[1] |
Ban J. C., Hanson B. A., Wang T., Yi Q., & Harris D. J. (2001). A comparative study of on-line pretest item— Calibration/scaling methods in computerized adaptive testing. Journal of Educational Measurement, 38(3), 191-212.
|
[2] |
Chandrashekar G., & Sahin F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
|
[3] |
Chen J. (2017). A residual-based approach to validate Q-matrix specifications. Applied Psychological Measurement, 41(4), 277-293.
|
[4] |
Chen, P. (2016). Two new online calibration methods for computerized adaptive testing. Acta Psychologica Sinica, 48(9), 1184-1198.
|
|
[ 陈平. (2016). 两种新的计算机化自适应测验在线标定方法. 心理学报, 48(9), 1184-1198.]
|
[5] |
Chen P. (2017). A comparative study of online item calibration methods in multidimensional computerized adaptive testing. Journal of Educational and Behavioral Statistics, 42(5), 559-590.
|
[6] |
Chen P., & Wang C. (2015). A new online calibration method for multidimensional computerized adaptive testing. Psychometrika, 81(3), 674-701.
|
[7] |
Chen P., Wang C., Xin T., & Chang H. H. (2017). Developing new online calibration methods for multidimensional computerized adaptive testing. British Journal of Mathematical and Statistical Psychology, 70(1), 81-117.
|
[8] |
Chen P., & Xin T. (2011 a). Developing on-line calibration methods for cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 43(6), 710-724.
|
|
[ 陈平, 辛涛. (2011 a). 认知诊断计算机化自适应测验中在线标定方法的开发. 心理学报, 43(6), 710-724.]
|
[9] |
Chen P., & Xin T. (2011 b). Item replenishing in cognitive diagnostic computerized adaptive testing. Acta Psychologica Sinica, 43(7), 836-850.
|
|
[ 陈平, 辛涛. (2011 b). 认知诊断计算机化自适应测验中的项目增补. 心理学报, 43(7), 836-850.]
|
[10] |
Chen P., Xin T., Wang C., & Chang H. H. (2012). Online calibration methods for the DINA model with independent attributes in CD-CAT. Psychometrika, 77(2), 201-222.
|
[11] |
Chen Y., Liu J., & Ying Z. (2015). Online item calibration for Q-matrix in CD-CAT. Applied Psychological Measurement, 39(1), 5-15.
|
[12] |
Cheng Y. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619-632.
|
[13] |
Chiu C. Y., Sun Y., & Bian Y. (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method. Psychometrika, 83(2), 355-375.
|
[14] |
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
|
[15] |
de la Torre, J., &Chiu C. Y. (2016). A General method of empirical Q-matrix validation. Psychometrika, 81(2), 253-273.
|
[16] |
Fleuret F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5(11), 1531-1555.
|
[17] |
Guyon I., & Elisseeff A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(3), 1157-1182.
|
[18] |
Hartz S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.
|
[19] |
He Y., Chen P., & Li Y. (2020). New efficient and practicable adaptive designs for calibrating items online. Applied Psychological Measurement, 44 (1), 3-16.
|
[20] |
Hoque N., Bhattacharyya D. K., & Kalita J. K. (2014). MIFS-ND: A mutual information-based feature selection method. Expert Systems with Applications, 41(14), 6371-6385.
|
[21] |
Junker B. W., & Sijtsma K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272.
|
[22] |
Kaplan M., de la Torre J., & Barrada J. R. (2015). New item selection methods for cognitive diagnosis computerized adaptive testing. Applied Psychological Measurement, 39(3), 167-188.
|
[23] |
Leighton J. P., Gierl M. J., & Hunka S. M. (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka's rule-space approach. Journal of Educational Measurement, 41(3), 205-237.
|
[24] |
Li, H. ( 2012). Statistical learning method. Beijing: Tsinghua University Press.
|
|
[ 李航. ( 2012). 统计学习方法. 北京: 清华大学出版社.]
|
[25] |
Liu H. Y., You X. F., Wang W. Y., Ding S. L., & Chang H. H. (2013). The development of computerized adaptive testing with cognitive diagnosis for an English achievement test in China. Journal of Classification, 30(2), 152-172.
|
[26] |
Ma, W., & de la Torre J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275.
|
[27] |
Pereira R. B., Plastino A., Zadrozny B., & Merschmann L. H. (2015). Information gain feature selection for multi-label classification. Journal of Information and Data Management, 6(1), 48-58.
|
[28] |
Rupp A. A., & Templin J.L. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96.
|
[29] |
Stocking M. L. (1988). Scale drift in on-line calibration. ETS Research Report, 1988(1), 1-122.
|
[30] |
Tan, Q. (2019). The development of generalized online calibration methods in CD-CAT (Unpublished master’s thesis). Jiangxi Normal University, Nanchang, China.
|
|
[ 谭青蓉. (2019). CD-CAT广义在线标定方法开发研究 (硕士学位论文). 江西师范大学, 南昌.]
|
[31] |
Vinh L. T., Lee S., Park Y. T., & d’Auriol B. J. (2012). A novel feature selection method based on normalized mutual information. Applied Intelligence, 37(1), 100-120.
|
[32] |
Wainer H., & Mislevy R. J. (1990). Item response theory, item calibration, and proficiency estimation. In H. Wainer (Ed), Computerized adaptive testing: A primer (Chap. 4, pp. 65-102). Hillsdale, NJ: Erlbaum.
|
[33] |
Wang C. (2013). Mutual information item selection method in cognitive diagnostic computerized adaptive testing with short test length. Educational and Psychological Measurement, 73(6), 1017-1035.
|
[34] |
Weiss D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied Psychological Measurement, 6(4), 473-492.
|
[35] |
Yu X., & Cheng Y. (2020). Data-driven Q-matrix validation using a residual-based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology, 73( Suppl 1), 145-179.
|