Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (5): 813-833.doi: 10.3724/SP.J.1042.2024.00813
• Regular Articles • Previous Articles Next Articles
JING Wei1(), CHEN Qi1, XUE Yun Qing1, YANG Miao2, ZHANG Jie2()
Received:
2023-07-22
Online:
2024-05-15
Published:
2024-03-05
Contact:
JING Wei, ZHANG Jie
E-mail:ling_zero@126.com;86853513@qq.com
CLC Number:
JING Wei, CHEN Qi, XUE Yun Qing, YANG Miao, ZHANG Jie. Predictive coding deficits in autism: Abnormalities in feedback or feedforward connectivities?[J]. Advances in Psychological Science, 2024, 32(5): 813-833.
[1] | American Psychiatric Association, D., & Association, A. P. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5). American psychiatric association Washington, DC. |
[2] |
Amoruso, L., Narzisi, A., Pinzino, M., Finisguerra, A., Billeci, L., Calderoni, S., ... Urgesi, C. (2019). Contextual priors do not modulate action prediction in children with autism. Proceedings of the Royal Society B: Biological Sciences, 286(1908), 20191319. https://doi.org/10.1098/rspb.2019.1319
doi: 10.1098/rspb.2019.1319 URL |
[3] | Angeletos Chrysaitis, N., & Seriès, P. (2023). 10 years of bayesian theories of autism: A comprehensive review. Neuroscience and Biobehavioral Reviews, 145, 105022. https://doi.org/https://doi.org/10.1016/j.neubiorev.2022.105022 |
[4] |
Arnal, L. H., Wyart, V., & Giraud, A. L. (2011). Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nature Neuroscience, 14(6), 797-801. https://doi.org/10.1038/nn.2810
doi: 10.1038/nn.2810 URL pmid: 21552273 |
[5] |
Arthur, T., Vine, S., Brosnan, M., & Buckingham, G. (2019). Exploring how material cues drive sensorimotor prediction across different levels of autistic-like traits. Experimental Brain Research, 237(9), 2255-2267. https://doi.org/10.1007/s00221-019-05586-z
doi: 10.1007/s00221-019-05586-z URL pmid: 31250036 |
[6] |
Arthur, T., Vine, S., Brosnan, M., & Buckingham, G. (2020). Predictive sensorimotor control in autism. Brain, 143(10), 3151-3163. https://doi.org/10.1093/brain/awaa243
doi: 10.1093/brain/awaa243 URL pmid: 32974646 |
[7] |
Arthur, T., Harris, D., Buckingham, G., Brosnan, M., Wilson, M., Williams, G., & Vine, S. (2021). An examination of active inference in autistic adults using immersive virtual reality. Scientific Reports, 11(1), 20377. https://doi.org/10.1038/s41598-021-99864-y
doi: 10.1038/s41598-021-99864-y URL pmid: 34645899 |
[8] |
Arthur, T., Brosnan, M., Harris, D., Buckingham, G., Wilson, M., Williams, G., & Vine, S. (2022). Investigating how explicit contextual cues affect predictive sensorimotor control in autistic adults. Journal of Autism and Developmental Disorders, 53, 4368-4381. https://doi.org/10.1007/s10803-022-05718-5
doi: 10.1007/s10803-022-05718-5 URL pmid: 36063311 |
[9] |
Balsters, J. H., Apps, M. A., Bolis, D., Lehner, R., Gallagher, L., & Wenderoth, N. (2017). Disrupted prediction errors index social deficits in autism spectrum disorder. Brain, 140(1), 235-246. https://doi.org/10.1093/brain/aww287
doi: 10.1093/brain/aww287 URL pmid: 28031223 |
[10] | Barrett, L. F., Quigley, K. S., & Hamilton, P. (2016). An active inference theory of allostasis and interoception in depression. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1708), Article 20160011. https://doi.org/10.1098/rstb.2016.0011 |
[11] |
Barzy, M., Black, J., Williams, D., & Ferguson, H. J. (2020). Autistic adults anticipate and integrate meaning based on the speaker’s voice: Evidence from eye-tracking and event- related potentials. Journal of Experimental Psychology: General, 149(6), 1097-1115. https://doi.org/10.1037/xge0000705
doi: 10.1037/xge0000705 URL |
[12] |
Beker, S., Foxe, J. J., & Molholm, S., (2021). Oscillatory entrainment mechanisms and anticipatory predictive processes in children with autism spectrum disorder. Journal of Neurophysiology, 126(5), 1783-1798. https://doi.org/10.1152/jn.00329.2021
doi: 10.1152/jn.00329.2021 URL |
[13] |
Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S. A., Engel- Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 1-11. https://doi.org/10.1007/s10803-008-0593-3
doi: 10.1007/s10803-008-0593-3 URL pmid: 18512135 |
[14] |
Bianco, V., Finisguerra, A., Betti, S., D'Argenio, G., & Urgesi, C. (2020). Autistic traits differently account for context-based predictions of physical and social events. Brain Sciences, 10(7), 418. https://doi.org/10.3390/brainsci10070418
doi: 10.3390/brainsci10070418 URL |
[15] |
Bidet-Caulet, A., Barbe, P. G., Roux, S., Viswanath, H., Barthelemy, C., Bruneau, N., ... Bonnet-Brilhault, F. (2012). Dynamics of anticipatory mechanisms during predictive context processing. European Journal of Neuroscience, 36(7), 2996-3004. https://doi.org/10.1111/j.1460-9568.2012.08223.x
doi: 10.1111/j.1460-9568.2012.08223.x URL pmid: 22780698 |
[16] |
Braukmann, R., Ward, E., Hessels, R. S., Bekkering, H., Buitelaar, J. K., & Hunnius, S. (2018). Action prediction in 10-month-old infants at high and low familial risk for autism spectrum disorder. Research in Autism Spectrum Disorders, 49, 34-46. https://doi.org/10.1016/j.rasd.2018.02.004
doi: 10.1016/j.rasd.2018.02.004 URL |
[17] |
Brisson, J., Warreyn, P., Serres, J., Foussier, S., & Adrien- Louis, J. (2012). Motor anticipation failure in infants with autism: A retrospective analysis of feeding situations. Autism, 16(4), 420-429. https://doi.org/10.1177/1362361311423385
doi: 10.1177/1362361311423385 URL pmid: 22250193 |
[18] |
Brock, J. (2012). Alternative bayesian accounts of autistic perception: Comment on pellicano and burr. Trends in Cognitive Sciences, 16(12), 573-574. https://doi.org/10.1016/j.tics.2012.10.005
doi: 10.1016/j.tics.2012.10.005 URL pmid: 23123383 |
[19] |
Brodski-Guerniero, A., Naumer, M. J., Moliadze, V., Chan, J., Althen, H., Ferreira-Santos, F., ... Wibral, M. (2018). Predictable information in neural signals during resting state is reduced in autism spectrum disorder. Human Brain Mapping, 39(8), 3227-3240. https://doi.org/10.1002/hbm.24072
