Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (4): 673-679.doi: 10.3724/SP.J.1042.2025.0673
• Regular Articles • Previous Articles Next Articles
HUANG Lei1, ZHANG Junheng1, JI Ming1,2()
Received:
2024-04-08
Online:
2025-04-15
Published:
2025-03-05
Contact:
JI Ming
E-mail:jiming@snnu.edu.cn
CLC Number:
HUANG Lei, ZHANG Junheng, JI Ming. Dynamic processing mechanisms of cognitive maps in navigation in visually cue-restricted environments[J]. Advances in Psychological Science, 2025, 33(4): 673-679.
要素组织形式 | 概念 | 来源 | 表征内容 |
---|---|---|---|
认知地图 | 依赖重要线索构建出的独立于自身而存在的环境全景地图 | Tolman, | 空间环境信息的物理表征 |
认知图谱 | 是对空间环境的灵活表征, 它允许个体在导航过程中理解和记忆路线网络 | Chrastil & Warren, | 仅包含节点和链接的动作序列集合 |
认知空间 | 由刺激的物理特征(如位置、方向)和抽象特征(如颜色、形状)的多组质量维度构成的空间表征形式 | Bellmund et al., | 反映知识层次或嵌套概念的多尺度表征 |
要素组织形式 | 概念 | 来源 | 表征内容 |
---|---|---|---|
认知地图 | 依赖重要线索构建出的独立于自身而存在的环境全景地图 | Tolman, | 空间环境信息的物理表征 |
认知图谱 | 是对空间环境的灵活表征, 它允许个体在导航过程中理解和记忆路线网络 | Chrastil & Warren, | 仅包含节点和链接的动作序列集合 |
认知空间 | 由刺激的物理特征(如位置、方向)和抽象特征(如颜色、形状)的多组质量维度构成的空间表征形式 | Bellmund et al., | 反映知识层次或嵌套概念的多尺度表征 |
[1] |
李丹, 杨昭宁. (2015). 空间导航:路标学习和路径整合的关系. 心理科学进展, 23(10), 1755-1762.
doi: 10.3724/SP.J.1042.2015.01755 |
[2] |
吴文雅, 王亮. (2023). 认知地图及其内在机制. 心理科学进展, 31(10), 1856-1782.
doi: 10.3724/SP.J.1042.2023.01856 |
[3] | 肖承丽, 刘传军. (2014). 对想象环境的空间更新. 心理学报, 46(9), 1289-1300. |
[4] | 游旭群. (2017). 飞行空间定向. 见游旭群(编), 航空心理学——理论、实践与应用 (pp.20-61). 杭州: 浙江教育出版社. |
[5] | 郑丽, 王玲, 杨佳佳, 郑晨光. (2023). 阿尔茨海默病转基因动物认知地图损伤的细胞-网络机制. 生理学报, 75(5), 1-23. |
[6] | Anastasiou, C., Baumann, O., & Yamamoto, N. (2023). Does path integration contribute to human navigation in large-scale space. Psychonomic Bulletin & Review, 30(3), 822-842. |
[7] | Antony, J. W., & Bennion, K. A. (2023). Semantic associates create retroactive interference on an independent spatial memory task. Journal of Experimental Psychology: Learning Memory and Cognition, 49(5), 701-713. |
[8] |
Baraduc, P., Duhamel, J. R., & Wirth, S. (2019). Schema cells in the macaque hippocampus. Science, 363(6427), 635-639.
doi: 10.1126/science.aav5404 pmid: 30733419 |
[9] | Barhorst-Cates, E. M., Rand, K. M., & Creem-Regehr, S. H. (2016). The effects of restricted peripheral field-of-view on spatial learning while navigating. PloS One, 11(10), e0163785. |
[10] | Bellmund, J. L., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415), eaat6766. |
[11] | Bergelt, J., & Hamker, F. H. (2019). Spatial updating of attention across eye movements: A neuro-computational approach. Journal of Vision, 19(7), 10. |
[12] | Beuth, F. (2019). Visual attention in primates and for machines- neuronal mechanisms [Unpublised doctoral dissertation]. Chemnitz, Technische Universität Chemnitz, Germany. |
[13] | Bicanski, A., & Burgess, N. (2018). A neural-level model of spatial memory and imagery. eLife, 7, e33752. |
[14] |
Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21(9), 453-470.
