[1] |
Bates R., & Istance H. O. (2003). Why are eye mice unpopular? A detailed comparison of head and eye controlled assistive technology pointing devices. Universal Access in the Information Society, 2(3), 280-290. https://doi.org/10.1007/s10209-003-0053-y
doi: 10.1007/s10209-003-0053-y
URL
|
[2] |
Blattgerste J., Renner P., & Pfeiffer T. (2018). Advantages of eye-gaze over head-gaze-based selection in virtual and augmented reality under varying field of views. Proceedings of the Workshop on Communication by Gaze Interaction, Article 1, 1-9. https://doi.org/10.1145/3206343.3206349
|
[3] |
Chen Y., Hoffmann E. R., & Goonetilleke R. S. (2015). Structure of hand/mouse movements. IEEE Transactions on Human-Machine Systems, 45(6), 790-798. https://doi.org/1109/THMS.2015.2430872
doi: 10.1109/THMS.2015.2430872
URL
|
[4] |
Claypool M., Cockburn A., & Gutwin C. (2019). Game input with delay: Moving target selection parameters. Proceedings of the 10th ACM Multimedia Systems Conference, 25-35. https://doi.org/10.1145/3304109.3306232
|
[5] |
Deng C.-L., Geng P., Hu Y.-F., & Kuai S.-G. (2019). Beyond Fitts’s law: A three-phase model predicts movement time to position an object in an immersive 3D virtual environment. Human Factors, 61(6), 879-894. https://doi.org/10.1177/0018720819831517
doi: 10.1177/0018720819831517
URL
|
[6] |
Deng C.-L., & Kuai S.-G. (2021). Angular parameters include the effect of depth on movement time for positioning task in virtual reality. Chinese Journal of Ergonomics, 27(6), 52-58. https://doi.org/10.13837/j.issn.1006-8309.2021.06.0009
|
|
[邓成龙, 蒯曙光. (2021). 虚拟现实空间中角度量参数包含深度对放置任务操作时间的影响. 人类工效学, 27(6), 52-58. https://doi.org/10.13837/j.issn.1006-8309.2021.06.0009 ]
|
[7] |
Descarreaux M., Passmore S. R., & Cantin V. (2010). Head movement kinematics during rapid aiming task performance in healthy and neck-pain participants: The importance of optimal task difficulty. Manual Therapy, 15(5), 445-450. https://doi.org/10.1016/j.math.2010.02.009
doi: 10.1016/j.math.2010.02.009
URL
pmid: 20579929
|
[8] |
Duval T., & Fleury C. (2009). An asymmetric 2D pointer/3D ray for 3D interaction within collaborative virtual environments. Proceedings of the 14th international Conference on 3D Web Technology, 33-41. https://doi.org/10.1145/1559764.1559769
|
[9] |
Elliott D., Helsen W. F., & Chua R. (2001). A century later: Woodworth's (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127(3), 342-357. https://doi.org/10.1037/0033-2909.127.3.342
URL
pmid: 11393300
|
[10] |
Gunn T. J., Irani P., & Anderson J. (2009). An evaluation of techniques for selecting moving targets. Proceedings of the CHI'09 Extended Abstracts on Human Factors in Computing Systems, 3329-3334. https://doi.org/10.1145/1520340.1520481
|
[11] |
Hajri A. A., Fels S., Miller G., & Ilich M. (2011). Moving target selection in 2D graphical user interfaces. In P. Campos, N. Graham, J. Jorge, N. Nunes, P. Palanque, & M. Winckler (Eds.), Human-Computer Interaction - INTERACT 2011. Lecture Notes in Computer Science (Vol. 6947, pp. 141-161). Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-642-23771-3_12
|
[12] |
Hansen J. P., Rajanna V., MacKenzie I. S., & Bækgaard P. (2018). A Fitts' law study of click and dwell interaction by gaze, head and mouse with a head-mounted display. Proceedings of the Workshop on Communication by Gaze Interaction, Article 7, 1-5. https://doi.org/10.1145/3206343.3206344
|
[13] |
Hasan K., Grossman T., & Irani P. (2011). Comet and target ghost:Techniques for selecting moving targets. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 839-848. https://doi.org/10.1145/1978942.1979065
|
[14] |