doi: 10.1002/hbm.24072 URL pmid: 29617056 |
[20] |
Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn infant. Cognition, 121(1), 127-132. https://doi.org/10.1016/j.cognition.2011.06.010
doi: 10.1016/j.cognition.2011.06.010 URL pmid: 21745660 |
[21] |
Cannon, J., O'Brien, A. M., Bungert, L., & Sinha, P. (2021). Prediction in autism spectrum disorder: A systematic review of empirical evidence. Autism Research, 14(4), 604-630. https://doi.org/10.1002/aur.2482
doi: 10.1002/aur.2482 URL pmid: 33570249 |
[22] |
Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., Cossu, G., & Rizzolatti, G. (2007). Impairment of actions chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17825-17830. https://doi.org/10.1073/pnas.0706273104
doi: 10.1073/pnas.0706273104 URL pmid: 17965234 |
[23] |
Chambon, V., Farrer, C., Pacherie, E., Jacquet, P. O., Leboyer, M., & Zalla, T. (2017). Reduced sensitivity to social priors during action prediction in adults with autism spectrum disorders. Cognition, 160, 17-26. https://doi.org/10.1016/j.cognition.2016.12.005
doi: S0010-0277(16)30300-6 URL pmid: 28039782 |
[24] |
Chan, J. S., Langer, A., & Kaiser, J. (2016). Temporal integration of multisensory stimuli in autism spectrum disorder: A predictive coding perspective. Journal of Neural Transmission, 123(8), 917-923. https://doi.org/ 10.1007/s00702-016-1587-5
doi: 10.1007/s00702-016-1587-5 URL pmid: 27324803 |
[25] |
Coll, M. P., Whelan, E., Catmur, C., & Bird, G. (2020). Autistic traits are associated with atypical precision- weighted integration of top-down and bottom-up neural signals. Cognition, 199, 104236. https://doi.org/10.1016/j.cognition.2020.104236
doi: 10.1016/j.cognition.2020.104236 URL |
[26] |
Constant, A., Bervoets, J., Hens, K., & van de Cruys, S. (2020). Precise worlds for certain minds: An ecological perspective on the relational self in autism. Topoi, 39(3), 611-622. https://doi.org/10.1007/s11245-018-9546-4
doi: 10.1007/s11245-018-9546-4 URL |
[27] |
Cook, R., Brewer, R., Shah, P., & Bird, G. (2014). Intact facial adaptation in autistic adults. Autism Research, 7(4), 481-490. https://doi.org/10.1002/aur.1381
doi: 10.1002/aur.1381 URL pmid: 24757172 |
[28] |
Crane, L., Goddard, L., & Pring, L. (2009). Sensory processing in adults with autism spectrum disorders. Autism, 13(3), 215-228. https://doi.org/10.1177/1362361309103794
doi: 10.1177/1362361309103794 URL pmid: 19369385 |
[29] | Crawley, D., Zhang, L., Jones, E. J. H., Ahmad, J., Oakley, B., Caceres, A. S., ... Grp, E. -A. L. (2020). Modeling flexible behavior in childhood to adulthood shows age- dependent learning mechanisms and less optimal learning in autism in each age group. Plos Biology, 18(10), Article e3000908. https://doi.org/10.1371/journal.pbio.3000908 |
[30] |
David, F. J., Baranek, G. T., Giuliani, C. A., Mercer, V. S., Poe, M. D., & Thorpe, D. E. (2009). A pilot study: Coordination of precision grip in children and adolescents with high functioning autism. Pediatric Physical Therapy, 21(2), 205-211. https://doi.org/10.1097/PEP.0b013e3181a3afc2
doi: 10.1097/PEP.0b013e3181a3afc2 URL pmid: 19440131 |
[31] |
Dichter, G. S., Felder, J. N., & Bodfish, J. W. (2009). Autism is characterized by dorsal anterior cingulate hyperactivation during social target detection. Social Cognitive and Affective Neuroscience, 4(3), 215-226. https://doi.org/10.1093/scan/nsp017
doi: 10.1093/scan/nsp017 URL pmid: 19574440 |
[32] |
Ego, C., Bonhomme, L., Xivry, J. -J. O. d., Fonseca, D. D., Lefèvre, P., Masson, G. S., & Deruelle, C. (2016). Behavioral characterization of prediction and internal models in adolescents with autistic spectrum disorders. Neuropsychologia, 91, 335-345. https://doi.org/10.1016/j.neuropsychologia.2016.08.021
doi: S0028-3932(16)30313-X URL pmid: 27553268 |
[33] |
Ego, C., Yüksel, D., Xivry, J. -J. O. d., & Lefèvre, P. (2016). Development of internal models and predictive abilities for visual tracking during childhood. Journal of Neurophysiology, 115(1), 301-309. https://doi.org/10.1152/jn.00534.2015
doi: 10.1152/jn.00534.2015 URL pmid: 26510757 |
[34] |
Ewbank, M. P., Pell, P. J., Powell, T. E.,von dem Hagen, E. A. H., Baron-Cohen, S., & Calder, A. J. (2017). Repetition suppression and memory for faces is reduced in adults with autism spectrum conditions. Cerebral Cortex, 27(1), 92-103. https://doi.org/10.1093/cercor/bhw373
doi: 10.1093/cercor/bhw373 URL |
[35] |
Ewing, L., Pellicano, E., & Rhodes, G. (2013). Atypical updating of face representations with experience in children with autism. Developmental Science, 16(1), 116-123. https://doi.org/10.1111/desc.12007
doi: 10.1111/desc.12007 URL pmid: 23278933 |
[36] |
Finnemann, J. J. S., Plaisted-Grant, K., Moore, J., Teufel, C., & Fletcher, P. C. (2021). Low-level, prediction-based sensory and motor processes are unimpaired in autism. Neuropsychologia, 156, 107835. https://doi.org/10.1016/j.neuropsychologia.2021.107835
doi: 10.1016/j.neuropsychologia.2021.107835 URL |
[37] |
Fogelson, N. (2015). Neural correlates of local contextual processing across stimulus modalities and patient populations. Neuroscience and Biobehavioral Reviews, 52, 207-220. https://doi.org/10.1016/j.neubiorev.2015.02.016
doi: 10.1016/j.neubiorev.2015.02.016 URL pmid: 25795520 |
[38] |
Fogelson, N., & Diaz-Brage, P. (2021). Altered directed connectivity during processing of predictive stimuli in psychiatric patient populations. Clinical Neurophysiology, 132(11), 2739-2750. https://doi.org/10.1016/j.clinph.2021.07.025
doi: 10.1016/j.clinph.2021.07.025 URL pmid: 34571367 |
[39] |
