心理学报 ›› 2023, Vol. 55 ›› Issue (1): 142-158.doi: 10.3724/SP.J.1041.2023.00142
• 研究报告 • 上一篇
收稿日期:
2022-03-09
发布日期:
2022-10-13
基金资助:
Received:
2022-03-09
Online:
2022-10-13
摘要:
Q矩阵是CDM的核心元素之一, 反映了测验的内部结构和内容设计, 通常由领域专家根据经验进行主观界定, 因此需要对可能存在的错误进行修正。本研究提出了一种新的Q矩阵修正方法——基于完整经验交叉相乘信息矩阵的Wald-XPD方法。采用Monte Carlo模拟检验了新方法的表现, 并与同类方法进行了比较。研究表明:新开发的Wald-XPD方法在Q矩阵恢复率、保留正确标定属性的比例以及修正错误标定属性的比例这3个主要指标上均有较好的表现, 且整体上优于其他方法, 尤其是在修正错误标定的属性方面。通过实证数据展示了Wald-XPD方法在Q矩阵修正中的良好表现。总之, 本研究为Q矩阵修正提供了有效的方法。
中图分类号:
刘彦楼, 吴琼琼. (2023). 认知诊断模型Q矩阵修正:完整信息矩阵的作用. 心理学报, 55(1), 142-158.
LIU Yanlou, WU Qiongqiong. (2023). An empirical Q-matrix validation method using complete information matrix in cognitive diagnostic models. Acta Psychologica Sinica, 55(1), 142-158.
因素 | 因素水平 |
---|---|
样本量N | 500、1000 |
项目数和属性数的比例JK | 4、8 |
属性数K | 4 |
平均项目质量IQ | 0.4、0.6、0.8 |
属性分布AD | 均匀分布、高阶分布 |
错误设定的比例QM | 0.15、0.3 |
链接函数 | G-DINA模型 |
Q矩阵修正方法 | GDI、Wald-IC、Hull (HullP、HullR)、Wald-XPD |
表1 模拟研究中各因素水平汇总
因素 | 因素水平 |
---|---|
样本量N | 500、1000 |
项目数和属性数的比例JK | 4、8 |
属性数K | 4 |
平均项目质量IQ | 0.4、0.6、0.8 |
属性分布AD | 均匀分布、高阶分布 |
错误设定的比例QM | 0.15、0.3 |
链接函数 | G-DINA模型 |
Q矩阵修正方法 | GDI、Wald-IC、Hull (HullP、HullR)、Wald-XPD |
指标 | 方法 | QM | IQ | N | JK | AD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.15 | 0.3 | 0.4 | 0.6 | 0.8 | 500 | 1000 | 4 | 8 | 均匀分布 | 高阶分布 | ||
QRR | GDI | 0.906 | 0.828 | 0.859 | 0.922 | 0.945 | 0.922 | 0.922 | 0.906 | 0.930 | 0.938 | 0.906 |
Wald-IC | 0.945 | 0.813 | 0.844 | 0.922 | 0.969 | 0.906 | 0.938 | 0.891 | 0.930 | 0.938 | 0.906 | |
HullP | 0.930 | 0.852 | 0.875 | 0.945 | 0.953 | 0.938 | 0.953 | 0.938 | 0.945 | 0.953 | 0.930 | |
HullR | 0.891 | 0.797 | 0.844 | 0.891 | 0.922 | 0.898 | 0.906 | 0.906 | 0.906 | 0.914 | 0.891 | |
Wald-XPD | 0.937 | 0.867 | 0.820 | 0.938 | 0.969 | 0.906 | 0.953 | 0.906 | 0.945 | 0.953 | 0.906 | |
TPR | GDI | 0.944 | 0.922 | 0.933 | 0.936 | 0.953 | 0.936 | 0.945 | 0.944 | 0.936 | 0.954 | 0.926 |
Wald-IC | 0.945 | 0.933 | 0.908 | 0.954 | 0.969 | 0.933 | 0.956 | 0.944 | 0.945 | 0.956 | 0.938 | |
HullP | 0.963 | 0.936 | 0.963 | 0.961 | 0.956 | 0.953 | 0.969 | 0.963 | 0.956 | 0.967 | 0.953 | |
HullR | 0.936 | 0.911 | 0.953 | 0.927 | 0.930 | 0.927 | 0.944 | 0.956 | 0.922 | 0.944 | 0.926 | |
Wald-XPD | 0.944 | 0.900 | 0.835 | 0.944 | 0.969 | 0.917 | 0.953 | 0.920 | 0.944 | 0.953 | 0.927 | |
