对情绪性记忆定向遗忘的影响[J]. 心理学报, 2014, 46(2): 156-164. |
[14] | 李富洪,曹碧华,肖风,李红. 抑制控制在极小概率目标搜索任务中的作用[J]. 心理学报, 2011, 43(05): 509-518. |
[15] | 余凤琼,袁加锦,罗跃嘉. 情绪干扰听觉反应冲突的ERP研究[J]. 心理学报, 2009, 41(07): 594-601. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||