Fogelson, N., Li, L., Diaz-Brage, P., Amatriain-Fernandez, S., & Valle-Inclan, F. (2019). Altered predictive contextual processing of emotional faces versus abstract stimuli in adults with autism spectrum disorder. Clinical Neurophysiology, 130(6), 963-975. https://doi.org/10.1016/j.clinph.2019.03.031
doi: S1388-2457(19)30130-0 URL pmid: 31003115 |
[40] | Font-Alaminos, M., Cornella, M., Costa-Faidella, J., Hervas, A., Leung, S., Rueda, I., & Escera, C. (2020). Increased subcortical neural responses to repeating auditory stimulation in children with autism spectrum disorder. Biological Psychology, 149, Article 107807. https://doi.org/10.1016/j.biopsycho.2019.107807 |
[41] |
Forti, S., Valli, A., Perego, P., Nobile, M., Crippa, A., & Molteni, M. (2011). Motor planning and control in autism. A kinematic analysis of preschool children. Research in Autism Spectrum Disorders, 5(2), 834-842. https://doi.org/10.1016/j.rasd.2010.09.013
doi: 10.1016/j.rasd.2010.09.013 URL |
[42] |
Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders, 40(10), 1227-1240. https://doi.org/10.1007/s10803-010-0981-3
doi: 10.1007/s10803-010-0981-3 URL pmid: 20195737 |
[43] |
Friston, K. J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815-836. https://doi.org/10.1098/rstb.2005.1622
doi: 10.1098/rstb.2005.1622 URL |
[44] |
Friston, K. J., Lawson, R., & Frith, C. D. (2013). On hyperpriors and hypopriors: Comment on pellicano and burr. Trends in Cognitive Sciences, 17(1), 1-1. https://doi.org/10.1016/j.tics.2012.11.003
doi: 10.1016/j.tics.2012.11.003 URL pmid: 23218940 |
[45] | Frosch, I. R., Mittal, V. A., & D'Mello, A. M. (2022). Cerebellar contributions to social cognition in ASD: A predictive processing framework. Frontiers in Integrative Neuroscience, 16, Article 810425. https://doi.org/10.3389/fnint.2022.810425 |
[46] | Fulceri, F., Tonacci, A., Lucaferro, A., Apicella, F., Narzisi, A., Vincenti, G., ... Contaldo, A. (2018). Interpersonal motor coordination during joint actions in children with and without autism spectrum disorder: The role of motor information. Research in Developmental Disablities, 80, 13-23. https://doi.org/10.1016/j.ridd.2018.05.018 |
[47] |
Ganglmayer, K., Schuwerk, T., Sodian, B., & Paulus, M. (2020). Do children and adults with autism spectrum condition anticipate others' actions as goal-directed? A predictive coding perspective. Journal of Autism and Developmental Disorders, 50(6), 2077-2089. https://doi.org/10.1007/s10803-019-03964-8
doi: 10.1007/s10803-019-03964-8 URL pmid: 30850911 |
[48] |
Geschwind, D. H. (2011). Genetics of autism spectrum disorders. Trends in Cognitive Sciences, 15(9), 409-416. https://doi.org/10.1016/j.tics.2011.07.003
doi: 10.1016/j.tics.2011.07.003 URL pmid: 21855394 |
[49] |
Gomez, C., Lizier, J. T., Schaum, M., Wollstadt, P., Grutzner, C., Uhlhaas, P., ... Wibral, M. (2014). Reduced predictable information in brain signals in autism spectrum disorder. Frontiers in Neuroinformatics, 8, 9. https://doi.org/10.3389/fninf.2014.00009
doi: 10.3389/fninf.2014.00009 URL pmid: 24592235 |
[50] |
Goris, J., Braem, S., Nijhof, A. D., Rigoni, D., Deschrijver, E., van de Cruys, S., ... Brass, M. (2018). Sensory prediction errors are less modulated by global context in autism spectrum disorder. Biological Psychiatry- Cognitive Neuroscience and Neuroimaging, 3(8), 667-674. https://doi.org/10.1016/j.bpsc.2018.02.003
doi: 10.1016/j.bpsc.2018.02.003 URL |
[51] |
Goris, J., Silvetti, M., Verguts, T., Wiersema, J. R., Brass, M., & Braem, S. (2020). Autistic traits are related to worse performance in a volatile reward learning task despite adaptive learning rates. Autism, 25(2), 440-451. https://doi.org/10.1177/1362361320962237
doi: 10.1177/1362361320962237 URL |
[52] |
Gowen, E., & Hamilton, A. (2013). Motor abilities in autism: A review using a computational context. Journal of Autism and Developmental Disorders, 43(2), 323-344. https://doi.org/10.1007/s10803-012-1574-0
doi: 10.1007/s10803-012-1574-0 URL pmid: 22723127 |
[53] |
Greene, R. K., Zheng, S., Kinard, J. L., Mosner, M. G., Wiesen, C. A., Kennedy, D. P., & Dichter, G. S. (2019). Social and nonsocial visual prediction errors in autism spectrum disorder. Autism Research, 12(6), 878-883. https://doi.org/10.1002/aur.2090
doi: 10.1002/aur.2090 URL pmid: 30802365 |
[54] |
Grisoni, L., Mohr, B., & Pulvermuller, F. (2019). Prediction mechanisms in motor and auditory areas and their role in sound perception and language understanding. NeuroImage, 199, 206-216. https://doi.org/10.1016/j.neuroimage.2019.05.071
doi: S1053-8119(19)30463-X URL pmid: 31154049 |
[55] |
Grossberg, S. (2013). Adaptive resonance theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 1-47. https://doi.org/https://doi.org/10.1016/j.neunet.2012.09.017
doi: 10.1016/j.neunet.2012.09.017 URL pmid: 23149242 |
[56] |
Guiraud, J. A., Kushnerenko, E., Tomalski, P., Davies, K., Ribeiro, H., Johnson, M. H., & Team, B. (2011). Differential habituation to repeated sounds in infants at high risk for autism. Neuroreport, 22(16), 845-849. https://doi.org/10.1097/WNR.0b013e32834c0bec
doi: 10.1097/WNR.0b013e32834c0bec URL pmid: 21934535 |
[57] |
Haker, H., Schneebeli, M., & Stephan, K. E. (2016). Can bayesian theories of autism spectrum disorder help improve clinical practice? Front Psychiatry, 7, 107. https://doi.org/10.3389/fpsyt.2016.00107
doi: 10.3389/fpsyt.2016.00107 URL pmid: 27378955 |
[58] |
Hallett, V., Mueller, J., Breese, L., Hollett, M., Beresford, B., Irvine, A., ... Simonoff, E. (2021). Introducing ‘predictive parenting’: A feasibility study of a new group parenting intervention targeting emotional and behavioral difficulties in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 51(1), 323-333. https://doi.org/10.1007/s10803-020-04442-2
doi: 10.1007/s10803-020-04442-2 URL |
[59] |
Heeger, D. J. (2017). Theory of cortical function. Proceedings of the National Academy of Sciences of the United States of America, 114(8), 1773-1782. https://doi.org/10.1073/pnas.1619788114
