Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (6): 1027-1035.doi: 10.3724/SP.J.1042.2025.1027
• Conceptual Framework • Previous Articles Next Articles
LIU Jiali1,2, ZHAO Haichao1,2, HE Qinghua1,2()
Received:
2024-12-18
Online:
2025-06-15
Published:
2025-04-09
Contact:
HE Qinghua
E-mail:heqinghua@swu.edu.cn
CLC Number:
LIU Jiali, ZHAO Haichao, HE Qinghua. Neural mechanisms underlying the transformation between egocentric and allocentric spatial reference frames[J]. Advances in Psychological Science, 2025, 33(6): 1027-1035.
细胞类型 | 细胞特点 | 脑区 | 空间参考系 | 主要文献 |
---|---|---|---|---|
位置细胞 | 在环境中的特定位置放电 | 海马(CA1、CA3) | 非自我中心 | (O'Keefe & Dostrovsky, |
网格细胞 | 在环境中以六边形网格模式放电 | 内侧内嗅皮层 | 非自我中心 | (Hafting et al., |
头朝向细胞 | 编码头部相对于环境参照物的朝向 | 后托、丘脑前核 | 非自我中心 | (Taube et al., |
边界向量细胞 | 编码与环境边界的距离和方向 | 下托 | 非自我中心 | (Lever et al., |
目标向量细胞 | 编码相对于物体的距离和方向 | 内侧内嗅皮层 | 非自我中心 | (Høydal et al., |
地标向量细胞 | 编码相对于特定地标的位置 | 海马(CA1) | 非自我中心 | (Deshmukh & Knierim, |
自我中心边界细胞 | 编码边界相对于个体的朝向、位置信息 | 压后皮质、后鼻皮层、外侧内嗅皮层 | 自我中心 | (Alexander et al., |
自我中心目标细胞 | 编码视野内物体相对于个体的位置和朝向 | 外侧内嗅皮层 | 自我中心 | (Wang et al., |
细胞类型 | 细胞特点 | 脑区 | 空间参考系 | 主要文献 |
---|---|---|---|---|
位置细胞 | 在环境中的特定位置放电 | 海马(CA1、CA3) | 非自我中心 | (O'Keefe & Dostrovsky, |
网格细胞 | 在环境中以六边形网格模式放电 | 内侧内嗅皮层 | 非自我中心 | (Hafting et al., |
头朝向细胞 | 编码头部相对于环境参照物的朝向 | 后托、丘脑前核 | 非自我中心 | (Taube et al., |
边界向量细胞 | 编码与环境边界的距离和方向 | 下托 | 非自我中心 | (Lever et al., |
目标向量细胞 | 编码相对于物体的距离和方向 | 内侧内嗅皮层 | 非自我中心 | (Høydal et al., |
地标向量细胞 | 编码相对于特定地标的位置 | 海马(CA1) | 非自我中心 | (Deshmukh & Knierim, |
自我中心边界细胞 | 编码边界相对于个体的朝向、位置信息 | 压后皮质、后鼻皮层、外侧内嗅皮层 | 自我中心 | (Alexander et al., |
自我中心目标细胞 | 编码视野内物体相对于个体的位置和朝向 | 外侧内嗅皮层 | 自我中心 | (Wang et al., |
[1] | Alexander A. S., Carstensen L. C., Hinman J. R., Raudies F., Chapman G. W., & Hasselmo M. E. (2020). Egocentric boundary vector tuning of the retrosplenial cortex. Science Advances, 6(8), eaaz2322. |
[2] | Alexander A. S., Place R., Starrett M. J., Chrastil E. R., & Nitz D. A. (2023). Rethinking retrosplenial cortex: Perspectives and predictions. Neuron, 111(2), 150-175. |
[3] |
Alexander A. S., Rangel L. M., Tingley D., & Nitz D. A. (2018). Neurophysiological signatures of temporal coordination between retrosplenial cortex and the hippocampal formation. Behavioral Neuroscience, 132(5), 453-468.
doi: 10.1037/bne0000254 pmid: 30070554 |
[4] |
Alexander A. S., Robinson J. C., Stern C. E., & Hasselmo M. E. (2023). Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus. Hippocampus, 33(5), 465-487.
doi: 10.1002/hipo.23513 pmid: 36861201 |
[5] | Bellmund J. L., Deuker L., Navarro Schröder T., & Doeller C. F. (2016). Grid-cell representations in mental simulation. eLife, 5. https://doi.org/10.7554/eLife.17089 |
[6] | Bicanski A., & Burgess N. (2018). A neural-level model of spatial memory and imagery. eLife, 7. https://doi.org/10.7554/eLife.33752 |
[7] |
Bicanski A., & Burgess N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21(9), 453-470.
doi: 10.1038/s41583-020-0336-9 pmid: 32764728 |
[8] |
Buzsáki G., & Vöröslakos M. (2023). Brain rhythms have come of age. Neuron, 111(7), 922-926.