doi: 10.1038/s41583-020-0336-9 pmid: 32764728 |
[15] |
Bonasia, K., Blommesteyn, J., & Moscovitch, M. (2016). Memory and navigation: Compression of space varies with route length and turns. Hippocampus, 26(1), 9-12.
doi: 10.1002/hipo.22539 pmid: 26418606 |
[16] | Borodaeva, Z., Winkler, S., Brade, J., Klimant, P., & Jahn, G. (2023). Spatial updating in virtual reality for reproducing object locations in vista space-boundaries, landmarks, and idiothetic cues. Frontiers in Psychology, 14, 1144861. |
[17] | Brayda, L., Leo, F., Baccelliere, C., Vigini, C., & Cocchi, E. (2019, October). A refreshable tactile display effectively supports cognitive mapping followed by orientation and mobility tasks: A comparative multi-modal study involving blind and low-vision participants. Paper presented at the meeting of Proceedings of the 2nd Workshop on Multimedia for Accessible Human Computer Interfaces (pp. 9-15), New York, NY. |
[18] |
Brunec, I. K., Javadi, A.-H., Zisch, F. E. L., & Spiers, H. J. (2017). Contracted time and expanded space: The impact of circumnavigation on judgements of space and time. Cognition, 166, 425-432.
doi: S0010-0277(17)30166-X pmid: 28624709 |
[19] |
Brunec, I. K., Moscovitch, M., & Barense, M. D. (2018). Boundaries shape cognitive representations of spaces and events. Trends in Cognitive Sciences, 22(7), 637-650.
doi: S1364-6613(18)30087-1 pmid: 29706557 |
[20] | Brunec, I. K., Nantais, M. M., Sutton, J. E., Epstein, R. A., & Newcombe, N. S. (2023). Exploration patterns shape cognitive map learning. Cognition, 233, 105360. |
[21] | Buckner, R. L. (2010). The role of the hippocampus in prediction and imagination. Annual Review of Psychology, 61(1), 27-48. |
[22] |
Bulkin, D. A., Sinclair, D. G., Law, L. M., & Smith, D. M. (2020). Hippocampal state transitions at the boundaries between trial epochs. Hippocampus, 30(6), 582-595.
doi: 10.1002/hipo.23180 pmid: 31793687 |
[23] |
Burkhardt, M., Bergelt, J., Gönner, L., Dinkelbach, H. Ü., Beuth, F., Schwarz, A., ... Hamker, F. H. (2023). A large-scale neurocomputational model of spatial cognition integrating memory with vision. Neural Networks, 167, 473-488.
doi: 10.1016/j.neunet.2023.08.034 pmid: 37688954 |
[24] |
Chan, E., Baumann, O., Bellgrove, M. A., & Mattingley, J. B. (2014). Negative emotional experiences during navigation enhance parahippocampal activity during recall of place information. Journal of Cognitive Neuroscience, 26(1), 154-164.
doi: 10.1162/jocn_a_00468 pmid: 23984944 |
[25] | Chen, S., Guhur, P. L., Schmid, C., & Laptev, I. (2021). History aware multimodal transformer for vision-and- language navigation. Advances in Neural Information Processing Systems, 34, 5834-5847. |
[26] | Chen, S., Guhur, P. L., Tapaswi, M., Schmid, C., & Laptev, I. (2022). Think global, act local: Dual-scale graph transformer for vision-and-language navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 16537-16547). |
[27] | Cheung, A., Ball, D., Milford, M., Wyeth, G., & Wiles, J. (2012). Maintaining a cognitive map in darkness: The need to fuse boundary knowledge with path integration. PLoS Computational Biology, 8(8), e1002651. |
[28] | Chrastil, E. R., & Warren, W. H. (2014). From cognitive maps to cognitive graphs. PLoS ONE, 9(11), e112544. |
[29] | Cornell, E. H., & Bourassa, C. M. (2007). Human non-visual discrimination of gradual turning is poor. Psychological Research, 71(3), 314-321. |
[30] | Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D., ... Spiers, H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604(7904), 104-110. |
[31] | Credé, S., Thrash, T., Hölscher, C., & Fabrikant, S. I. (2020). The advantage of globally visible landmarks for spatial learning. Journal of Environmental Psychology, 67, 101369. |
[32] | Creem-Regehr, S. H., Barhorst-Cates, E. M., Tarampi, M. R., Rand, K. M., & Legge, G. E. (2021). How can basic research on spatial cognition enhance the visual accessibility of architecture for people with low vision. Cognitive Research: Principles and Implications, 6(1), 3. |
[33] | Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657-661. |
[34] |
Eilam, D. (2014). Of mice and men: Building blocks in cognitive mapping. Neuroscience and Biobehavioral Reviews, 47, 393-409.