doi: 10.1073/pnas.1619788114 URL pmid: 28167793 |
[60] |
Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D., Freeman, S., ... Carlson, J. M. (2013). Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6169-6174. https://doi.org/10.1073/pnas.1219562110
doi: 10.1073/pnas.1219562110 URL pmid: 23530246 |
[61] | Horder, J., Lavender, T., Mendez, M. A., O'Gorman, R., Daly, E., Craig, M. C., ... Murphy, D. G. (2014). Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: A [1H]MRS study. Translational Psychiatry, 4, Article e364. https://doi.org/10.1038/tp.2014.7 |
[62] |
Hudson, M., Nicholson, T., Kharko, A., McKenzie, R., & Bach, P. (2021). Predictive action perception from explicit intention information in autism. Psychonomic Bulletin and Review, 28(5), 1556-1566. https://doi.org/10.3758/s13423-021-01941-w
doi: 10.3758/s13423-021-01941-w URL |
[63] | Jafe-Dax, S., & Eigsti, I. -M. (2020). Perceptual inference is impaired in individuals with ASD and intact in individuals who have lost the autism diagnosis. Scientifc Reports, 10(1), 17085. https://doi.org/10.1038/s41598-020-72896-6 |
[64] |
Jamal, W., Cardinaux, A., Haskins, A. J., Kjelgaard, M., & Sinha, P. (2020). Reduced sensory habituation in autism and its correlation with behavioral measures. Journal of Autism and Developmental Disorders, 51, 3153-3164. https://doi.org/10.1007/s10803-020-04780-1
doi: 10.1007/s10803-020-04780-1 URL |
[65] |
Joshua, M., Adler, A., & Bergman, H. (2010). Novelty encoding by the output neurons of the basal ganglia. Frontiers in Systems Neuroscience, 3, 20-20. https://doi.org/10.3389/neuro.06.020.2009
doi: 10.3389/neuro.06.020.2009 URL pmid: 20140267 |
[66] |
Karaminis, T., Arrighi, R., Forth, G., Burr, D., & Pellicano, E. (2020). Adaptation to the speed of biological motion in autism. Journal of Autism and Developmental Disorders, 50(2), 373-385. https://doi.org/10.1007/s10803-019-04241-4
doi: 10.1007/s10803-019-04241-4 URL pmid: 31630295 |
[67] | Karaminis, T., Cicchini, G. M., Neil, L., Cappagli, G., Aagten-Murphy, D., Burr, D., & Pellicano, E. (2016). Central tendency effects in time interval reproduction in autism. Scientific Reports, 6, Article 28570. https://doi.org/10.1038/srep28570 |
[68] | Karaminis, T., Turi, M., Neil, L., Badcock, N. A., Burr, D., & Pellicano, E. (2015). Atypicalities in perceptual adaptation in autism do not extend to perceptual causality. Plos One, 10(3), Article e0120439. https://doi.org/10.1371/journal.pone.0120439 |
[69] |
Karvat, G., & Kimchi, T. (2014). Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology, 39(4), 831-840. https://doi.org/10.1038/npp.2013.274
doi: 10.1038/npp.2013.274 URL pmid: 24096295 |
[70] |
Kelly, E., Meng, F. T., Fujita, H., Morgado, F., Kazemi, Y., Rice, L. C., ... Tsai, P. T. (2020). Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nature Neuroscience, 23(9), 1102-1110. https://doi.org/10.1038/s41593-020-0665-z
doi: 10.1038/s41593-020-0665-z URL pmid: 32661395 |
[71] |
Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57(7), 645-652. https://doi.org/10.1097/00005072-199807000-00001
URL pmid: 9690668 |
[72] |
Khan, S., Michmizos, K., Tommerdahl, M., Ganesan, S., Kitzbichler, M. G., Zetino, M., ... Kenet, T. (2015). Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale. Brain, 138(5), 1394-1409. https://doi.org/10.1093/brain/awv043
doi: 10.1093/brain/awv043 URL |
[73] |
Kinard, J. L., Mosner, M. G., Greene, R. K., Addicott, M., Bizzell, J., Petty, C., ... Dichter, G. S. (2020). Neural mechanisms of social and nonsocial reward prediction errors in adolescents with autism spectrum disorder. Autism Research, 13(5), 715-728. https://doi.org/10.1002/aur.2273
doi: 10.1002/aur.2273 URL pmid: 32043748 |
[74] |
Kirkham, N. Z., Slemmer, J. A., Richardson, D. C., & Johnson, S. P. (2007). Location, location, location: Development of spatiotemporal sequence learning in infancy. Child Development, 78(5), 1559-1571. https://doi.org/10.1111/j.1467-8624.2007.01083.x
URL pmid: 17883448 |
[75] |
Knight, E. J., Oakes, L., Hyman, S. L., Freedman, E. G., & Foxe, J. J. (2020). Individuals with autism have no detectable deficit in neural markers of prediction error when presented with auditory rhythms of varied temporal complexity. Autism Research, 13(12), 2058-2072. https://doi.org/10.1002/aur.2362
doi: 10.1002/aur.v13.12 URL |
[76] | Kolesnik, A., Ali, J. B., Gliga, T., Guiraud, J., Charman, T., Johnson, M. H., ... Team, B. (2019). Increased cortical reactivity to repeated tones at 8 months in infants with later ASD. Translational Psychiatry, 9, Article 46. https://doi.org/10.1038/s41398-019-0393-x |
[77] |
Kreis, I., Zhang, L., Mittner, M., Syla, L., Lamm, C., & Pfuhl, G. (2023). Aberrant uncertainty processing is linked to psychotic-like experiences, autistic traits, and is reflected in pupil dilation during probabilistic learning. Cognitive, Affective, and Behavioral Neuroscience, 23(3), 905-919. https://doi.org/10.3758/s13415-023-01088-2
doi: 10.3758/s13415-023-01088-2 URL |
[78] |
Krogh-Jespersen, S., Kaldy, Z., Valadez, A. G., Carter, A. S., & Woodward, A. L. (2018). Goal prediction in 2-year-old children with and without autism spectrum disorder: An eye-tracking study. Autism Research, 11(6), 870-882. https://doi.org/https://doi.org/10.1002/aur.1936
doi: 10.1002/aur.1936 URL pmid: 29405645 |
[79] |
Kunchulia, M., Tatishvili, T., Lomidze, N., Parkosadze, K., & Thomaschke, R. (2017). Time-based event expectancies in children with autism spectrum disorder. Experimental Brain Research, 235(9), 2877-2882. https://doi.org/10.1007/s00221-017-5024-2
doi: 10.1007/s00221-017-5024-2 URL pmid: 28685178 |
[80] | Kunchulia, M., Tatishvili, T., Parkosadze, K., Lomidze, N., & Thomaschke, R. (2020). Children with autism spectrum disorder show increased sensitivity to time-based predictability. International Journal of Developmental Disablities, 66(3), 214-221. https://doi.org/10.1080/20473869.2018.1564447 |