TNR | GDI | 0.800 | 0.684 | 0.421 | 0.789 | 0.900 | 0.711 | 0.737 | 0.579 | 0.842 | 0.800 | 0.684 |
Wald-IC | 0.789 | 0.579 | 0.405 | 0.700 | 0.900 | 0.632 | 0.684 | 0.526 | 0.789 | 0.700 | 0.632 | |
HullP | 0.800 | 0.684 | 0.368 | 0.833 | 0.947 | 0.737 | 0.800 | 0.600 | 0.895 | 0.816 | 0.700 | |
HullR | 0.684 | 0.579 | 0.263 | 0.676 | 0.895 | 0.600 | 0.632 | 0.421 | 0.763 | 0.684 | 0.579 | |
Wald-XPD | 0.900 | 0.816 | 0.684 | 0.900 | 0.947 | 0.840 | 0.894 | 0.700 | 0.920 | 0.900 | 0.830 | |
OS | GDI | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Wald-IC | 1 | 5 | 3 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | |
HullP | 1 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
HullR | 8 | 11 | 9 | 9 | 6 | 8 | 8 | 5 | 11 | 7 | 8 | |
Wald-XPD | 1 | 3 | 4 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | |
US | GDI | 7 | 10 | 9 | 7 | 5 | 7 | 6 | 5 | 9 | 5 | 8 |
Wald-IC | 6 | 10 | 11 | 6 | 3 | 8 | 5 | 5 | 8 | 5 | 7 | |
HullP | 5 | 8 | 6 | 5 | 4 | 5 | 4 | 3 | 6 | 4 | 6 | |
HullR | 2 | 5 | 5 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | |
Wald-XPD | 5 | 8 | 12 | 4 | 3 | 7 | 5 | 5 | 6 | 4 | 7 |
表2 不同因素水平的结果
指标 | 方法 | QM | IQ | N | JK | AD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.15 | 0.3 | 0.4 | 0.6 | 0.8 | 500 | 1000 | 4 | 8 | 均匀分布 | 高阶分布 | ||
QRR | GDI | 0.906 | 0.828 | 0.859 | 0.922 | 0.945 | 0.922 | 0.922 | 0.906 | 0.930 | 0.938 | 0.906 |
Wald-IC | 0.945 | 0.813 | 0.844 | 0.922 | 0.969 | 0.906 | 0.938 | 0.891 | 0.930 | 0.938 | 0.906 | |
HullP | 0.930 | 0.852 | 0.875 | 0.945 | 0.953 | 0.938 | 0.953 | 0.938 | 0.945 | 0.953 | 0.930 | |
HullR | 0.891 | 0.797 | 0.844 | 0.891 | 0.922 | 0.898 | 0.906 | 0.906 | 0.906 | 0.914 | 0.891 | |
Wald-XPD | 0.937 | 0.867 | 0.820 | 0.938 | 0.969 | 0.906 | 0.953 | 0.906 | 0.945 | 0.953 | 0.906 | |
TPR | GDI | 0.944 | 0.922 | 0.933 | 0.936 | 0.953 | 0.936 | 0.945 | 0.944 | 0.936 | 0.954 | 0.926 |
Wald-IC | 0.945 | 0.933 | 0.908 | 0.954 | 0.969 | 0.933 | 0.956 | 0.944 | 0.945 | 0.956 | 0.938 | |
HullP | 0.963 | 0.936 | 0.963 | 0.961 | 0.956 | 0.953 | 0.969 | 0.963 | 0.956 | 0.967 | 0.953 | |
HullR | 0.936 | 0.911 | 0.953 | 0.927 | 0.930 | 0.927 | 0.944 | 0.956 | 0.922 | 0.944 | 0.926 | |
Wald-XPD | 0.944 | 0.900 | 0.835 | 0.944 | 0.969 | 0.917 | 0.953 | 0.920 | 0.944 | 0.953 | 0.927 | |
TNR | GDI | 0.800 | 0.684 | 0.421 | 0.789 | 0.900 | 0.711 | 0.737 | 0.579 | 0.842 | 0.800 | 0.684 |
