[1] Alexander A. S., Carstensen L. C., Hinman J. R., Raudies F., Chapman G. W., & Hasselmo M. E. (2020). Egocentric boundary vector tuning of the retrosplenial cortex. Science Advances, 6(8), eaaz2322. [2] Alexander A. S., Place R., Starrett M. J., Chrastil E. R., & Nitz D. A. (2023). Rethinking retrosplenial cortex: Perspectives and predictions.Neuron, 111(2), 150-175. [3] Alexander A. S., Rangel L. M., Tingley D., & Nitz D. A. (2018). Neurophysiological signatures of temporal coordination between retrosplenial cortex and the hippocampal formation.Behavioral Neuroscience, 132(5), 453-468. [4] Alexander A. S., Robinson J. C., Stern C. E., & Hasselmo M. E. (2023). Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus.Hippocampus, 33(5), 465-487. [5] Bellmund J. L., Deuker L., Navarro Schröder T., & Doeller C. F. (2016). Grid-cell representations in mental simulation.Elife, 5. doi: 10.7554/eLife.17089 [6] Bicanski, A., & Burgess, N. (2018). A neural-level model of spatial memory and imagery.Elife, 7. doi: 10.7554/eLife. 33752 [7] Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition.Nature Reviews Neuroscience, 21(9), 453-470. [8] Buzsáki, G., & Vöröslakos, M. (2023). Brain rhythms have come of age.Neuron, 111(7), 922-926. [9] Chadwick M. J., Jolly A. E., Amos D. P., Hassabis D., & Spiers H. J. (2015). A goal direction signal in the human entorhinal/subicular region.Current Biology, 25(1), 87-92. [10] Chen D., Kunz L., Lv P., Zhang H., Zhou W., Liang S., Axmacher N., & Wang L. (2021). Theta oscillations coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex. Science Advances, 7(44), eabj0200. [11] Chen D., Kunz L., Wang W., Zhang H., Wang W. X., Schulze-Bonhage A., .. Wang L. (2018). Hexadirectional Modulation of Theta Power in Human Entorhinal Cortex during Spatial Navigation.Current Biology, 28(20), 3310-3315. [12] Cheng N., Dong Q., Zhang Z., Wang L., Chen X., & Wang C. (2024). Egocentric processing of items in spines, dendrites, and somas in the retrosplenial cortex.Neuron, 112(4), 646-660. [13] Clark B. J., Simmons C. M., Berkowitz L. E., & Wilber A. A. (2018). The retrosplenial-parietal network and reference frame coordination for spatial navigation.Behavioral neuroscience, 132(5), 416-429. [14] Colombo D., Serino S., Tuena C., Pedroli E., Dakanalis A., Cipresso P., & Riva G. (2017). Egocentric and allocentric spatial reference frames in aging: A systematic review.Neuroscience & Biobehavioral Reviews, 80, 605-621. [15] Derbie A. Y., Chau B. K., Wong C. H., Chen L. D., Ting K. H., Lam B. Y., .. Smith Y. (2021). Common and distinct neural trends of allocentric and egocentric spatial coding: An ALE meta‐analysis.European Journal of Neuroscience, 53(11), 3672-3687. [16] Deshmukh, S. S., & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory.Hippocampus, 23(4), 253-267. [17] Doeller C. F., Barry C., & Burgess N. (2010). Evidence for grid cells in a human memory network.Nature, 463(7281), 657-661. [18] Ekstrom, A. D., & Hill, P. F. (2023). Spatial navigation and memory: A review of the similarities and differences relevant to brain models and age.Neuron, 111(7), 1037-1049. [19] Gofman X., Tocker G., Weiss S., Boccara C. N., Lu L., Moser M.-B., .. Derdikman D. (2019). Dissociation between postrhinal cortex and downstream parahippocampal regions in the representation of egocentric boundaries.Current Biology, 29(16), 2751-2757. [20] Hafting T., Fyhn M., Molden S., Moser M.