[81] | Landa, R. J., Haworth, J. L., & Nebel, M. B. (2016). Ready, set, go! Low anticipatory response during a dyadic task in infants at high familial risk for autism. Frontiers in Psychology, 7, Article 721. https://doi.org/10.3389/fpsyg.2016.00721 |
[82] |
Lawson, R. P., Aylward, J., Roiser, J. P., & Rees, G. (2018). Adaptation of social and non-social cues to direction in adults with autism spectrum disorder and neurotypical adults with autistic traits. Developmental Cognitive Neuroscience, 29, 108-116. https://doi.org/10.1016/j.dcn.2017.05.001
doi: S1878-9293(16)30168-2 URL pmid: 28602448 |
[83] | Lawson, R. P., Aylward, J., White, S., & Rees, G. (2015). A striking reduction of simple loudness adaptation in autism. Scientific Reports, 5, Article 16157. https://doi.org/10.1038/srep16157 |
[84] |
Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 1293-1299. https://doi.org/10.1038/nn.4615
doi: 10.1038/nn.4615 URL pmid: 28758996 |
[85] |
Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience, 8, 302. https://doi.org/10.3389/fnhum.2014.00302
doi: 10.3389/fnhum.2014.00302 URL pmid: 24860482 |
[86] |
Lieder, I., Adam, V., Frenkel, O., Jaffe-Dax, S., Sahani, M., & Ahissar, M. (2019). Perceptual bias reveals slow- updating in autism and fast-forgetting in dyslexia. Nature Neuroscience, 22(2), 256-264. https://doi.org/10.1038/s41593-018-0308-9
doi: 10.1038/s41593-018-0308-9 URL pmid: 30643299 |
[87] |
Limongi, R., Sutherland, S. C., Zhu, J., Young, M. E., & Habib, R. (2013). Temporal prediction errors modulate cingulate-insular coupling. NeuroImage, 71, 147-157. https://doi.org/10.1016/j.neuroimage.2012.12.078
doi: 10.1016/j.neuroimage.2012.12.078 URL pmid: 23333417 |
[88] | Manning, C., Kilner, J., Neil, L., Karaminis, T., & Pellicano, E. (2017). Children on the autism spectrum update their behaviour in response to a volatile environment. Developmental Science, 20(5), 1-13. https://doi.org/10.1111/desc.12435 |
[89] |
Maule, J., Stanworth, K., Pellicano, E., & Franklin, A. (2018). Color afterimages in autistic adults. Journal of Autism and Developmental Disorders, 48(4), 1409-1421. https://doi.org/10.1007/s10803-016-2786-5
doi: 10.1007/s10803-016-2786-5 URL pmid: 27121352 |
[90] |
Metereau, E., & Dreher, J. C. (2013). Cerebral correlates of salient prediction error for different rewards and punishments. Cerebral Cortex, 23(2), 477-487. https://doi.org/10.1093/cercor/bhs037
doi: 10.1093/cercor/bhs037 URL |
[91] | Mosner, M. G., McLaurin, R. E., Kinard, J. L., Hakimi, S., Parelman, J., Shah, J. S., … Dichter, G. S. (2019). Neural mechanisms of reward prediction error in autism spectrum disorder. Autism Research and Treatment, 10-10. https://doi.org/10.1155/2019/5469191 |
[92] | Millin, R., Kolodny, T., Flevaris, A. V., Kale, A. M., Schallmo, M. P., Gerdts, J., ... Murray, S. (2018). Reduced auditory cortical adaptation in autism spectrum disorder. Elief, 7, Article e36493. https://doi.org/10.7554/eLife.36493 |
[93] | Mitchel, A. D., Christiansen, M. H., & Weiss, D. J. (2014). Multimodal integration in statistical learning: Evidence from the Mcgurk illusion. Frontiers in Psychology, 5, Article 407. https://doi.org/10.3389/fpsyg.2014.00407 |
[94] |
Moran, R. J., Campo, P., Symmonds, M., Stephan, K. E., Dolan, R. J., & Friston, K. J. (2013). Free energy, precision and learning: The role of cholinergic neuromodulation. Journal of Neuroscience, 33(19), 8227-8236. https://doi.org/10.1523/JNEUROSCI.4255-12.2013
doi: 10.1523/JNEUROSCI.4255-12.2013 URL pmid: 23658161 |
[95] |
Noel, J. P., de Niear, M. A., Stevenson, R., Alais, D., & Wallace, M. T. (2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10(1), 121-129. https://doi.org/10.1002/aur.1633
doi: 10.1002/aur.2017.10.issue-1 URL |
[96] |
Northrup, J. B., Libertus, K., & Iverson, J. M. (2017). Response to changing contingencies in infants at high and low risk for autism spectrum disorder. Autism Research, 10(7), 1239-1248. https://doi.org/10.1002/aur.1770
doi: 10.1002/aur.1770 URL pmid: 28301087 |
[97] |
Ong, J. H., & Liu, F. (2023). Probabilistic learning of cue-outcome associations is not influenced by autistic traits. Journal of Autism and Developmental Disorders, 53(10), 4047-4059.https://doi.org/10.1007/s10803-022-05690-0
doi: 10.1007/s10803-022-05690-0 URL |
[98] |
Palmer, C. J., Lawson, R. P., & Hohwy, J. (2017). Bayesian approaches to autism: Towards volatility, action, and behavior. Psychological Bulletin, 143(5), 521-542. https://doi.org/10.1037/bul0000097
doi: 10.1037/bul0000097 URL pmid: 28333493 |
[99] | Palumbo, L., Burnett, H. G., & Jellema, T. (2015). Atypical emotional anticipation in high-functioning autism. Molecular Autism, 6, Article 47. https://doi.org/10.1186/s13229-015-0039-7 |
[100] |
Park, W. J., Schauder, K. B., Kwon, O. S., Bennetto, L., & Tadin, D. (2021). Atypical visual motion-prediction abilities in autism spectrum disorder. Clinical Psychological Science, 9(5), 944-960. https://doi.org/10.1177/2167702621991803
doi: 10.1177/2167702621991803 URL |
[101] |
Pellicano, E., & Burr, D. (2012). When the world becomes 'too real': A bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510. https://doi.org/10.1016/j.tics.2012.08.009
doi: 10.1016/j.tics.2012.08.009 URL pmid: 22959875 |
[102] |
Pellicano, E., Rhodes, G., & Calder, A. J. (2013). Reduced gaze aftereffects are related to difficulties categorising gaze direction in children with autism. Neuropsychologia, 51(8), 1504-1509. https://doi.org/10.1016/j.neuropsychologia.2013.03.021
doi: 10.1016/j.neuropsychologia.2013.03.021 URL pmid: 23583965 |
[103] |