Wald-IC | 0.789 | 0.579 | 0.405 | 0.700 | 0.900 | 0.632 | 0.684 | 0.526 | 0.789 | 0.700 | 0.632 | |
HullP | 0.800 | 0.684 | 0.368 | 0.833 | 0.947 | 0.737 | 0.800 | 0.600 | 0.895 | 0.816 | 0.700 | |
HullR | 0.684 | 0.579 | 0.263 | 0.676 | 0.895 | 0.600 | 0.632 | 0.421 | 0.763 | 0.684 | 0.579 | |
Wald-XPD | 0.900 | 0.816 | 0.684 | 0.900 | 0.947 | 0.840 | 0.894 | 0.700 | 0.920 | 0.900 | 0.830 | |
OS | GDI | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Wald-IC | 1 | 5 | 3 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | |
HullP | 1 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
HullR | 8 | 11 | 9 | 9 | 6 | 8 | 8 | 5 | 11 | 7 | 8 | |
Wald-XPD | 1 | 3 | 4 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | |
US | GDI | 7 | 10 | 9 | 7 | 5 | 7 | 6 | 5 | 9 | 5 | 8 |
Wald-IC | 6 | 10 | 11 | 6 | 3 | 8 | 5 | 5 | 8 | 5 | 7 | |
HullP | 5 | 8 | 6 | 5 | 4 | 5 | 4 | 3 | 6 | 4 | 6 | |
HullR | 2 | 5 | 5 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | |
Wald-XPD | 5 | 8 | 12 | 4 | 3 | 7 | 5 | 5 | 6 | 4 | 7 |
项目 | 原始Q矩阵 | |||
---|---|---|---|---|
1 | 1 | 0 | 0 | 0 |
2 | 0 | 1* | 0* | 0 |
3 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 1 |
5 | 1* | 1 | 0 | 0^ |
6 | 1* | 1 | 0 | 0 |
7 | 1* | 0* | 1* | 0 |
8 | 1* | 0* | 1 | 0* |
9 | 1 | 0 | 0 | 1*#^ |
10 | 0 | 1*#^ | 0 | 1 |
11 | 1*#^ | 1*#^ | 0 | 1 |
12 | 1* | 0 | 1*#^ | 1 |
表3 原始Q矩阵以及各方法对属性的修正情况
项目 | 原始Q矩阵 | |||
---|---|---|---|---|
1 | 1 | 0 | 0 | 0 |
2 | 0 | 1* | 0* | 0 |
3 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 1 |
5 | 1* | 1 | 0 | 0^ |
6 | 1* | 1 | 0 | 0 |
7 | 1* | 0* | 1* | 0 |
8 | 1* | 0* | 1 | 0* |
9 | 1 | 0 | 0 | 1*#^ |
10 | 0 | 1*#^ | 0 | 1 |
11 | 1*#^ | 1*#^ | 0 | 1 |
12 | 1* | 0 | 1*#^ | 1 |
Q | 相对拟合指标 | 有限信息拟合指标 | ||||
---|---|---|---|---|---|---|
AIC | BIC | M2 | RMSEA2 | |||
M2 | df | p | ||||
Qoriginal | 4979.256 | 5245.278 | 23.919 | 15 | 0.067 | 0.0343 |
QXPD | 4962.484 | 5152.500 | 51.991 | 33 | 0.019 | 0.0338 |
QIC | 4964.200 | 5171.110 | 50.051 | 29 | 0.009 | 0.0380 |
QHullP | 4954.912 | 5178.709 | 40.037 | 25 | 0.029 | 0.0345 |
表4 基于3种方法修正前后Q矩阵的拟合指标
Q | 相对拟合指标 | 有限信息拟合指标 | ||||
---|---|---|---|---|---|---|
AIC | BIC | M2 | RMSEA2 | |||
M2 | df | p | ||||
Qoriginal | 4979.256 | 5245.278 | 23.919 | 15 | 0.067 | 0.0343 |
QXPD | 4962.484 | 5152.500 | 51.991 | 33 | 0.019 | 0.0338 |
QIC | 4964.200 | 5171.110 | 50.051 | 29 | 0.009 | 0.0380 |