doi: 10.1016/j.neuron.2023.03.018 pmid: 37023714 |
[9] |
Chadwick M. J., Jolly A. E., Amos D. P., Hassabis D., & Spiers H. J. (2015). A goal direction signal in the human entorhinal/subicular region. Current Biology, 25(1), 87-92.
doi: 10.1016/j.cub.2014.11.001 pmid: 25532898 |
[10] | Chen D., Kunz L., Lv P., Zhang H., Zhou W., Liang S., Axmacher N., & Wang L. (2021). Theta oscillations coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex. Science Advances, 7(44), eabj0200. |
[11] |
Chen D., Kunz L., Wang W., Zhang H., Wang W. X., Schulze-Bonhage A.,... Wang L. (2018). Hexadirectional Modulation of Theta Power in Human Entorhinal Cortex during Spatial Navigation. Current Biology, 28(20), 3310-3315.
doi: S0960-9822(18)31113-8 pmid: 30318350 |
[12] | Cheng N., Dong Q., Zhang Z., Wang L., Chen X., & Wang C. (2024). Egocentric processing of items in spines, dendrites, and somas in the retrosplenial cortex. Neuron, 112(4), 646-660. |
[13] |
Clark B. J., Simmons C. M., Berkowitz L. E., & Wilber A. A. (2018). The retrosplenial-parietal network and reference frame coordination for spatial navigation. Behavioral Neuroscience, 132(5), 416-429.
doi: 10.1037/bne0000260 pmid: 30091619 |
[14] | Colombo D., Serino S., Tuena C., Pedroli E., Dakanalis A., Cipresso P., & Riva G. (2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience & Biobehavioral Reviews, 80, 605-621. |
[15] |
Derbie A. Y., Chau B. K., Wong C. H., Chen L. D., Ting K. H., Lam B. Y.,... Smith Y. (2021). Common and distinct neural trends of allocentric and egocentric spatial coding: An ALE meta‐analysis. European Journal of Neuroscience, 53(11), 3672-3687.
doi: 10.1111/ejn.15240 pmid: 33880818 |
[16] |
Deshmukh S. S., & Knierim J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus, 23(4), 253-267.
doi: 10.1002/hipo.22101 pmid: 23447419 |
[17] | Doeller C. F., Barry C., & Burgess N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657-661. |
[18] |
Ekstrom A. D., & Hill P. F. (2023). Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age. Neuron, 111(7), 1037-1049.
doi: 10.1016/j.neuron.2023.03.001 pmid: 37023709 |
[19] |
Gofman X., Tocker G., Weiss S., Boccara C. N., Lu L., Moser M.-B.,... Derdikman D. (2019). Dissociation between postrhinal cortex and downstream parahippocampal regions in the representation of egocentric boundaries. Current Biology, 29(16), 2751-2757.
doi: S0960-9822(19)30852-8 pmid: 31378610 |
[20] | Hafting T., Fyhn M., Molden S., Moser M.-B., & Moser E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. |
[21] | Høydal Ø. A., Skytøen E. R., Andersson S. O., Moser M.-B., & Moser E. I. (2019). Object-vector coding in the medial entorhinal cortex. Nature, 568(7752), 400-404. |
[22] |
Hyafil A., Giraud A. L., Fontolan L., & Gutkin B. (2015). Neural cross-frequency coupling: Connecting architectures, mechanisms, and functions. Trends in Neurosciences, 38(11), 725-740.
doi: S0166-2236(15)00208-8 pmid: 26549886 |
[23] |
Kunz L., Brandt A., Reinacher P. C., Staresina B. P., Reifenstein E. T., Weidemann C. T.,... Jacobs J. (2021). A neural code for egocentric spatial maps in the human medial temporal lobe. Neuron, 109(17), 2781-2796.
doi: 10.1016/j.neuron.2021.06.019 pmid: 34265253 |
[24] |
Lever C., Burton S., Jeewajee A., O'Keefe J., & Burgess N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. Journal of Neuroscience, 29(31), 9771-9777.
doi: 10.1523/JNEUROSCI.1319-09.2009 pmid: 19657030 |
[25] | Li J., Zhang R., Liu S., Liang Q., Zheng S., He X., & Huang R. (2021). Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis. NeuroImage, 238, 118264. |
[26] |
Lin C. T., Chiu T. C., & Gramann K. (2015). EEG correlates of spatial orientation in the human retrosplenial complex. NeuroImage, 120, 123-132.
doi: 10.1016/j.neuroimage.2015.07.009 pmid: 26163801 |
[27] | Lin C. T., Chiu T. C., Wang Y. K., Chuang C. H., & Gramann K. (2018). Granger causal connectivity dissociates navigation networks that subserve allocentric and egocentric path integration. Brain Research, 1679, 91-100. |
[28] |
Mankin E. A., & Fried I. (2020). Modulation of human memory by deep brain stimulation of the entorhinal- hippocampal circuitry. Neuron, 106(2), 218-235.
