[1] Aziz‐Zadeh L., Kaplan J. T., & Iacoboni M. (2009). “Aha!”: The neural correlates of verbal insight solutions.Human Brain Mapping, 30(3), 908-916. [2] Bartoli E., Devara E., Dang H. Q., Rabinovich R., Mathura R. K., Anand A., … Shofty B. (2024). Default mode network electrophysiological dynamics and causal role in creative thinking.Brain, 147(10), 3409-3425. [3] Beaty R. E., Benedek M., Barry Kaufman S., & Silvia P. J. (2015). Default and executive network coupling supports creative idea production.Scientific Reports, 5(1), 10964. [4] Benedek M., Christensen A. P., Fink A., & Beaty R. E. (2019). Creativity assessment in neuroscience research.Psychology of Aesthetics, Creativity, and the Arts, 13(2), 218-226. [5] Betzel R. F., Erickson M. A., Abell M., O'Donnell B. F., Hetrick W. P., & Sporns O. (2012). Synchronization dynamics and evidence for a repertoire of network states in resting EEG.Frontiers in Computational Neuroscience, 6, 74. [6] Bieth T., Ovando-Tellez M., Lopez‐Persem A., Garcin B., Hugueville L., Lehongre K.,. Volle E. (2024). Time course of EEG power during creative problem‐solving with insight or remote thinking.Human Brain Mapping, 45(1), e26547. [7] Bilalić M., Graf M., Vaci N., & Danek A. H. (2021). The temporal dynamics of insight problem solving-restructuring might not always be sudden.Thinking & Reasoning, 27(1), 1-37. [8] Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems.Behavior Research Methods, Instruments, & Computers, 35, 634-639. [9] Bréchet L., Brunet D., Birot G., Gruetter R., Michel C. M., & Jorge J. (2019). Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI.Neuroimage, 194, 82-92. [10] Britz J., Van De Ville D., & Michel C. M. (2010). BOLD correlates of EEG topography reveal rapid resting-state network dynamics.Neuroimage, 52(4), 1162-1170. [11] Brouwer, H., & Hoeks, J. C. (2013). A time and place for language comprehension: Mapping the N400 and the P600 to a minimal cortical network.Frontiers in Human Neuroscience, 7, 758. [12] Croce P., Zappasodi F., Spadone S., & Capotosto P. (2018). Magnetic stimulation selectively affects pre-stimulus EEG microstates.NeuroImage, 176, 239-245. [13] Custo A., Van De Ville D., Wells W. M., Tomescu M. I., Brunet D., & Michel C. M. (2017). Electroencephalographic resting-state networks: Source localization of microstates.Brain Connectivity, 7(10), 671-682. [14] Darsaud A., Wagner U., Balteau E., Desseilles M., Sterpenich V., Vandewalle G., … Maquet P. (2011). Neural precursors of delayed insight.Journal of Cognitive Neuroscience, 23(8), 1900-1910. [15] Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.Journal of Neuroscience Methods, 134(1), 9-21. [16] Dijksterhuis, A., & Nordgren, L. F. (2006). A theory of unconscious thought.Perspectives on Psychological Science, 1(2), 95-109. [17] Dohmatob E., Dumas G., & Bzdok D. (2020). Dark control: The default mode network as a reinforcement learning agent.Human Brain Mapping, 41(12), 3318-3341. [18] Erickson B., Truelove-Hill M., Oh Y., Anderson J., Zhang F. Z., & Kounios J. (2018). Resting-state brain oscillations predict trait-like cognitive styles.Neuropsychologia, 120, 1-8. [19] Fink A., Graif B., & Neubauer A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers.NeuroImage, 46(3), 854-862. [20] Fleck, J. I., & Kounios, J. (2009). Intuition, creativity, and unconscious aspects of problem solving. In W. P. Banks (Ed.), Encyclopedia of consciousness(pp. 431-446). Elsevier. [21] Gao, Y., & Zhang, H. (2014). Unconscious processing modulates creative problem solving: Evidence from an electrophysiological study.Consciousness and Cognition, 26, 64-73. [22] Gilhooly, K. J. (2016). Incubation and intuition in creative problem solving.Frontiers in Psychology, 7, 1076. [23] Haavold, P. Ø., & Sriraman, B. (2022). Creativity in problem solving: Integrating two different views of insight.ZDM-Mathematics Education, 54(1), 83-96. [24] Hill A. T., Bailey N. W., Zomorrodi R., Hadas I., Kirkovski M., Das S., Lum J. A. G., & Enticott P. G. (2023). EEG microstates in early‐to‐middle childhood