QHullP | 4954.912 | 5178.709 | 40.037 | 25 | 0.029 | 0.0345 |
模拟条件 | AD | QM | IQ | N | JK | 时间 |
---|---|---|---|---|---|---|
1 | 均匀分布 | 0.15 | 0.4 | 500 | 4 | 476.16 |
2 | 高阶分布 | 0.15 | 0.4 | 500 | 4 | 195.68 |
3 | 均匀分布 | 0.15 | 0.4 | 500 | 8 | 706.40 |
4 | 高阶分布 | 0.15 | 0.4 | 500 | 8 | 654.93 |
5 | 均匀分布 | 0.15 | 0.4 | 1000 | 4 | 302.90 |
6 | 高阶分布 | 0.15 | 0.4 | 1000 | 4 | 746.01* |
7 | 均匀分布 | 0.15 | 0.4 | 1000 | 8 | 505.79 |
8 | 高阶分布 | 0.15 | 0.4 | 1000 | 8 | 320.67 |
9 | 均匀分布 | 0.15 | 0.6 | 500 | 4 | 68.17 |
10 | 高阶分布 | 0.15 | 0.6 | 500 | 4 | 67.66 |
11 | 均匀分布 | 0.15 | 0.6 | 500 | 8 | 54.11 |
12 | 高阶分布 | 0.15 | 0.6 | 500 | 8 | 81.36 |
13 | 均匀分布 | 0.15 | 0.6 | 1000 | 4 | 21.35 |
14 | 高阶分布 | 0.15 | 0.6 | 1000 | 4 | 90.22 |
15 | 均匀分布 | 0.15 | 0.6 | 1000 | 8 | 56.11 |
16 | 高阶分布 | 0.15 | 0.6 | 1000 | 8 | 113.40 |
17 | 均匀分布 | 0.15 | 0.8 | 500 | 4 | 12.93 |
18 | 高阶分布 | 0.15 | 0.8 | 500 | 4 | 21.20 |
19 | 均匀分布 | 0.15 | 0.8 | 500 | 8 | 23.63 |
20 | 高阶分布 | 0.15 | 0.8 | 500 | 8 | 46.23 |
21 | 均匀分布 | 0.15 | 0.8 | 1000 | 4 | 12.97 |
22 | 高阶分布 | 0.15 | 0.8 | 1000 | 4 | 12.50# |
23 | 均匀分布 | 0.15 | 0.8 | 1000 | 8 | 48.36 |
24 | 高阶分布 | 0.15 | 0.8 | 1000 | 8 | 32.42 |
25 | 均匀分布 | 0.3 | 0.4 | 500 | 4 | 114.85 |
26 | 高阶分布 | 0.3 | 0.4 | 500 | 4 | 223.68 |
27 | 均匀分布 | 0.3 | 0.4 | 500 | 8 | 750.26 |
28 | 高阶分布 | 0.3 | 0.4 | 500 | 8 | 310.86 |
29 | 均匀分布 | 0.3 | 0.4 | 1000 | 4 | 163.41 |
30 | 高阶分布 | 0.3 | 0.4 | 1000 | 4 | 226.47 |
31 | 均匀分布 | 0.3 | 0.4 | 1000 | 8 | 510.00 |
32 | 高阶分布 | 0.3 | 0.4 | 1000 | 8 | 696.73 |
33 | 均匀分布 | 0.3 | 0.6 | 500 | 4 | 63.20 |
34 | 高阶分布 | 0.3 | 0.6 | 500 | 4 | 111.59 |
35 | 均匀分布 | 0.3 | 0.6 | 500 | 8 | 64.36 |
36 | 高阶分布 | 0.3 | 0.6 | 500 | 8 | 111.91 |
37 | 均匀分布 | 0.3 | 0.6 | 1000 | 4 | 61.61 |
38 | 高阶分布 | 0.3 | 0.6 | 1000 | 4 | 77.84 |
39 | 均匀分布 | 0.3 | 0.6 | 1000 | 8 | 95.48 |
40 | 高阶分布 | 0.3 | 0.6 | 1000 | 8 | 152.57 |
41 | 均匀分布 | 0.3 | 0.8 | 500 | 4 | 45.05 |
42 | 高阶分布 | 0.3 | 0.8 | 500 | 4 | 12.75 |
43 | 均匀分布 | 0.3 | 0.8 | 500 | 8 | 22.22 |
44 | 高阶分布 | 0.3 | 0.8 | 500 | 8 | 72.12 |
45 | 均匀分布 | 0.3 | 0.8 | 1000 | 4 | 15.34 |
46 | 高阶分布 | 0.3 | 0.8 | 1000 | 4 | 25.56 |
47 | 均匀分布 | 0.3 | 0.8 | 1000 | 8 | 54.40 |
48 | 高阶分布 | 0.3 | 0.8 | 1000 | 8 | 190.39 |
表5 Wald-XPD方法在各模拟条件下的平均运行时间(s)
模拟条件 | AD | QM | IQ | N | JK | 时间 |
---|---|---|---|---|---|---|
1 | 均匀分布 | 0.15 | 0.4 | 500 | 4 | 476.16 |