Perry, E. K., Lee, M. L. W., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G., Merrit, J., ... Wenk, G. L. (2001). Cholinergic activity in autism: Abnormalities in the cerebral cortex and basal forebrain. American Journal of Psychiatry, 158(7), 1058-1066. https://doi.org/10.1176/appi.ajp.158.7.1058
URL pmid: 11431227 |
[104] |
Prescott, K. E., Mathee-Scott, J., Reuter, T., Edwards, J., Saffran, J., & Ellis Weismer, S. (2022). Predictive language processing in young autistic children. Autism Research, 15(5), 892-903. https://doi.org/10.1002/aur.2684
doi: 10.1002/aur.2684 URL pmid: 35142078 |
[105] |
Puts, N. A. J., Wodka, E. L., Tommerdahl, M., Mostofsky, S. H., & Edden, R. A. E. (2014). Impaired tactile processing in children with autism spectrum disorder. Journal of Neurophysiology, 111(9), 1803-1811. https://doi.org/10.1152/jn.00890.2013
doi: 10.1152/jn.00890.2013 URL pmid: 24523518 |
[106] |
Retzler, C., Boehm, U., Cai, J., Cochrane, A., & Manning, C. (2021). Prior information use and response caution in perceptual decision-making: No evidence for a relationship with autistic-like traits. Quarterly Journal of Experimental Psychology, 74(11), 1953-1965. https://doi.org/10.1177/17470218211019939
doi: 10.1177/17470218211019939 URL |
[107] | Rhodes, G., Burton, N., Jeffery, L., Read, A., Taylor, L., & Ewing, L. (2018). Facial expression coding in children and adolescents with autism: Reduced adaptability but intact norm-based coding. Brith Journal of Psychology, 109(2), 204-218. https://doi.org/10.1111/bjop.12257 |
[108] | Righi, G., Tierney, A. L., Tager-Flusberg, H., & Nelson, C. A. (2014). Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study. Plos One, 9(8), Article e105176. https://doi.org/10.1371/journal.pone.0105176 |
[109] |
Rinaldi, C. R., Rinaldi, P., Alagia, A., Gemei, M., Esposito, N., Formiggini, F., ... Pane, F. (2010). Preferential nuclear accumulation of jak2v617f in cd34(+) but not in granulocytic, megakaryocytic, or erythroid cells of patients with philadelphia-negative myeloproliferative neoplasia. Blood, 116(26), 6023-6026. https://doi.org/10.1182/blood-2010-08-302265
doi: 10.1182/blood-2010-08-302265 URL pmid: 20861460 |
[110] | Riva, D., Bulgheroni, S., Aquino, D., di Salle, F., Savoiardo, M., & Erbetta, A. (2011). Basal forebrain involvement in low-functioning autistic children: A voxel-based morphometry study. American Journal of Neuroradology, 32(8), 1430-1435. https://doi.org/10.3174/ajnr.A2527 |
[111] |
Robic, S., Sonie, S., Fonlupt, P., Henaff, M. A., Touil, N., Coricelli, G., ... Schmitz, C. (2015). Decision-making in a changing world: A study in autism spectrum disorders. Journal of Autism and Developmental Disorders, 45(6), 1603-1613. https://doi.org/10.1007/s10803-014-2311-7
doi: 10.1007/s10803-014-2311-7 URL pmid: 25433404 |
[112] |
Robinson, P. D., Schutz, C. K., Macciardi, F., White, B. N., & Holden, J. J. A. (2001). Genetically determined low maternal serum dopamine beta-hydroxylase levels and the etiology of autism spectrum disorders. American Journal of Medical Genetics, 100(1), 30-36. https://doi.org/10.1002/ajmg.1187
doi: 10.1002/ajmg.1187 URL pmid: 11337745 |
[113] |
Rosenberg, A., Patterson, J. S., & Angelaki, D. E. (2015). A computational perspective on autism. Proceedings of the National Academy of Sciences of the United States of America, 112(30), 9158-9165. https://doi.org/10.1073/pnas.1510583112
doi: 10.1073/pnas.1510583112 URL pmid: 26170299 |
[114] |
Ruiz-Martinez, F. J., Rodriguez-Martinez, E. I., Wilson, C. E., Yau, S., Saldana, D., & Gomez, C. M. (2020). Impaired p1 habituation and mismatch negativity in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 50(2), 603-616. https://doi.org/10.1007/s10803-019-04299-0
doi: 10.1007/s10803-019-04299-0 URL pmid: 31728809 |
[115] |
Rutherford, M. D., Troubridge, E. K., & Walsh, J. (2012). Visual afterimages of emotional faces in high functioning autism. Journal of Autism and Developmental Disorders, 42(2), 221-229. https://doi.org/10.1007/s10803-011-1233-x
doi: 10.1007/s10803-011-1233-x URL pmid: 21465335 |
[116] |
Sapey-Triomphe, L. -A., Temmerman, J., Puts, N. A. J., & Wagemans, J. (2021). Prediction learning in adults with autism and its molecular correlates. Molecular Autism, 12(1), 64. https://doi.org/10.1186/s13229-021-00470-6
doi: 10.1186/s13229-021-00470-6 URL pmid: 34615532 |
[117] |
Sapey-Triomphe, L. -A., Timmermans, L., & Wagemans, J. (2021). Priors bias perceptual decisions in autism, but are less flexibly adjusted to the context. Autism Research, 14(6), 1134-1146. https://doi.org/10.1002/aur.2452
doi: 10.1002/aur.2452 URL pmid: 33283970 |
[118] |
Sapey-Triomphe, L. -A., Weilnhammer, V. A., & Wagemans, J. (2022). Associative learning under uncertainty in adults with autism: Intact learning of the cue-outcome contingency, but slower updating of priors. Autism, 26(5), 1216-1228. https://doi.org/10.1177/13623613211045026
doi: 10.1177/13623613211045026 URL |
[119] | Sarafyazd, M., & Jazayeri, M. (2019). Hierarchical reasoning by neural circuits in the frontal cortex. Science, 364(6441), Article eaav8911. https://doi.org/10.1126/science.aav8911 |
[120] |
Schuwerk, T., Sodian, B., & Paulus, M. (2016). Cognitive mechanisms underlying action prediction in children and adults with autism spectrum condition. Journal of Autism and Developmental Disorders, 46(12), 3623-3639. https:// doi.org/10.1007/s10803-016-2899-x
URL pmid: 27624476 |
[121] |
Sciutti, A., Burr, D., Saracco, A., Sandini, G., & Gori, M. (2014). Development of context dependency in human space perception. Experimental Brain Research, 232(12), 3965-3976. https://doi.org/10.1007/s00221-014-4021-y
doi: 10.1007/s00221-014-4021-y URL pmid: 25183158 |
[122] | Seery, A., Tager-Flusberg, H., & Nelson, C. A. (2014). Event-related potentials to repeated speech in 9-month-old infants at risk for autism spectrum disorder. Journal of Neurodevelopmental Disorders, 6, Article 43. https://doi.org/10.1186/1866-1955-6-43 |