show associations with age, biological sex, and alpha power.Human Brain Mapping, 44(18), 6484-6498. [25] Huang F., Zhao Q., Zhou Z., & Luo J. (2019). People got lost in solving a set of similar problems.NeuroImage, 186, 192-199. [26] Jung-Beeman M., Bowden E. M., Haberman J., Frymiare J. L., Arambel-Liu S., Greenblatt R.,. Kounios J. (2004). Neural activity when people solve verbal problems with insight.PLoS Biology, 2(4), e97. [27] Khanna A., Pascual-Leone A., Michel C. M., & Farzan F. (2015). Microstates in resting-state EEG: Current status and future directions.Neuroscience & Biobehavioral Reviews, 49, 105-113. [28] Koenig T., Prichep L., Lehmann D., Sosa P. V., Braeker E., Kleinlogel H.,. John E. R. (2002). Millisecond by millisecond, year by year: Normative EEG microstates and developmental stages.Neuroimage, 16(1), 41-48. [29] Kohler, W. (1985). The mentality of apes. Routledge. [30] Lehmann D., Ozaki H., & Pál I. (1987). EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation.Electroencephalography and Clinical Neurophysiology, 67(3), 271-288. [31] Lehmann D., Pascual-Marqui R. D., & Michel C. (2009). EEG microstates.Scholarpedia, 4(3), 7632. [32] Leszczynski M., Chaieb L., Reber T. P., Derner M., Axmacher N., & Fell J. (2017). Mind wandering simultaneously prolongs reactions and promotes creative incubation.Scientific Reports, 7(1), 10197. [33] Lin J., Chen Y., Xie J., & Mo L. (2022). Altered brain connectivity patterns of individual differences in insightful problem solving.Frontiers in Behavioral Neuroscience, 16, 905806. [34] Liu C., Tu S., Guan J., Zhou Z., Ma J., & Shi Z. (2024). How does unconscious processing promote creative problem-solving? An examination using priming methods.Thinking & Reasoning, 31(3), 374-397. [35] Liu D., Hao L., Han L., Zhou Y., Qin S., Niki K., … Luo J. (2023). The optimal balance of controlled and spontaneous processing in insight problem solving: fMRI evidence from Chinese idiom guessing.Psychophysiology, 60(7), e14240. [36] Liu Y., Nour M. M., Schuck N. W., Behrens T. E. J., & Dolan R. J. (2022). Decoding cognition from spontaneous neural activity.Nature Reviews Neuroscience, 23(4), 204-214. [37] Lloyd-Cox J., Chen Q., & Beaty R. E. (2022). The time course of creativity: Multivariate classification of default and executive network contributions to creative cognition over time.Cortex, 156, 90-105. [38] Lopez K. L., Monachino A. D., Morales S., Leach S. C., Bowers M. E., & Gabard-Durnam L. J. (2022). HAPPILEE: HAPPE In Low Electrode Electroencephalography, a standardized pre-processing software for lower density recordings.NeuroImage, 260, 119390. [39] Lu, Y., & Singer, W. (2023). Dynamic signatures of the Eureka effect: An EEG study.Cerebral Cortex, 33(13), 8679-8692. [40] Luo, J. (2004). Neural correlates of insight.Acta Psychologica Sinica, 36(2), 219-234. [罗劲. (2004). 顿悟的大脑机制.心理学报, 36(2), 219-234.] [41] Mai X. Q., Luo J., Wu J. H., & Luo Y. J. (2004). “Aha!” effects in a guessing riddle task: An ERP study.Human Brain Mapping, 23(2), 128-128. [42] Michel C. M., Bréchet L., Schiller B., & Koenig T. (2024). Current state of EEG/ERP microstate research.Brain Topography, 37(2), 169-180. [43] Musso F., Brinkmeyer J., Mobascher A., Warbrick T., & Winterer G. (2010). Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks.Neuroimage, 52(4), 1149-1161. [44] Oostenveld R., Fries P., Maris E., & Schoffelen J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.Computational Intelligence and Neuroscience, 2011, 156869. [45] Pan D. N., Hoid D., Gu R. L., & Li X. (2020). Emotional working memory training reduces rumination and alters the EEG microstate in anxious individuals.NeuroImage: Clinical, 28, 102488. [46] Pan M. W., Song J. Q., & Deng H. (2019). Development and validation of self-rating scales in online English writing diagnostic tests.Frontiers of Foreign Language Education Research, 2(4), 33-41. [潘鸣威, 宋杰青, 邓华. (2019). 在线英语写作诊断测评中自评量表的开发与效度验证.