Hatscher B., Luz M., Nacke L. E., Elkmann N., Müller V., & Hansen C. (2017). GazeTap: Towards hands-free interaction in the operating room. Proceedings of the 19th ACM international conference on multimodal interaction, 243-251. https://doi.org/10.1145/3136755.3136759
|
[15] |
Hoffmann E. R. (1991). Capture of moving targets: A modification of Fitts' law. Ergonomics, 34(2), 211-220. https://doi.org/10.1080/00140139108967307
doi: 10.1080/00140139108967307
URL
|
[16] |
Hoffmann E. R., Chan A. H. S., & Heung P. T. (2017). Head rotation movement times. Human Factors, 59(6), 986-994. https://doi.org/10.1177/0018720817701000
doi: 10.1177/0018720817701000
URL
pmid: 28796975
|
[17] |
Huang J., Tian F., Fan X., Zhang X., & Zhai S. (2018). Understanding the uncertainty in 1D unidirectional moving target selection. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Article 237, 1-12. https://doi.org/10.1145/3173574.3173811
|
[18] |
Huang J., Tian F., Li N., & Fan X. (2019). Modeling the uncertainty in 2D moving target selection. Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 1031-1043. https://doi.org/10.1145/3332165.3347880
|
[19] |
Ilich M. V. (2009). Moving target selection in interactive video (Unpublished master's thesis). University of British Columbia. https://doi.org/10.14288/1.0064925
|
[20] |
Jagacinski R. J., & Monk D. L. (1985). Fitts’ law in two dimensions with hand and head movements. Journal of Motor Behavior, 17(1), 77-95. https://doi.org/10.1080/00222895.1985.10735338
URL
pmid: 15140699
|
[21] |
Jagacinski R. J., Repperger D. W., Ward S. L., & Moran M. S. (1980). A test of Fitts' law with moving targets. Human Factors, 22(2), 225-233. https://doi.org/10.1177/001872088002200211
URL
pmid: 7390506
|
[22] |
Jalaliniya S., Mardanbeigi D., Pederson T., & Hansen D. W. (2014). Head and eye movement as pointing modalities for eyewear computers. Proceedings of the 2014 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops, 50-53. https://doi.org/10.1109/BSN.Workshops.2014.14
|
[23] |
Kopper R., Bowman D. A., Silva M. G., & McMahan R. P. (2010). A human motor behavior model for distal pointing tasks. International Journal of Human-computer Studies, 68(10), 603-615. https://doi.org/10.1016/j.ijhcs.2010.05.001
doi: 10.1016/j.ijhcs.2010.05.001
URL
|
[24] |
Kytö M., Ens B., Piumsomboon T., Lee G. A., & Billinghurst M. (2018). Pinpointing:Precise head-and eye-based target selection for augmented reality. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Article 81, 1-14. https://doi. org/10.1145/3173574.3173655
|
[25] |
Lee B., Kim S., Oulasvirta A., Lee J.-I., & Park E. (2018). Moving target selection:A cue integration model. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Article 230, 1-12. https://doi.org/10.1145/3173574.3173804
|
[26] |
Lin M. L., Radwin R. G., & Vanderheiden G. C. (1992). Gain effects on performance using a head-controlled computer input device. Ergonomics, 35(2), 159-175. https://doi.org/10.1080/00140139208967804
URL
pmid: 1628609
|
[27] |
Liu L., van Liere R., Nieuwenhuizen C., & Martens J.-B. (2009). Comparing aimed movements in the real world and in virtual reality. Proceedings of the 2009 IEEE Virtual Reality Conference, 219-222. https://doi.org/10.1109/VR.2009.4811026
|
[28] |
MacKenzie I. S. (1992). Fitts' law as a research and design tool in human-computer interaction. Human-computer Interaction, 7(1), 91-139. https://doi.org/10.1207/s15327051hci0701_3
doi: 10.1207/s15327051hci0701_3
URL
|
[29] |
MacKenzie I. S., & Teather R. J. (2012). FittsTilt:The application of Fitts' law to tilt-based interaction. Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design, 568-577. https://doi.org/10.1145/2399016.2399103
|
[30] |
Marchand A.-A., Cantin V., Murphy B., Stern P., & Descarreaux M. (2014). Is performance in goal oriented head movements altered in patients with tension type headache? BMC Musculoskeletal Disorders, 15(1), 179. https://doi.org/10.1186/1471-2474-15-179