doi: 10.1016/j.neubiorev.2014.09.010 pmid: 25265515 |
[35] |
Ekstrom, A. D., & Ranganath, C. (2018). Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus, 28(9), 680-687.
doi: 10.1002/hipo.22750 pmid: 28609014 |
[36] | Fernández Velasco, P., & Casati, R. (2020). Subjective disorientation as a metacognitive feeling. Spatial Cognition & Computation, 20(4), 281-305. |
[37] | Frame, M. E., Schwing, M., Johnston, S., & Curtis, E. (2023). Route planning decisions: Evaluating reliance on spatial heuristics under risk. Spatial Cognition & Computation, 23(1), 57-82. |
[38] |
Frankenstein, J., Mohler, B. J., Bülthoff, H. H., & Meilinger, T. (2012). Is the map in our head oriented north. Psychological Science, 23(2), 120-125.
doi: 10.1177/0956797611429467 pmid: 22207644 |
[39] |
Gallistel, C. R. (1989). Animal cognition: The representation of space, time and number. Annual Review of Psychology, 40, 155-189.
pmid: 2648974 |
[40] | Gao, B., Chen, Z., Chen, X., Tu, H., & Huang, F. (2021). The effects of audiovisual landmarks on spatial learning and recalling for image browsing interface in virtual environments. Journal of Systems Architecture, 117, 102096. |
[41] | Gardenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT Press. |
[42] | Gärling, T., Böök, A., Lindberg, E., & Nilsson, T. (1981). Memory for the spatial layout of the everyday physical environment: Factors affecting rate of acquisition. Journal of Environmental Psychology, 1(4), 263-277. |
[43] | Gramann, K., Hohlefeld, F. U., Gehrke, L., & Klug, M. (2021). Human cortical dynamics during full-body heading changes. Scientific Reports, 11(1), 18186. |
[44] |
Grillini, A., Renken, R. J., & Cornelissen, F. W. (2019). Attentional modulation of visual spatial integration: Psychophysical evidence supported by population coding modeling. Journal of Cognitive Neuroscience, 31(9), 1329-1342.
doi: 10.1162/jocn_a_01412 pmid: 30990389 |
[45] | Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. |
[46] | Hao, X., Yuan, Z., Lin, S., Kong, X., Song, Y., & Liu, J. (2022). Different behavioral and learning effects between using boundary and landmark cues during spatial navigation. Current Psychology, 42(27), 23301-23312. |
[47] | Hersh, M. (2020). Mental maps and the use of sensory information by blind and partially sighted people. ACM Transactions on Accessible Computing, 13(2), 1-32. |
[48] |
Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., ... Spiers, H. J. (2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Current Biology, 24(12), 1331-1340.
doi: S0960-9822(14)00526-0 pmid: 24909328 |
[49] |
Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93-129.
pmid: 16375882 |
[50] | Ishikawa, T., & Nakamura, U. (2012). Landmark selection in the environment: Relationships with object characteristics and sense of direction. Spatial Cognition & Computation, 12(1), 1-22. |
[51] | Ishikawa, T., & Zhou, Y. (2020). Improving cognitive mapping by training for people with a poor sense of direction. Cognitive Research: Principles and Implications, 5(1), 1-19. |
[52] | Jabbari, Y., Kenney, D. M., von Mohrenschildt, M., & Shedden, J. M. (2021). Vestibular cues improve landmark- based route navigation: A simulated driving study. Memory & Cognition, 49(8), 1633-1644. |
[53] |
Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X. X., ... Kahana, M. J. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 16(9), 1188-1190.