[123] |
Sevgi, M., Diaconescu, A. O., Henco, L., Tittgemeyer, M., & Schilbach, L. (2019). Social bayes: Using bayesian modeling to study autistic trait-related differences in social cognition. Biological Psychiatry, 87(2), 185-193. https://doi.org/10.1016/j.biopsych.2019.09.032
doi: 10.1016/j.biopsych.2019.09.032 URL |
[124] |
Seymour, R. A., Rippon, G., Gooding-Williams, G., Schoffelen, J. M., & Kessler, K. (2019). Dysregulated oscillatory connectivity in the visual system in autism spectrum disorder. Brain, 142(10), 3294-3305. https://doi.org/10.1093/brain/awz214
doi: 10.1093/brain/awz214 URL pmid: 31410480 |
[125] |
Sheppard, E., van Loon, E., Underwood, G., & Ropar, D. (2016). Difficulties predicting time-to-arrival in individuals with autism spectrum disorders. Research in Autism Spectrum Disorders, 28, 17-23. https://doi.org/10.1016/j.rasd.2016.05.001
doi: 10.1016/j.rasd.2016.05.001 URL |
[126] | Shi, Z., Theisinger, L. A., Allenmark, F., Pistorius, R. L., Müller, H. J., & Falter-Wagner, C. M. (2022). Predictive coding in ASD: Inflexible weighting of prediction errors when switching from stable to volatile environments. BioRxiv, 2022.2001.2021.477218. https://doi.org/10.1101/2022.01.21.477218 |
[127] |
Shipp, S., Adams, R. A., & Friston, K. J. (2013). Reflections on agranular architecture: Predictive coding in the motor cortex. Trends in Neurosciences, 36(12), 706-716. https://doi.org/10.1016/j.tins.2013.09.004
doi: 10.1016/j.tins.2013.09.004 URL pmid: 24157198 |
[128] |
Sinha, P., Kjelgaard, M. M., Gandhi, T. K., Tsourides, K., Cardinaux, A. L., Pantazis, D., ... Held, R. M. (2014). Autism as a disorder of prediction. Proceedings of the National Academy of Sciences, 111(42), 15220-15225. https://doi.org/10.1073/pnas.1416797111
doi: 10.1073/pnas.1416797111 URL |
[129] |
Skewes, J. C., Jegindo, E. M., & Gebauer, L. (2015). Perceptual inference and autistic traits. Autism, 19(3), 301-307. https://doi.org/10.1177/1362361313519872
doi: 10.1177/1362361313519872 URL pmid: 24523412 |
[130] |
Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., ... Corlett, P. R. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634-643. https://doi.org/10.1016/j.biopsych.2018.05.015
doi: S0006-3223(18)31532-4 URL pmid: 30007575 |
[131] | Stevenson, R. A., Toulmin, J. K., Youm, A., Besney, R. M. A., Schulz, S. E., Barense, M. D., & Ferber, S. (2017). Increases in the autistic trait of attention to detail are associated with decreased multisensory temporal adaptation. Scientific Reports, 7, Article 14354. https://doi.org/ 10.1038/s41598-017-14632-1 |
[132] | Stoodley, C. J., & Tsai, P. T. (2021). Adaptive prediction for social contexts:The cerebellar contribution to typical and atypical social behaviors. In B.Roska & H. Y.Zoghbi (Eds.), Annual Review of Neuroscience, 44, 2021 (Vol. 44, pp. 475-493). https://doi.org/10.1146/annurev-neuro-100120-092143 |
[133] | Tam, F. I., King, J. A., Geisler, D., Korb, F. M., Sareng, J., Ritschel, F., ... Ehrlich, S. (2017). Altered behavioral and amygdala habituation in high-functioning adults with autism spectrum disorder: An fMRI study. Scientific Reports, 7, Article 13611. https://doi.org/10.1038/s41598-017-14097-2 |
[134] | Teinonen, T., Fellman, V., Naatanen, R., Alku, P., & Huotilainen, M. (2009). Statistical language learning in neonates revealed by event-related brain potentials. BMC Neuroscience, 10, Article 21. https://doi.org/10.1186/1471-2202-10-21 |
[135] | Teufel, C., & Fletcher, P. C. (2020). Forms of prediction in the nervous system. Nature Reviews Neuroscience, 21(5), 297-297. https://doi.org/10.1038/s41583-020-0296-0 |
[136] |
Tewolde, F. G., Bishop, D. V. M., & Manning, C. (2018). Visual motion prediction and verbal false memory performance in autistic children. Autism Research, 11(3), 509-518. https://doi.org/10.1002/aur.1915
doi: 10.1002/aur.1915 URL pmid: 29271070 |
[137] |
Thillay, A., Lemaire, M., Roux, S., Houy-Durand, E., Barthelemy, C., Knight, R. T., ... Bonnet-Brilhault, F. (2016). Atypical brain mechanisms of prediction according to uncertainty in autism. Frontiers in Neuroscience, 10, 317. https://doi.org/10.3389/fnins.2016.00317
doi: 10.3389/fnins.2016.00317 URL pmid: 27458337 |
[138] |
Turi, M., Burr, D. C., Igliozzi, R., Aagten-Murphy, D., Muratori, F., & Pellicano, E. (2015). Children with autism spectrum disorder show reduced adaptation to number. Proceedings of the National Academy of Sciences of the United States of America, 112(25), 7868-7872. https://doi.org/10.1073/pnas.1504099112
doi: 10.1073/pnas.1504099112 URL pmid: 26056294 |
[139] | Turi, M., Karaminis, T., Pellicano, E., & Burr, D. (2016). No rapid audiovisual recalibration in adults on the autism spectrum. Scientific Reports, 6, Article 21756. https://doi.org/10.1038/srep21756 |
[140] |
Utzerath, C., Schmits, I. C., Buitelaar, J., & de Lange, F. P. (2018). Adolescents with autism show typical fMRI repetition suppression, but atypical surprise response. Cortex, 109, 25-34. https://doi.org/10.1016/j.cortex.2018.08.019
doi: S0010-9452(18)30271-5 URL pmid: 30286304 |
[141] |
van Boxtel, J. J. A., Dapretto, M., & Lu, H. J. (2016). Intact recognition, but attenuated adaptation, for biological motion in youth with autism spectrum disorder. Autism Research, 9(10), 1103-1113. https://doi.org/10.1002/aur.1595
doi: 10.1002/aur.1595 URL pmid: 26808343 |
[142] |
van de Cruys, S., Evers, K., van der Hallen, R., van Eylen, L., Boets, B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649-675. https://doi.org/10.1037/a0037665
doi: 10.1037/a0037665 URL pmid: 25347312 |
[143] |
van Laarhoven, T., Stekelenburg, J. J., Eussen, M., & Vroomen, J. (2019). Electrophysiological alterations in motor-auditory predictive coding in autism spectrum disorder. Autism Research, https://doi.org/10.1002/aur.2087 12(4), 589-599.