doi: 10.1186/1471-2474-15-179
URL
|
[31] |
Meyer D. E., Abrams R. A., Kornblum S., Wright C. E., & Keith Smith J. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95(3), 340-370. https://doi.org/10.1037/0033-295x.95.3.340
URL
pmid: 3406245
|
[32] |
Mould D., & Gutwin C. (2004). The effects of feedback on targeting with multiple moving targets. Proceedings of Graphics Interface 2004, 25-32. https://dl.acm.org/doi/10.5555/1006058.1006062
|
[33] |
Ortega M. (2013). Hook: Heuristics for selecting 3D moving objects in dense target environments. Proceedings of the 2013 IEEE 8th Symposium on 3D User Interfaces (3DUI), 119-122. https://doi.org/10.1109/3DUI.2013.6550208
|
[34] |
Pastel R. (2011). Positioning graphical objects on computer screens: A three-phase model. Human Factors, 53(1), 22-37. https://doi.org/10.1177/0018720810397353
URL
pmid: 21469531
|
[35] |
Pathmanathan N., Becher M., Rodrigues N., Reina G., Ertl T., Weiskopf D., & Sedlmair M. (2020). Eye vs. head: Comparing gaze methods for interaction in augmented reality. Proceedings of the ACM Symposium on Eye Tracking Research and Applications, Article 50, 1-5. https://doi.org/10.1145/3379156.3391829
|
[36] |
Port N. L., Lee D., Dassonville P., & Georgopoulos A. P. (1997). Manual interception of moving targets I. Performance and movement initiation. Experimental Brain Research, 116(3), 406-420. https://doi.org/10.1007/pl00005769
doi: 10.1007/pl00005769
URL
pmid: 9372290
|
[37] |
Prytz E., Montano M., & Scerbo M. W. (2012). Using Fitts’ law for a 3D pointing task on a 2D display: Effects of depth and vantage point. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1391-1395. https://doi.org/10.1177/1071181312561396
doi: 10.1177/1071181312561396
URL
|
[38] |
Qian Y. Y., & Teather R. J. (2017). The eyes don't have it:An empirical comparison of head-based and eye-based selection in virtual reality. Proceedings of the 5th Symposium on Spatial User Interaction, 91-98. https://doi.org/10.1145/3131277.3132182
|
[39] |
Radwin R. G., Vanderheiden G. C., & Lin M.-L. (1990). A method for evaluating head-controlled computer input devices using Fitts' law. Human Factors, 32(4), 423-438. https://doi.org/10.1177/001872089003200405
URL
pmid: 2150065
|
[40] |
Ragan E. D., Pachuilo A., Goodall J. R., & Bacim F. (2020). Preserving contextual awareness during selection of moving targets in animated stream visualizations. Proceedings of the International Conference on Advanced Visual Interfaces, Article 28, https://doi.org/10.1145/3399715.3399832
|
[41] |
Smith S. P., & Burd E. L. (2019). Response activation and inhibition after exposure to virtual reality. Array, 3(4), 100010. https://doi.org/10.1016/j.array.2019.100010
|
[42] |
Soukoreff R. W., & MacKenzie I. S. (2004). Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts’ law research in HCI. International Journal of Human-computer Studies, 61(6), 751-789. https://doi.org/10.1016/j.ijhcs.2004.09.001
doi: 10.1016/j.ijhcs.2004.09.001
URL
|
[43] |
Teather R. J., & Stuerzlinger W. (2007). Guidelines for 3D positioning techniques. Proceedings of the 2007 conference on Future Play, 61-68. https://doi.org/10.1145/1328202.1328214
|
[44] |
Tresilian J. R. (2005). Hitting a moving target: Perception and action in the timing of rapid interceptions. Perception & Psychophysics, 67(1), 129-149. https://doi.org/10.3758/BF03195017
doi: 10.3758/BF03195017
URL
|
[45] |
Tresilian J. R., & Lonergan A. (2002). Intercepting a moving target: Effects of temporal precision constraints and movement amplitude. Experimental Brain Research, 142(2), 193-207. https://doi.org/10.1007/s00221-001-0920-9
doi: 10.1007/s00221-001-0920-9
URL
pmid: 11807574
|