doi: 10.1038/nn.3466 pmid: 23912946 |
[54] | Kaski, D., Quadir, S., Nigmatullina, Y., Malhotra, P. A., Bronstein, A. M., & Seemungal, B. M. (2016). Temporoparietal encoding of space and time during vestibular-guided orientation. Brain, 139(2), 392-403. |
[55] | Karim, A. M., Rumalla, K., King, L. A., & Hullar, T. E. (2018). The effect of spatial auditory landmarks on ambulation. Gait & Posture, 60, 171-174. |
[56] | Keller, A. M., Taylor, H. A., & Brunyé, T. T. (2020). Uncertainty promotes information-seeking actions, but what information. Cognitive Research: Principles and Implications, 5(1), 42. |
[57] |
Keshavarzi, S., Velez-Fort, M., & Margrie, T. W. (2023). Cortical integration of vestibular and visual cues for navigation, visual processing, and perception. Annual Review of Neuroscience, 46, 301-320.
doi: 10.1146/annurev-neuro-120722-100503 pmid: 37428601 |
[58] |
Knierim, J. J., & Hamilton, D. A. (2011). Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation. Physiological Reviews, 91(4), 1245-1279.
doi: 10.1152/physrev.00021.2010 pmid: 22013211 |
[59] | Kolarik, A. J., Moore, B. C., Zahorik, P., Cirstea, S., & Pardhan, S. (2016). Auditory distance perception in humans: A review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception, & Psychophysics, 78( 2), 373-395. |
[60] | Koriat, A. (1997). Monitoring one's own knowledge during study: A cue-utilization approach to judgments of learning. Journal of Experimental Psychology: General, 126(4), 349-370. |
[61] | Lanini-Maggi, S., Ruginski, I., & Fabrikant, S. I. (2021). Improving pedestrians' spatial learning during landmark- based navigation with auditory emotional cues and narrative. UC Santa Barbara: Center for Spatial Studies. |
[62] | Liu, B. Y., Shan, J. Y., & Gu, Y. (2023). Temporal and spatial properties of vestibular signals for perception of self- motion. Frontiers in Neurology, 14, 1266513. |
[63] | Löwen, H., Krukar, J., & Schwering, A. (2019). Spatial learning with orientation maps: The influence of different environmental features on spatial knowledge acquisition. ISPRS International Journal of Geo-Information, 8(3), 149. |
[64] | Lu, R., Yu, C., Li, Z., Mou, W., & Li, Z. (2020). Set size effects in spatial updating are independent of the online/ offline updating strategy. Journal of Experimental Psychology: Human Perception and Performance, 46(9), 901-911. |
[65] | Lynch, K. (1964). The image of the city. MIT Press. |
[66] |
Macauda, G., Moisa, M., Mast, F. W., Ruff, C. C., Michels, L., & Lenggenhager, B. (2019). Shared neural mechanisms between imagined and perceived egocentric motion - A combined GVS and fMRI study. Cortex, 119, 20-32.
doi: S0010-9452(19)30163-7 pmid: 31071554 |
[67] | Maguire, E. A., & Mullally, S. L. (2013). The hippocampus: A manifesto for change. Journal of Experimental Psychology: General, 142(4), 1180-1189. |
[68] | Maidenbaum, S., Miller, J., Stein, J. M., & Jacobs, J. (2018). Grid-like hexadirectional modulation of human entorhinal theta oscillations. Proceedings of the National Academy of Sciences, 115(42), 10798-10803. |
[69] | Marsh, J. E., Vachon, F., Sörqvist, P., Marsja, E., Röer, J., Richardson, B. H., & Ljungberg, J. K. (2023). Irrelevant changing-state vibrotactile stimuli disrupt verbal serial recall: Implications for theories of interference in short- term memory. Journal of Cognitive Psychology, 36(1), 78-100. |
[70] |
Martolini, C., Cappagli, G., Luparia, A., Signorini, S., & Gori, M. (2020). The impact of vision loss on allocentric spatial coding. Frontiers in Neuroscience, 14, 565.
doi: 10.3389/fnins.2020.00565 pmid: 32612500 |
[71] | Mason, L. A., Thomas, A. K., & Taylor, H. A. (2022). On the proposed role of metacognition in environment learning: Recommendations for research. Cognitive Research: Principles and Implications, 7(1), 104. |
[72] |
Medendorp, W. P., & Selen, L. J. P. (2017). Vestibular contributions to high-level sensorimotor functions. Neuropsychologia, 105, 144-152.