doi: 10.1002/aur.2087 URL pmid: 30801964 |
[144] |
van Laarhoven, T., Stekelenburg, J. J., Eussen, M., & Vroomen, J. (2020). Atypical visual-auditory predictive coding in autism spectrum disorder: Electrophysiological evidence from stimulus omissions. Autism, 24(7), 1849-1859, Article 1362361320926061. https://doi.org/10.1177/1362361320926061
doi: 10.1177/1362361320926061 URL |
[145] |
Vivanti, G., Hocking, D. R., Fanning, P. A. J., Uljarevic, M., Postorino, V., Mazzone, L., & Dissanayake, C. (2018). Attention to novelty versus repetition: Contrasting habituation profiles in autism and Williams syndrome. Developmental Cognitive Neuroscience, 29, 54-60. https://doi.org/10.1016/j.dcn.2017.01.006
doi: S1878-9293(16)30167-0 URL pmid: 28130077 |
[146] | von der Luhe, T., Manera, V., Barisic, I., Becchio, C., Vogeley, K., & Schilbach, L. (2016). Interpersonal predictive coding, not action perception, is impaired in autism. Philosophical Transactions of the Royal Society B: Biological Science, 371(1693). https://doi.org/10.1098/rstb.2015.0373 |
[147] |
Westerfield, M. A., Zinni, M., Vo, K., & Townsend, J. (2015). Tracking the sensory environment: An ERP study of probability and context updating in ASD. Journal of Autism and Developmental Disorders, 45(2), 600-611. https://doi.org/10.1007/s10803-014-2045-6
doi: 10.1007/s10803-014-2045-6 URL pmid: 24488156 |
[148] | Wolpe, N., Ingram, J. N., Tsvetanov, K. A., Geerligs, L., Kievit, R. A., Henson, R. N., ... Cam, C. A. N. (2016). Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits. Nature Communications, 7, Article 13034. https://doi.org/10.1038/ncomms13034 |
[149] |
Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681-692. https://doi.org/10.1016/j.neuron.2005.04.026
doi: 10.1016/j.neuron.2005.04.026 URL pmid: 15944135 |
[150] |
Zhou, P., Zhan, L., & Ma, H. (2019). Predictive language processing in preschool children with autism spectrum disorder: An eye-tracking study. Journal of Psycholinguistic Research, 48(2), 431-452. https://doi.org/10.1007/s10936-018-9612-5
doi: 10.1007/s10936-018-9612-5 URL pmid: 30386979 |
[1] | FU Chunye, LI Aixin, LYU Xiaokang, WANG Chongying. Visual perception in individuals with autism spectrum disorder: Bayesian and predictive coding-based perspective [J]. Advances in Psychological Science, 2024, 32(7): 1164-1178. |
[2] | GAO Limei, WANG Kai, LI Dandan. The application of social robots in intervention for children with autism spectrum disorders [J]. Advances in Psychological Science, 2024, 32(5): 834-844. |
[3] | CHEN Yan, LI Jing. The impact of interpersonal synchronization on autistic children’s cooperative behavior and its intervention promotion [J]. Advances in Psychological Science, 2024, 32(4): 639-653. |
[4] | Fang Yang, Jinyu Tian, Peijun Yuan, Chunyan Liu, Xinyuan Zhang, Li Yang, Yi Jiang. Unconscious, but not Conscious, Gaze-triggered Social Attention Reflects the Autistic Traits in Adults and Children [J]. Advances in Psychological Science, 2023, 31(suppl.): 98-98. |
[5] | LI Sijin, WANG Tingdong, PENG Zhilin, ZHANG Dandan. Perception, discrimination, and learning of speech in newborns [J]. Advances in Psychological Science, 2023, 31(12): 2295-2305. |
[6] | XIAO Shihua, LI Jing. Implementation of Naturalistic Developmental Behavioral Interventions: An early intervention program for children with autism spectrum disorder [J]. Advances in Psychological Science, 2023, 31(12): 2350-2367. |
[7] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
[8] | XU Hui, WANG Tao. Social motivation deficits in individuals with autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(5): 1050-1061. |
[9] | CHEN Guanghua, TAO Guanpeng, ZHAI Luyu, BAI Xuejun. Early screening tools for Autism Spectrum Disorder in infancy and toddlers [J]. Advances in Psychological Science, 2022, 30(4): 738-760. |
[10] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[11] | LIU Min, HU Yang, LIU Qiaoyun. Potential early identification markers for children with autism spectrum disorder: Unusual vocalizations and theoretical explanations [J]. Advances in Psychological Science, 2022, 30(3): 635-647. |
[12] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
[13] | HOU Wenwen, SU Yi (ESTHER). The influence of atypical attention and memory on vocabulary delay in children with autism spectrum disorder [J]. Advances in Psychological Science, 2022, 30(11): 2558-2569. |
[14] | YUAN Yuzhuo, LUO Fang. Early screening and diagnosis of autism spectrum disorder assisted by artificial intelligence [J]. Advances in Psychological Science, 2022, 30(10): 2303-2320. |
[15] | JING Wei, ZHANG Jie, FU Jinxia, TIAN Lin, ZHAO Wei. Attention bias to faces in infants and toddlers: Inborn predispositions and developmental changes [J]. Advances in Psychological Science, 2021, 29(7): 1216-1230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||