2 | 高阶分布 | 0.15 | 0.4 | 500 | 4 | 195.68 |
3 | 均匀分布 | 0.15 | 0.4 | 500 | 8 | 706.40 |
4 | 高阶分布 | 0.15 | 0.4 | 500 | 8 | 654.93 |
5 | 均匀分布 | 0.15 | 0.4 | 1000 | 4 | 302.90 |
6 | 高阶分布 | 0.15 | 0.4 | 1000 | 4 | 746.01* |
7 | 均匀分布 | 0.15 | 0.4 | 1000 | 8 | 505.79 |
8 | 高阶分布 | 0.15 | 0.4 | 1000 | 8 | 320.67 |
9 | 均匀分布 | 0.15 | 0.6 | 500 | 4 | 68.17 |
10 | 高阶分布 | 0.15 | 0.6 | 500 | 4 | 67.66 |
11 | 均匀分布 | 0.15 | 0.6 | 500 | 8 | 54.11 |
12 | 高阶分布 | 0.15 | 0.6 | 500 | 8 | 81.36 |
13 | 均匀分布 | 0.15 | 0.6 | 1000 | 4 | 21.35 |
14 | 高阶分布 | 0.15 | 0.6 | 1000 | 4 | 90.22 |
15 | 均匀分布 | 0.15 | 0.6 | 1000 | 8 | 56.11 |
16 | 高阶分布 | 0.15 | 0.6 | 1000 | 8 | 113.40 |
17 | 均匀分布 | 0.15 | 0.8 | 500 | 4 | 12.93 |
18 | 高阶分布 | 0.15 | 0.8 | 500 | 4 | 21.20 |
19 | 均匀分布 | 0.15 | 0.8 | 500 | 8 | 23.63 |
20 | 高阶分布 | 0.15 | 0.8 | 500 | 8 | 46.23 |
21 | 均匀分布 | 0.15 | 0.8 | 1000 | 4 | 12.97 |
22 | 高阶分布 | 0.15 | 0.8 | 1000 | 4 | 12.50# |
23 | 均匀分布 | 0.15 | 0.8 | 1000 | 8 | 48.36 |
24 | 高阶分布 | 0.15 | 0.8 | 1000 | 8 | 32.42 |
25 | 均匀分布 | 0.3 | 0.4 | 500 | 4 | 114.85 |
26 | 高阶分布 | 0.3 | 0.4 | 500 | 4 | 223.68 |
27 | 均匀分布 | 0.3 | 0.4 | 500 | 8 | 750.26 |
28 | 高阶分布 | 0.3 | 0.4 | 500 | 8 | 310.86 |
29 | 均匀分布 | 0.3 | 0.4 | 1000 | 4 | 163.41 |
30 | 高阶分布 | 0.3 | 0.4 | 1000 | 4 | 226.47 |
31 | 均匀分布 | 0.3 | 0.4 | 1000 | 8 | 510.00 |
32 | 高阶分布 | 0.3 | 0.4 | 1000 | 8 | 696.73 |
33 | 均匀分布 | 0.3 | 0.6 | 500 | 4 | 63.20 |
34 | 高阶分布 | 0.3 | 0.6 | 500 | 4 | 111.59 |
35 | 均匀分布 | 0.3 | 0.6 | 500 | 8 | 64.36 |
36 | 高阶分布 | 0.3 | 0.6 | 500 | 8 | 111.91 |
37 | 均匀分布 | 0.3 | 0.6 | 1000 | 4 | 61.61 |
38 | 高阶分布 | 0.3 | 0.6 | 1000 | 4 | 77.84 |
39 | 均匀分布 | 0.3 | 0.6 | 1000 | 8 | 95.48 |
40 | 高阶分布 | 0.3 | 0.6 | 1000 | 8 | 152.57 |
41 | 均匀分布 | 0.3 | 0.8 | 500 | 4 | 45.05 |
42 | 高阶分布 | 0.3 | 0.8 | 500 | 4 | 12.75 |
43 | 均匀分布 | 0.3 | 0.8 | 500 | 8 | 22.22 |
44 | 高阶分布 | 0.3 | 0.8 | 500 | 8 | 72.12 |
45 | 均匀分布 | 0.3 | 0.8 | 1000 | 4 | 15.34 |
46 | 高阶分布 | 0.3 | 0.8 | 1000 | 4 | 25.56 |
47 | 均匀分布 | 0.3 | 0.8 | 1000 | 8 | 54.40 |
48 | 高阶分布 | 0.3 | 0.8 | 1000 | 8 | 190.39 |
[1] | Chen F., Liu Y., Xin T., & Cui Y. (2018). Applying the M2 statistic to evaluate the fit of diagnostic classification models in the presence of attribute hierarchies. Frontiers in Psychology, 9, Article 1875. |
[2] |
Chen J. (2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41(4), 277-293.