doi: S0028-3932(17)30050-7 pmid: 28163007 |
[73] |
Meijer, G. T., Montijn, J. S., Pennartz, C. M. A., & Lansink, C. S. (2017). Audiovisual modulation in mouse primary visual cortex depends on cross-modal stimulus configuration and congruency. Journal of Neuroscience, 37(36), 8783-8796.
doi: 10.1523/JNEUROSCI.0468-17.2017 pmid: 28821672 |
[74] | Meilinger, T., Riecke, B. E., & Bulthoff, H. H. (2014). Local and global reference frames for environmental spaces. Quarterly Journal of Experimental Psychology, 67(3), 542-569. |
[75] | Meilinger, T., Strickrodt, M., & Bülthoff, H. H. (2018, September). Spatial survey estimation is incremental and relies on directed memory structures. Paper presented at the meeting of Spatial Cognition XI:11th International Conference, Spatial Cognition 2018, Proceedings 11 (pp. 27-42), Tübingen, Germany. |
[76] |
Meyerhoff, H. S., Huff, M., Papenmeier, F., Jahn, G., & Schwan, S. (2011). Continuous visual cues trigger automatic spatial target updating in dynamic scenes. Cognition, 121(1), 73-82.
doi: 10.1016/j.cognition.2011.06.001 pmid: 21726856 |
[77] | Mou, W., McNamara, T. P., Rump, B., & Xiao, C. (2006). Roles of egocentric and allocentric spatial representations in locomotion and reorientation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(6), 1274. |
[78] | Nardi, D., Carpenter, S. E., Johnson, S. R., Gilliland, G. A., Melo, V. L., Pugliese, R., ... Kelly, D. M. (2022). Spatial reorientation with a geometric array of auditory cues. Quarterly Journal of Experimental Psychology, 75(2), 362-373. |
[79] | Nardi, D., Twyman, A. D., Holden, M. P., & Clark, J. M. (2020). Tuning in: Can humans use auditory cues for spatial reorientation. Spatial Cognition & Computation, 20(2), 83-103. |
[80] | Navratilova, Z., & Mcnaughton, B. L. (2014). Models of path integration in the hippocampal complex. In: DerdikmanD., & KnierimJ. (Eds.), Space, time and memory in the hippocampal formation. Springer, Vienna. |
[81] |
Noordzij, M. L., Zuidhoek, S., & Postma, A. (2006). The influence of visual experience on the ability to form spatial mental models based on route and survey descriptions. Cognition, 100(2), 321-342.
pmid: 16043169 |
[82] | Nuhn, E., & Timpf, S. (2018). An overall framework for personalised landmark selection. In: KieferP., HuangH., Van de WegheN., & RaubalM. (Eds.). Progress in Location Based Services 2018. LBS 2018. Lecture Notes in Geoinformation and Cartography. Springer, Cham. |
[83] | Ottink, L., Buimer, H., van Raalte, B., Doeller, C. F., van der Geest, T. M., & van Wezel, R. J. A. (2022). Cognitive map formation supported by auditory, haptic, and multimodal information in persons with blindness. Neuroscience & Biobehavioral Review, 140, 104797. |
[84] | Ottink, L., van Raalte, B., Doeller, C. F., Van der Geest, T. M., & Van Wezel, R. J. A. (2022). Cognitive map formation through tactile map navigation in visually impaired and sighted persons. Scientific Reports, 12(1), 11567. |
[85] |
Park, S. A., Miller, D. S., Nili, H., Ranganath, C., & Boorman, E. D. (2020). Map making: Constructing, combining, and inferring on abstract cognitive maps. Neuron, 107(6), 1226-1238.
doi: S0896-6273(20)30484-0 pmid: 32702288 |
[86] |
Pasqualotto, A., & Esenkaya, T. (2016). Sensory substitution: The spatial updating of auditory scenes “Mimics” the spatial updating of visual scenes. Frontiers in Behavioral Neuroscience, 10, 79.
doi: 10.3389/fnbeh.2016.00079 pmid: 27148000 |
[87] |
Peacock, C. E., & Ekstrom, A. D. (2019). Verbal cues flexibly transform spatial representations in human memory. Memory, 27(4), 465-479.
doi: 10.1080/09658211.2018.1520890 pmid: 30207206 |
[88] |
Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37-54.
