[1] |
Ashby, F. G., Isen, A. M., & Turken, A. U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529-550.
pmid: 10467897
|
[2] |
Baumann, N., & Kuhl, J. (2005). Positive affect and flexibility: Overcoming the precedence of global over local processing of visual information. Motivation and Emotion, 29(2), 123-134.
doi: 10.1007/s11031-005-7957-1
URL
|
[3] |
Bolte, A., & Goschke, T. (2010). Thinking and emotion:Affective modulation of cognitive processing modes. In B. Glatzeder, V. Goel & A. Müller (Eds.), Towards a theory of thinking: Building blocks for a conceptual framework (pp. 261-277). Berlin, Heidelberg: Springer Berlin Heidelberg.
|
[4] |
Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28-71.
pmid: 9679076
|
[5] |
Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360-365.
doi: 10.1111/1467-9280.00168
URL
|
[6] |
Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(2), 224-234.
doi: 10.1037/0278-7393.29.2.224
URL
|
[7] |
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge.
|
[8] |
Conci, M., & Zellin, M. (2021). Stimulus-driven updating of long-term context memories in visual search. Psychological Research, 86(1), 252-267.
doi: 10.1007/s00426-021-01474-w
pmid: 33496847
|
[9] |
Craig, K. S., Berman, M. G., Jonides, J., & Lustig, C. (2013). Escaping the recent past: Which stimulus dimensions influence proactive interference? Memory & Cognition, 41(5), 650-670.
doi: 10.3758/s13421-012-0287-0
URL
|
[10] |
Delaney, H. D., & Logan, F. A. (1979). Item similarity and proactive interference in short-term memory. Bulletin of the Psychonomic Society, 14(4), 288-290.
doi: 10.3758/BF03329457
URL
|
[11] |
Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30( 2), 343-353.
|
[12] |
Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition & Emotion, 19(3), 313-332.
|
[13] |
Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent- variable analysis. Journal of Experimental Psychology: General, 133(1), 101-135.
doi: 10.1037/0096-3445.133.1.101
URL
|
[14] |
Geyer, T., Seitz, W., Zinchenko, A., Müller, H. J., & Conci, M. (2021). Why are acquired search-guiding context memories resistant to updating? Frontiers in psychology, 12, 650245.
doi: 10.3389/fpsyg.2021.650245
URL
|
[15] |
Goschke, T., & Bolte, A. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 62, 403-423.
doi: 10.1016/j.neuropsychologia.2014.07.015
pmid: 25068705
|
[16] |
Guo, X., & Wang, Z. (2007). Concept, function and meaning of positive emotion. Advances in Psychological Science, 15(5), 810-815.
|
|
[郭小艳, 王振宏. (2007). 积极情绪的概念、功能与意义. 心理科学进展, 15(5), 810-815.]
|
[17] |
Jungé, J. A., Scholl, B. J., & Chun, M. M. (2007). How is spatial context learning integrated over signal versus noise? A primacy effect in contextual cueing. Visual Cognition, 15(1), 1-11.
doi: 10.1080/13506280600859706
pmid: 18725966
|
[18] |
Karpicke, J. D. (2017). 2.27 - Retrieval-based learning:A decade of progress. In J. H. Byrne (Ed.), Learning and memory: A comprehensive reference (Second Edition, pp. 487-514). Oxford: Academic Press.
|
[19] |
Kroell, L. M., Schlagbauer, B., Zinchenko, A., Müller, H. J., & Geyer, T. (2019). Behavioural evidence for a single memory system in contextual cueing. Visual Cognition, 27(5-8), 551-562.
doi: 10.1080/13506285.2019.1648347
URL
|
[20] |
Lustig, C., & Hasher, L. (2001). Implicit memory is vulnerable to proactive interference. Psychological Science, 12(5), 408-412.
pmid: 11554675
|
[21] |
Manginelli, A. A., & Pollmann, S. (2009). Misleading contextual cues: How do they affect visual search? Psychological Research, 73(2), 212-221.
doi: 10.1007/s00426-008-0211-1
pmid: 19082622
|
[22] |
Mednick, S., Makovski, T., Cai, D., & Jiang, Y. V. (2009). Sleep and rest facilitate implicit memory in a visual search task. Vision Research, 49(21), 2557-2565.
doi: 10.1016/j.visres.2009.04.011
pmid: 19379769
|
[23] |
Morton, J. B., & Munakata, Y. (2002). Active versus latent representations: A neural network model of perseveration, dissociation, and decalage. Developmental Psychobiology, 40(3), 255-265.
pmid: 11891637
|
[24] |
Olson, I. R., & Chun, M. M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27( 5), 1299-1313.
|
[25] |
Olson, I. R., & Chun, M. M. (2002). Perceptual constraints on implicit learning of spatial context. Visual Cognition, 9(3), 273-302.
doi: 10.1080/13506280042000162
URL
|
[26] |
Zellin, M., Conci, M., von Mühlenen, A., & Müller, H. J. (2011). Two (or three) is one too many: Testing the flexibility of contextual cueing with multiple target locations. Attention, Perception, & Psychophysics, 73( 7), 2065-2076.
|
[27] |
Zellin, M., Conci, M., von Mühlenen, A., & Müller, H. J. (2013). Here today, gone tomorrow-adaptation to change in memory-guided visual search. PLOS ONE, 8(3), e59466.
|
[28] |
Zellin, M., von Mühlenen, A., Müller, H. J., & Conci, M. (2014). Long-term adaptation to change in implicit contextual learning. Psychonomic Bulletin & Review, 21(4), 1073-1079.
doi: 10.3758/s13423-013-0568-z
URL
|
[29] |
Zinchenko, A., Conci, M., Hauser, J., Müller, H. J., & Geyer, T. (2020). Distributed attention beats the down-side of statistical context learning in visual search. Journal of Vision, 20(7), https://doi.org/10.1167/jov.20.7.4
|