Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (5): 800-812.doi: 10.3724/SP.J.1042.2024.00800
• Regular Articles • Previous Articles Next Articles
SU Rui1,2, WANG Chengzhi1, LI Hao1, MA Hailin1, SU Yanjie2()
Received:
2023-10-11
Online:
2024-05-15
Published:
2024-03-05
Contact:
SU Yanjie
E-mail:yjsu@pku.edu.cn
CLC Number:
SU Rui, WANG Chengzhi, LI Hao, MA Hailin, SU Yanjie. The effect of high-altitude exercise on cognitive function[J]. Advances in Psychological Science, 2024, 32(5): 800-812.
[1] | 安心, 马海林, 韩布新, 刘冰, 王妍. (2017). 高海拔驻留时间对注意网络的影响. 中国临床心理学杂志 25(3), 502-506. https://doi.org/10.16128/j.cnki.1005-3611.2017.03.023 |
[2] | 毕存箭. (2021). 高海拔地区藏族儿童青少年心肺耐力和执行功能的关系及其运动干预研究 (博士学位论文). 华东师范大学, 上海. https://doi.org/10.27149/d.cnki.ghdsu.2021.002854 |
[3] | 陈爱国, 殷恒婵, 颜军, 杨钰. (2011). 不同强度短时有氧运动对执行功能的影响. 心理学报 43(9), 1055-1062. |
[4] | 马海林, 党鹏, 苏瑞, 李昊. (2022). 高海拔暴露时间对工作记忆的影响——一项追踪研究. 高原科学研究 6(2), 42-50. https://doi.org/10.16249/j.cnki.2096-4617.2022.02.005 |
[5] | 马强, 侯会生, 李佳鑫. (2020). 高海拔环境中短时有氧运动与大学生执行功能的实验研究. 中央民族大学学报(自然科学版) 29(1), 81-86. |
[6] | 钱令嘉. (2011). 关于应激与认知的思考. 军事医学 35(9), 658-662. https://doi.org/10.3969/j.issn.1674-9960.2011.09.006 |
[7] | 王成志. (2023). 不同强度有氧运动对高原移居者注意功能的影响 (硕士学位论文). 西藏大学, 拉萨. |
[8] |
张斌, 刘莹. (2019). 急性有氧运动对认知表现的影响. 心理科学进展 27(6), 1058-1071. https://doi.org/10.3724/SP.J.1042.2019.01058
doi: 10.3724/SP.J.1042.2019.01058 URL |
[9] |
Aboouf, M. A., Thiersch, M., Soliz, J., Gassmann, M., & Schneider Gasser, E. M. (2023). The brain at high altitude: From molecular signaling to cognitive performance. International Journal of Molecular Sciences, 24(12), 10179. https://doi.org/10.3390/IJMS241210179
doi: 10.3390/ijms241210179 URL |
[10] | Ando, S., Hatamoto, Y., Sudo, M., Kiyonaga, A., Tanaka, H., & Higaki, Y. (2013). The effects of exercise under hypoxia on cognitive function. PloS One, 8(5), e63630. https://doi.org/10.1371/journal.pone.0063630 |
[11] | Ando, S., Komiyama, T., Sudo, M., Higaki, Y., Ishida, K., Costello, J. T., & Katayama, K. (2020). The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scandinavian Journal of Medicine & Science in Sports, 30(3), 384-398. https://doi.org/10.1111/sms.13573 |
[12] |
Ando, S., Yamada, Y., & Kokubu, M. (2010). Reaction time to peripheral visual stimuli during exercise under hypoxia. Journal of Applied Physiology, 108(5), 1210-1216. https://doi.org/10.1152/japplphysiol.01115.2009
doi: 10.1152/japplphysiol.01115.2009 URL pmid: 20167674 |
[13] |
Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., MacVicar, B. A., & Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature, 468(7321), 232-243. https://doi.org/10.1038/nature09613
doi: 10.1038/nature09613 URL |
[14] |
Bayer, U., Likar, R., Pinter, G., Stettner, H., Demschar, S., Trummer, B., ... Burtscher, M. (2017). Intermittent hypoxic-hyperoxic training on cognitive performance in geriatric patients. Alzheimer's & Dementia: Translational Research & Clinical Interventions, 3(1), 114-122. https://doi.org/10.1016/j.trci.2017.01.002