doi: 10.1016/j.tics.2020.10.004 pmid: 33248898 |
[89] | Perelman, B. S., Evans III, A. W., & Schaefer, K. E. (2017, September). Mental model consensus and shifts during navigation system-assisted route planning. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 61, No. 1, pp. 1183-1187). Sage CA: Los Angeles, CA: SAGE Publications. |
[90] | Pitt, B., Carstensen, A., Boni, I., Piantadosi, S. T., & Gibson, E. (2022). Different reference frames on different axes: Space and language in indigenous Amazonians. Science Advances, 8(47), eabp9814. |
[91] |
Priestley, J. B., Bowler, J. C., Rolotti, S. V., Fusi, S., & Losonczy, A. (2022). Article Signatures of rapid plasticity in hippocampal CA1 representations during novel experiences. Neuron, 110(12), 1978-1992.
doi: 10.1016/j.neuron.2022.03.026 pmid: 35447088 |
[92] |
Raithel, C. U., & Gottfried, J. A. (2021). Using your nose to find your way: Ethological comparisons between human and non-human species. Neuroscience and Biobehavioral Reviews, 128, 766-779.
doi: 10.1016/j.neubiorev.2021.06.040 pmid: 34214515 |
[93] |
Renault, A. G., Auvray, M., Parseihian, G., Miall, R. C., Cole, J., & Sarlegna, F. R. (2018). Does proprioception influence human spatial cognition? A study on individuals with massive deafferentation. Frontiers in Psychology, 9, 1322.
doi: 10.3389/fpsyg.2018.01322 pmid: 30131736 |
[94] | Santoro, I., Murgia, M., Sors, F., & Agostini, T. (2020). The influence of the encoding modality on spatial navigation for sighted and late-blind people. Multisensory Research, 33(4-5), 505-520. |
[95] |
Sheldon, S., & El-Asmar, N. (2018). The cognitive tools that support mentally constructing event and scene representations. Memory, 26(6), 858-868.
doi: 10.1080/09658211.2017.1417440 pmid: 29281940 |
[96] | Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M. B., & Moser, E. I. (2012). The entorhinal grid map is discretized. Nature, 492(7427), 72-78. |
[97] |
Sun, C., Yang, W., Martin, J., & Tonegawa, S. (2020). Hippocampal neurons represent events as transferable units of experience. Nature Neuroscience, 23(5), 651-663.
doi: 10.1038/s41593-020-0614-x pmid: 32251386 |
[98] |
Teghil, A., Boccia, M., Bonavita, A., & Guariglia, C. (2019). Temporal features of spatial knowledge: Representing order and duration of topographical information. Behavioural Brain Research, 376, 112218.
doi: 10.1016/j.bbr.2019.112218 |
[99] | Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189. |
[100] |
Trettel, S. G., Trimper, J. B., Hwaun, E., Fiete, I. R., & Colgin, L. L. (2019). Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. Nature Neuroscience, 22(4), 609-617.
doi: 10.1038/s41593-019-0359-6 pmid: 30911183 |
[101] | van Ments, L., & Treur, J. (2021). Reflections on dynamics, adaptation and control: A cognitive architecture for mental models. Cognitive Systems Research, 70, 1-9. |
[102] | Vercillo, T., & Gori, M. (2016). Blind individuals represent the auditory space in an egocentric rather than allocentric reference frame. Electronic Imaging, 28, 1-5. |
[103] | Voros, J., Kravets, V., Smith, K., & Clark, T. K. (2024). Humans gradually integrate sudden gain or loss of visual information into spatial orientation perception. Frontiers in Neuroscience, 17, 1274949. |
[104] | Wang, C. H., Monaco, J. D., & Knierim, J. J. (2020). Hippocampal place cells encode local surface-texture boundaries. Current Biology, 30(8), 1397-1409. |
[105] | Wang, L., Mou, W., & Sun, X. (2014). Development of landmark knowledge at decision points. Spatial Cognition & Computation, 14(1), 1-17. |
[106] | Wang, R. F. (2016). Building a cognitive map by assembling multiple path integration systems. Psychonomic Bulletin & Review, 23(3), 692-702. |
[107] |
Wang, R. F., & Spelke, E. S. (2000). Updating egocentric representations in human navigation. Cognition, 77(3), 215-250.