doi: S0896-6273(20)30147-1 pmid: 32325058 |
[29] |
Moraresku S., Hammer J., Janca R., Jezdik P., Kalina A., Marusic P., & Vlcek K. (2023). Timing of allocentric and egocentric spatial processing in human intracranial EEG. Brain Topography, 36(6), 870-889.
doi: 10.1007/s10548-023-00989-2 pmid: 37474691 |
[30] | Nau M., Navarro Schröder T., Frey M., & Doeller C. F. (2020). Behavior-dependent directional tuning in the human visual-navigation network. Nature Communications, 11(1), 3247. |
[31] |
O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175.
doi: 10.1016/0006-8993(71)90358-1 pmid: 5124915 |
[32] |
Schindler A., & Bartels A. (2013). Parietal cortex codes for egocentric space beyond the field of view. Current Biology, 23(2), 177-182.
doi: 10.1016/j.cub.2012.11.060 pmid: 23260468 |
[33] |
Spiers H. J., & Maguire E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618-626.
doi: 10.1002/hipo.20298 pmid: 17492693 |
[34] | Sprague T. C., Adam K. C. S., Foster J. J., Rahmati M., Sutterer D. W., & Vo V. A. (2018). Inverted encoding models assay population-level stimulus representations, not single-unit neural tuning. ENeuro, 5(3). https://doi.org/10.1523/ENEURO.0098-18.2018 |
[35] | Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., & Fried I. (2012). Memory enhancement and deep-brain stimulation of the entorhinal area. New England Journal of Medicine, 366(6), 502-510. |
[36] |
Taube J. S., Muller R. U., & Ranck J. B. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435.
pmid: 2303851 |
[37] | van Wijngaarden J. B., Babl S. S., & Ito H. T. (2020). Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding. eLife, 9. https://doi.org/10.7554/eLife.59816 |
[38] |
Wang C., Chen X., & Knierim J. J. (2020). Egocentric and allocentric representations of space in the rodent brain. Current Opinion in Neurobiology, 60, 12-20.
doi: S0959-4388(19)30103-5 pmid: 31794917 |
[39] |
Wang C., Chen X., Lee H., Deshmukh S. S., Yoganarasimha D., Savelli F., & Knierim J. J. (2018). Egocentric coding of external items in the lateral entorhinal cortex. Science, 362(6417), 945-949.
doi: 10.1126/science.aau4940 pmid: 30467169 |
[40] |
Wilber A. A., Clark B. J., Forster T. C., Tatsuno M., & McNaughton B. L. (2014). Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex. Journal of Neuroscience, 34(16), 5431-5446.
doi: 10.1523/JNEUROSCI.0511-14.2014 pmid: 24741034 |
[1] | HUANG Lei, ZHANG Junheng, JI Ming. Dynamic processing mechanisms of cognitive maps in navigation in visually cue-restricted environments [J]. Advances in Psychological Science, 2025, 33(4): 673-679. |
[2] | WU Ji, LI Hui-Jie. Cognitive space mapping and its neural mechanisms [J]. Advances in Psychological Science, 2025, 33(1): 62-76. |
[3] | ZHANG Fengxiang, CHEN Meixuan, PU Yi, KONG Xiang-Zhen. Individual differences in spatial navigation: A multi-scale perspective [J]. Advances in Psychological Science, 2023, 31(9): 1642-1664. |
[4] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[5] | WU Wenya, WANG Liang. The cognitive map and its intrinsic mechanisms [J]. Advances in Psychological Science, 2023, 31(10): 1856-1872. |
[6] | Hui Xu; Chaoyi Qin; Yunxian Bai; Zheng Tan; Yali Pan; Yanyan Li; Wenjing Zhou; Tao Zhang; Liang Wang. Lateral prefrontal cortex triggers bistable perception switching using human intracranial EEG [J]. Advances in Psychological Science, 2016, 24(Suppl.): 24-. |
[7] | LI Yingwu; YU Zhou; HAN Xiao. Spatial Reference Frames’ Generating Mechanism and Relationship with Cognitive Function [J]. Advances in Psychological Science, 2015, 23(2): 192-201. |
[8] | NIE Jing;LING Wenquan;LI Ming. Cognitive Mapping Technique and Application in Management Psychology [J]. Advances in Psychological Science, 2013, 21(1): 155-165. |
[9] | XU Qin;LUO Yu;LIU Jia. The Mechanism of Sense of Direction and Its Modulating Factors [J]. , 2010, 18(8): 1208-1221. |
[10] |
Zhao Mintao.
Mental Representation of Locations and Spatial Relations of Objects [J]. , 2006, 14(3): 321-327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||