doi: 10.1177/0146621616686021 pmid: 29881093 |
[3] |
Chiu C.-Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618.
doi: 10.1177/0146621613488436 URL |
[4] |
de la Torre J. (2008). An empirically based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362.
doi: 10.1111/j.1745-3984.2008.00069.x URL |
[5] | de la Torre J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130. |
[6] |
de la Torre J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[7] |
de la Torre J., & Chiu C.-Y. (2016). A general method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273.
doi: 10.1007/s11336-015-9467-8 pmid: 25943366 |
[8] |
de la Torre J., & Douglas J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.
doi: 10.1007/BF02295640 URL |
[9] | Feng Y. (2013). Estimation and Q-matrix validation for diagnostic classification models (Unpublished doctoral dissertation). University of South Carolina, Los Angeles, America. |
[10] |
Gu Y., Liu J., Xu G., & Ying Z. (2018). Hypothesis testing of the Q-matrix. Psychometrika, 83(3), 515-537.
doi: 10.1007/s11336-018-9629-6 URL |
[11] |
Heller J., & Wickelmaier F. (2013). Minimum discrepancy estimation in probabilistic knowledge structures. Electronic Notes in Discrete Mathematics, 42, 49-56.
doi: 10.1016/j.endm.2013.05.145 URL |
[12] |
Kang C. H., Yang Y. K., & Zeng P. H. (2019). Q-matrix refinement based on item fit statistic RMSEA. Applied Psychological Measurement, 43(7), 527-542.
doi: 10.1177/0146621618813104 pmid: 31534288 |
[13] |
Li J., Mao X., & Wei J. (2022). A simple and effective new method of Q-matrix validation. Acta Psychologica Sinica, 54(8), 996-1008.
doi: 10.3724/SP.J.1041.2022.00996 URL |
[李佳, 毛秀珍, 韦嘉. (2022). 一种简单有效的Q矩阵修正新方法. 心理学报, 54(8), 996-1008.] | |
[14] |
Li J., Mao X., & Zhang X. (2021). Q-matrix estimation (validation) methods for cognitive diagnosis. Advances in Psychological Science, 29(12), 2272-2280.
doi: 10.3724/SP.J.1042.2021.02272 URL |
[李佳, 毛秀珍, 张雪琴. (2021). 认知诊断Q矩阵估计(修正)方法. 心理科学进展, 29(12), 2272-2280.] | |
[15] |
Li X., & Wang W. (2015). Assessment of differential item functioning under cognitive diagnosis models: The DINA model example. Journal of Educational Measurement, 52(1), 28-54.
doi: 10.1111/jedm.12061 URL |
[16] |
Lim Y., & Drasgow F. (2017). Nonparametric calibration of item-by-attribute matrix in cognitive diagnosis. Multivariate Behavioral Research, 52(5), 562-575.
doi: 10.1080/00273171.2017.1341829 pmid: 28715230 |
[17] |
Liu J., Xu G., & Ying Z. (2012). Data-driven learning of Q-matrix. Applied Psychological Measurement, 36(7), 548-564.
pmid: 23926363 |
[18] |
Liu Y., Andersson B., Xin T., Zhang H., & Wang L. (2019). Improved Wald statistics for item-level model comparison in diagnostic classification models. Applied Psychological Measurement, 43(5), 402-414.
doi: 10.1177/0146621618798664 pmid: 31235985 |
[19] | Liu Y., Tian W., & Xin T. (2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41(1), 3-26. |
[20] |
Liu Y., Xin T., Andersson B., & Tian W. (2019). Information matrix estimation procedures for cognitive diagnostic models. British Journal of Mathematical and Statistical Psychology, 72(1), 18-37.
doi: 10.1111/bmsp.12134 |
[21] | Liu Y., Xin T., & Jiang Y. (2021). Structural parameter standard error estimation method in diagnostic classification models: Estimation and application. Multivariate Behavioral Research. Advance online publication. https://doi.org/10.1080/00273171.2021.1919048 |
[22] |
Liu Y., Xin T., Li L., Tian W., & Liu X. (2016). An improved method for differential item functioning detection in cognitive diagnosis models: An application of Wald statistic based on observed information matrix. Acta Psychologica Sinica, 48(5), 588-598.