pmid: 11018510 |
[108] | Warren, W. H. (2019). Non-euclidean navigation. Journal of Experimental Biology, 222(Suppl_1), jeb187971. |
[109] | Weisberg, S. M., & Newcombe, N. S. (2015). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42( 5), 768-785. |
[110] |
Widloski, J., & Fiete, I. R. (2014). A model of grid cell development through spatial exploration and spike time- dependent plasticity. Neuron, 83(2), 481-495.
doi: S0896-6273(14)00540-6 pmid: 25033187 |
[111] |
Wiener, J. M., Berthoz, A., & Wolbers, T. (2011). Dissociable cognitive mechanisms underlying human path integration. Experimental Brain Research, 208(1), 61-71.
doi: 10.1007/s00221-010-2460-7 pmid: 20972774 |
[112] | Williams, H. P., Voros, J. L., Merfeld, D. M., Clark, T. K., & (2021). Naval Medical Research Unit Dayton University of Colorado Ohio State University. Extending the observer model for human orientation perception to include in-flight perceptual thresholds. Naval Medical Research Unit Dayton. Tech. Rep. |
[113] |
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities. Trends in Cognitive Sciences, 14(3), 138-146.
doi: 10.1016/j.tics.2010.01.001 pmid: 20138795 |
[114] | Wunderlich, A., Grieger, S., & Gramann, K. (2023). Landmark information included in turn-by-turn instructions induce incidental acquisition of lasting route knowledge. Spatial Cognition & Computation, 23(1), 31-56. |
[115] |
Yesiltepe, D., Conroy Dalton, R., & Ozbil Torun, A. (2021). Landmarks in wayfinding: A review of the existing literature. Cognitive Processing, 22(3), 369-410.
doi: 10.1007/s10339-021-01012-x pmid: 33682034 |
[116] | Yesiltepe, D., Dalton, R., Torun, A. O., Dalton, N., Noble, S., Hornberger, M., Coutrot, A., & Spiers, H. (2019, July). Usage of Landmarks in Virtual Environments for Wayfinding: Research on the influence of global landmarks. Paper presented at the meeting of 12SSS-12th International Space Syntax Symposium, Beijing, China. |
[117] | Zhong, J. Y., & Kozhevnikov, M. (2016). Relating allocentric and egocentric survey-based representations to the self-reported use of a navigation strategy of egocentric spatial updating. Journal of Environmental Psychology, 46, 154-175. |
[118] |
Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S.,... Dong, H. W. (2014). Neural Networks of the Mouse Neocortex. Cell, 156(5), 1096-1111.
doi: 10.1016/j.cell.2014.02.023 pmid: 24581503 |
[1] | XUE Xiaoran, CUI Wei, ZHANG Li. A three-level meta-analysis of gender differences in spatial navigation ability [J]. Advances in Psychological Science, 2025, 33(5): 843-862. |
[2] | WU Ji, LI Hui-Jie. Cognitive space mapping and its neural mechanisms [J]. Advances in Psychological Science, 2025, 33(1): 62-76. |
[3] | ZHANG Fengxiang, CHEN Meixuan, PU Yi, KONG Xiang-Zhen. Individual differences in spatial navigation: A multi-scale perspective [J]. Advances in Psychological Science, 2023, 31(9): 1642-1664. |
[4] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[5] | WU Wenya, WANG Liang. The cognitive map and its intrinsic mechanisms [J]. Advances in Psychological Science, 2023, 31(10): 1856-1872. |
[6] | HAO Xin, YUAN Zhongping, LIN Shuting, SHEN Ting. Cognitive neural mechanism of boundary processing in spatial navigation [J]. Advances in Psychological Science, 2022, 30(7): 1496-1510. |
[7] | ZHANG Jiaxin, HAI Lagan, LI Huijie. Measurement of spatial navigation and application research in cognitive aging [J]. Advances in Psychological Science, 2019, 27(12): 2019-2033. |
[8] | NIE Jing;LING Wenquan;LI Ming. Cognitive Mapping Technique and Application in Management Psychology [J]. Advances in Psychological Science, 2013, 21(1): 155-165. |
[9] | XU Qin;LUO Yu;LIU Jia. The Mechanism of Sense of Direction and Its Modulating Factors [J]. , 2010, 18(8): 1208-1221. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 257
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||