外语教育研究前沿, 2(4), 33-41.] [47] Poulsen A. T., Pedroni A., Langer N., & Hansen L. K. (2018). Microstate EEGlab toolbox: An introductory guide.BioRxiv, 289850. [48] Qiu J., Li H., Jou J., Liu J., Luo Y., Feng T.,. Zhang Q. (2010). Neural correlates of the “Aha” experiences: Evidence from an fMRI study of insight problem solving.Cortex, 46(3), 397-403. [49] Ritter, S. M., & Dijksterhuis, A. (2014). Creativity-the unconscious foundations of the incubation period.Frontiers in Human Neuroscience, 8, 215. [50] Rominger C., Papousek I., Perchtold C. M., Weber B., Weiss E. M., & Fink A. (2018). The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration.Neuropsychologia, 118, 13-19. [51] Satpute, A. B., & Lindquist, K. A. (2019). The default mode network’s role in discrete emotion.Trends in Cognitive Sciences, 23(10), 851-864. [52] Schiller B., Gianotti L. R., Baumgartner T., Nash K., Koenig T., & Knoch D. (2016). Clocking the social mind by identifying mental processes in the IAT with electrical neuroimaging.Proceedings of the National Academy of Sciences, 113(10), 2786-2791. [53] Shen W. B., Liu C., Luo J., & Yu J. (2012). Brain perceived intuitively mental impasses in insight problem solving: An ERP study.Acta Psychologica Sinica, 44(7), 924-935. [沈汪兵, 刘昌, 罗劲, 余洁. (2012). 顿悟问题思维僵局早期觉察的脑电研究.心理学报, 44(7), 924-935.] [54] Shen W., Tong Y., Li F., Yuan Y., Hommel B., Liu C., & Luo J. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies.Biological Psychology, 138, 189-198. [55] Sun Y., Cai Y., & Lu S. (2015). Hemispheric asymmetry in the influence of language on visual perception.Consciousness and Cognition, 34, 16-27. [56] Tan T., Zou H., Chen C., & Luo J. (2015). Mind wandering and the incubation effect in insight problem solving.Creativity Research Journal, 27(4), 375-382. [57] Tarailis P., Koenig T., Michel C. M., & Griškova-Bulanova I. (2024). The functional aspects of resting EEG microstates: A systematic review. Brain Topography, 37(2), 181-217. [58] Van Der Werf J., Jensen O., Fries P., & Medendorp W. P. (2008). Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades.The Journal of Neuroscience, 28(34), 8397-8405. [59] Wang H., Guo Y., Tu Y., Peng W., Lu X., Bi Y., Iannetti G. D., & Hu L. (2023). Neural processes responsible for the translation of sustained nociceptive inputs into subjective pain experience.Cerebral Cortex, 33(3), 634-650. [60] Wang T., Zhang Q., Li H., Qiu J., Tu S., & Yu C. (2009). The time course of Chinese riddles solving: Evidence from an ERP study.Behavioural Brain Research, 199(2), 278-282. [61] Yang, J. (2012). The role of the right hemisphere in metaphor comprehension: A meta-analysis of functional magnetic resonance imaging studies.Human Brain Mapping, 35(1), 107-122. [62] Yeshurun Y., Nguyen M., & Hasson U. (2021). The default mode network: Where the idiosyncratic self meets the shared social world.Nature Reviews Neuroscience, 22(3), 181-192. [63] Yu Y., Oh Y., Kounios J., & Beeman M. (2022). Dynamics of hidden brain states when people solve verbal puzzles.NeuroImage, 255, 119202. [64] Yue L., Iannetti G. D., & Hu L. (2020). The neural origin of nociceptive-Induced gamma-band oscillations.The Journal of Neuroscience, 40(17), 3478-3490. [65] Zanesco A. P., Denkova E., & Jha A. P. (2021). Self-reported mind wandering and response time variability differentiate prestimulus electroencephalogram microstate dynamics during a sustained attention task.Journal of Cognitive Neuroscience, 33(1), 28-45. [66] Zhao Q., Li S., Chen S., Zhou Z., & Cheng L. (2015). Dynamic neural processing mode of creative problem solving.Advances in Psychological Science, 23(3), 375-384. [赵庆柏, 李松清, 陈石, 周治金, 成良. (2015). 创造性问题解决的动态神经加工模式.心理科学进展, 23(3), 375-384.] [67] Zhao Q., Wei L., Li Y., Zhou Z., Zhao L., & Tang L. (2017). Right hemispheric dominance in forming novel semantic associations.Acta Psychologica Sinica, 49(11), 1370-1382. [赵庆柏, 魏琳琳, 李瑛, 周治金, 赵黎莉, 唐磊. (2017). 新颖语义联结形成的右半球优势效应.心理学报, 49(11), 1370-1382.] [68] Zhou S., Chen S., Wang S., Zhao Q., Zhou Z., & Lu C. (2018). Temporal and spatial patterns of neural activity associated with information selection in open-ended creativity.Neuroscience, 371, 268-276. |