-B., & Moser E. I. (2005). Microstructure of a spatial map in the entorhinal cortex.Nature, 436(7052), 801-806. [21] Høydal Ø. A., Skytøen E. R., Andersson S. O., Moser M.-B., & Moser E. I. (2019). Object-vector coding in the medial entorhinal cortex.Nature, 568(7752), 400-404. [22] Hyafil A., Giraud A. L., Fontolan L., & Gutkin B. (2015). Neural cross-frequency coupling: Connecting architectures, mechanisms, and functions.Trends in Neurosciences, 38(11), 725-740. [23] Kunz L., Brandt A., Reinacher P. C., Staresina B. P., Reifenstein E. T., Weidemann C. T., .. Jacobs J. (2021). A neural code for egocentric spatial maps in the human medial temporal lobe.Neuron, 109(17), 2781-2796. [24] Lever C., Burton S., Jeewajee A., O'Keefe J., & Burgess N. (2009). Boundary vector cells in the subiculum of the hippocampal formation.Journal of Neuroscience, 29(31), 9771-9777. [25] Li J., Zhang R., Liu S., Liang Q., Zheng S., He X., & Huang R. (2021). Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis.NeuroImage, 238, 118264. [26] Lin C. T., Chiu T. C., & Gramann K. (2015). EEG correlates of spatial orientation in the human retrosplenial complex.NeuroImage, 120, 123-132. [27] Lin C. T., Chiu T. C., Wang Y. K., Chuang C. H., & Gramann K. (2018). Granger causal connectivity dissociates navigation networks that subserve allocentric and egocentric path integration.Brain Research, 1679, 91-100. [28] Mankin, E. A., & Fried, I. (2020). Modulation of human memory by deep brain stimulation of the entorhinal-hippocampal circuitry.Neuron, 106(2), 218-235. [29] Moraresku S., Hammer J., Janca R., Jezdik P., Kalina A., Marusic P., & Vlcek K. (2023). Timing of allocentric and egocentric spatial processing in human intracranial EEG.Brain Topography, 36(6), 870-889. [30] Nau M., Navarro Schröder T., Frey M., & Doeller C. F. (2020). Behavior-dependent directional tuning in the human visual-navigation network.Nature Communications, 11(1), 3247. [31] O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat.Brain Research, 34(1), 171-175. [32] Schindler, A., & Bartels, A. (2013). Parietal cortex codes for egocentric space beyond the field of view.Current Biology, 23(2), 177-182. [33] Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain.Hippocampus, 17(8), 618-626. [34] Sprague T. C., Adam K. C. S., Foster J. J., Rahmati M., Sutterer D. W., & Vo V. A. (2018). Inverted encoding models assay population-level stimulus representations, not single-unit neural tuning. ENeuro,5(3). doi: 10.1523/ENEURO.0098-18.2018 [35] Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., & Fried I. (2012). Memory enhancement and deep-brain stimulation of the entorhinal area.New England Journal of Medicine, 366(6), 502-510. [36] Taube J. S., Muller R. U., & Ranck J. B. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis.Journal of Neuroscience, 10(2), 420-435. [37] van Wijngaarden J. B., Babl S. S., & Ito H. T. (2020). Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding.Elife, 9. doi: 10.7554/eLife.59816 [38] Wang C., Chen X., & Knierim J. J. (2020). Egocentric and allocentric representations of space in the rodent brain.Current opinion in neurobiology, 60, 12-20. [39] Wang C., Chen X., Lee H., Deshmukh S. S., Yoganarasimha D., Savelli F., & Knierim J. J. (2018). Egocentric coding of external items in the lateral entorhinal cortex.Science, 362(6417), 945-949. [40] Wilber A. A., Clark B. J., Forster T. C., Tatsuno M., & McNaughton B. L. (2014). Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex.Journal of Neuroscience, 34(16), 5431-5446. |