doi: 10.3724/SP.J.1041.2016.00588 URL |
[刘彦楼, 辛涛, 李令青, 田伟, 刘笑笑. (2016). 改进的认知诊断模型项目功能差异检验方法——基于观察信息矩阵的Wald统计量. 心理学报, 48(5), 588-598.] | |
[23] |
Ma W., & de la Torre J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275.
doi: 10.1111/bmsp.12070 URL |
[24] |
Ma W., & de la Torre J. (2020). An empirical Q-matrix validation method for the sequential generalized DINA model. British Journal of Mathematical and Statistical Psychology, 73(1), 142-163.
doi: 10.1111/bmsp.12156 URL |
[25] | McFadden D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in economics (pp. 105-142). New York, NY: Academic Press. |
[26] |
Nájera P., Sorrel M. A., & Abad F. J. (2019). Reconsidering cutoff points in the general method of empirical Q-matrix validation. Educational and Psychological Measurement, 79(4), 727-753.
doi: 10.1177/0013164418822700 pmid: 32655181 |
[27] |
Nájera P., Sorrel M. A., de la Torre J., & Abad F. J. (2020). Improving robustness in Q-Matrix validation using an iterative and dynamic procedure. Applied Psychological Measurement, 44(6), 431-446.
doi: 10.1177/0146621620909904 pmid: 32788815 |
[28] | Nájera P., Sorrel M. A., de la Torre J., & Abad F. J. (2021). Balancing fit and parsimony to improve Q-matrix validation. British Journal of Mathematical and Statistical Psychology, 74( Suppl 1), 110-130. |
[29] | Philipp M., Strobl C., de la Torre J., & Zeileis A. (2018). On the estimation of standard errors in cognitive diagnosis models. Journal of Educational and Behavioral Statistics, 43(1), 88-115. |
[30] |
Rupp A. A., & Templin J. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
doi: 10.1177/0013164407301545 URL |
[31] | Rupp A. A., Templin J., & Henson R. A. (2010). Diagnostic measurement: theory, methods, and applications. Guilford. |
[32] |
Sessoms J., & Henson R. A. (2018). Applications of diagnostic classification models: A literature review and critical commentary. Measurement: Interdisciplinary Research and Perspectives, 16(1), 1-17.
doi: 10.1080/15366367.2018.1435104 URL |
[33] |
Sorrel M. A., Olea J., Abad F. J., de la Torre J., Aguado D., & Lievens F. (2016). Validity and reliability of situational judgement test scores: A new approach based on cognitive diagnosis models. Organizational Research Methods, 19(3), 506-532.
doi: 10.1177/1094428116630065 URL |
[34] | Tatsuoka K. K. (1990). Toward an integration of item-response theory and cognitive error diagnosis. In N. Frederiksen, R. Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 453-488). Hillsdale, NJ: Erlbaum. |
[35] | Terzi R. (2017). New Q-matrix validation Procedures (Unpublished doctoral dissertation). The State University of New Jersey, New Brunswick, America. |
[36] | Terzi R., & de la Torre J. (2018). An iterative method for empirically-based Q-matrix validation. International Journal of Assessment Tools in Education, 5(2), 248-262. |
[37] |
Tu D., Cai Y., & Dai H. (2012). A new method of Q-Matrix validation based on DINA model. Acta Psychologica Sinica, 44(4), 558-568.
doi: 10.3724/SP.J.1041.2012.00558 URL |
[涂冬波, 蔡艳, 戴海琦. (2012). 基于DINA模型的Q矩阵修正方法. 心理学报, 44(4), 558-568.] | |
[38] |
von Davier M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287-307.
doi: 10.1348/000711007X193957 URL |
[39] | Wang D., Cai Y., & Tu D. (2020). Q-matrix estimation methods for cognitive diagnosis models: Based on partial known Q-matrix. Multivariate Behavioral Research. Advance online publication. https://doi.org/10.1080/00273171.2020.1746901 |
[40] | Wang D., Gao X., Cai Y., & Tu D. (2018). A new Q-matrix estimation method: ICC based on ideal response. Journal of Psychological Science, 41(2), 466-474. |
[汪大勋, 高旭亮, 蔡艳, 涂冬波. (2018). 一种非参数化的Q矩阵估计方法: ICC-IR方法开发. 心理科学, 41(2), 466-474.] | |
[41] |
Wang D., Gao X., Cai Y., & Tu D. (2020). A method of Q-matrix validation for polytomous response cognitive diagnosis model based on relative fit statistics. Acta Psychologica Sinica, 52(1), 93-106.
doi: 10.3724/SP.J.1041.2020.00093 URL |
[汪大勋, 高旭亮, 蔡艳, 涂冬波. (2020). 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角. 心理学报, 52(1), 93-106.] | |
[42] | Wang D., Gao X., Han Y., & Tu D. (2018). A simple and effective Q-matrix estimation method: From non-parametric perspective. Journal of Psychological Science, 41(1), 180-188. |
[汪大勋, 高旭亮, 韩雨婷, 涂冬波. (2018). 一种简单有效的Q矩阵估计方法开发:基于非参数化方法视角. 心理科学, 41(1), 180-188.] | |
[43] |
Wang W., Song L., Ding S., Meng Y., Cao C., & Jie Y. (2018). An EM-based method for Q-matrix validation. Applied Psychological Measurement, 42(6), 446-459.
doi: 10.1177/0146621617752991 pmid: 30787487 |
[44] |
Yu X. F., & Cheng Y. (2020). Data-driven Q-matrix validation using a residual-based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology, 73(Suppl 1), 145-179.
doi: 10.1111/bmsp.12191 URL |
[45] | Yu X., Luo Z., Qin C., Gao C., & Li J. (2015). Joint estimation of model parameters and Q-matrix based on response data. Acta Psychologica Sinica, 47(2), 273-282. |
[喻晓锋, 罗照盛, 秦春影, 高椿雷, 李喻骏. (2015). 基于作答数据的模型参数和Q矩阵联合估计. 心理学报, 47(2), 273-282.] |
[1] | 刘彦楼, 陈启山, 王一鸣, 姜晓彤. 模型参数点估计的可靠性:以CDM为例[J]. 心理学报, 2023, 55(10): 1712-1728. |
[2] | 刘彦楼. 认知诊断模型的标准误与置信区间估计:并行自助法[J]. 心理学报, 2022, 54(6): 703-724. |
[3] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角[J]. 心理学报, 2020, 52(1): 93-106. |
[4] | 高旭亮, 汪大勋, 王芳, 蔡艳, 涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
[5] | 康春花; 任平; 曾平飞. 多级评分聚类诊断法的影响因素[J]. 心理学报, 2016, 48(7): 891-902. |
[6] | 刘彦楼;辛涛;李令青;田伟;刘笑笑. 改进的认知诊断模型项目功能差异检验方法 ——基于观察信息矩阵的Wald统计量[J]. 心理学报, 2016, 48(5): 588-598. |
[7] | 詹沛达;边玉芳;王立君. 重参数化的多分属性诊断分类模型及其判准率影响因素[J]. 心理学报, 2016, 48(3): 318-330. |
[8] | 彭亚风;罗照盛;喻晓锋;高椿雷;李喻骏. 认知诊断评价中测验结构的优化设计[J]. 心理学报, 2016, 48(12): 1600-1611. |
[9] | 詹沛达;陈平;边玉芳. 使用验证性补偿多维IRT模型进行认知诊断评估[J]. 心理学报, 2016, 48(10): 1347-1356. |
[10] | 罗照盛;李喻骏;喻晓锋;高椿雷;彭亚风. 一种基于Q矩阵理论朴素的认知诊断方法[J]. 心理学报, 2015, 47(2): 264-272. |
[11] | 喻晓锋;罗照盛;秦春影;高椿雷;李喻骏. 基于作答数据的模型参数和Q矩阵联合估计[J]. 心理学报, 2015, 47(2): 273-282. |
[12] | 蔡艳;涂冬波. 属性多级化的认知诊断模型拓展及其Q矩阵设计[J]. 心理学报, 2015, 47(10): 1300-1308. |
[13] | 蔡艳;涂冬波;丁树良. 五大认知诊断模型的诊断正确率比较及其影响因素:基于分布形态、属性数及样本容量的比较[J]. 心理学报, 2013, 45(11): 1295-1304. |
[14] | 涂冬波,蔡艳,戴海琦. 基于DINA模型的Q矩阵修正方法[J]. 心理学报, 2012, 44(4): 558-568. |
[15] | 涂冬波;蔡艳;戴海琦;丁树良. 一种多策略认知诊断方法:MSCD方法的开发[J]. 心理学报, 2012, 44(11): 1547-1553. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||