doi: 10.1016/j.trci.2017.01.002 URL |
[15] | Becke, A., Müller, P., Dordevic, M., Lessmann, V., Brigadski, T., & Müller, N. G. (2018). Daily intermittent normobaric hypoxia over 2 weeks reduces BDNF plasma levels in young adults - A randomized controlled feasibility study. Frontiers in Physiology, 9, 1337-1337. https://doi.org/10.3389/fphys.2018.01337 |
[16] |
Bigham, A. W., & Lee, F. S. (2014). Human high-altitude adaptation: Forward genetics meets the hif pathway. Genes & Development, 28(20), 2189-2204. http://www.genesdev.org/cgi/doi/10.1101/gad.250167.114
doi: 10.1101/gad.250167.114 |
[17] |
Bliemsrieder, K., Weiss, E. M., Fischer, R., Brugger, H., Sperner-Unterweger, B., & Hüfner, K. (2022). Cognition and neuropsychological changes at altitude—A systematic review of literature. Brain Sciences, 12(12), 1736. https://doi.org/10.3390/brainsci12121736
doi: 10.3390/brainsci12121736 URL |
[18] |
Bolmont, B., Thullier, F., & Abraini, J. H. (2000). Relationships between mood states and performances in reaction time, psychomotor ability, and mental efficiency during a 31-day gradual decompression in a hypobaric chamber from sea level to 8848 m equivalent altitude. Physiology & Behavior, 71(5), 469-476. https://doi.org/10.1016/S0031-9384(00)00362-0
doi: 10.1016/S0031-9384(00)00362-0 URL |
[19] |
Bouak, F., Vartanian, O., Hofer, K., & Cheung, B. (2018). Acute mild hypoxic hypoxia effects on cognitive and simulated aircraft pilot performance. Aerospace Medicine and Human Performance, 89(6), 526-535. https://doi.org/10.3357/AMHP.5022.2018
doi: 10.3357/AMHP.5022.2018 URL pmid: 29789086 |
[20] | Castellani, G., Croese, T., Peralta Ramos, J. M., & Schwartz, M. (2023). Transforming the understanding of brain immunity. Science, 380(6640), 7649-7649. https://doi.org/10.1126/science.abo7649 |
[21] |
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. https://doi.org/10.1016/j.brainres.2012.02.068
doi: 10.1016/j.brainres.2012.02.068 URL pmid: 22480735 |
[22] |
de Aquino-Lemos, V., Santos, R. V. T., Antunes, H. K. M., Lira, F. S., Luz Bittar, I. G., Caris, A. V., Tufik, S., & de Mello, M. T. (2016). Acute physical exercise under hypoxia improves sleep, mood and reaction time. Physiology & Behavior, 154, 90-99. https://doi.org/10.1016/j.physbeh.2015.10.028
doi: 10.1016/j.physbeh.2015.10.028 URL |
[23] | Dobashi, S., Horiuchi, M., Endo, J., Kiuchi, M., & Koyama, K. (2016). Cognitive function and cerebral oxygenation during prolonged exercise under hypoxia in healthy young males. High Altitude Medicine & Biology, 17(3), 214-221. https://doi.org/10.1089/ham.2016.0036 |
[24] |
Dosek, A., Ohno, H., Acs, Z., Taylor, A. W., & Radak, Z. (2007). High altitude and oxidative stress. Respiratory Physiology & Neurobiology, 158(2-3), 128-131. https://doi.org/10.1016/j.resp.2007.03.013
doi: 10.1016/j.resp.2007.03.013 URL |
[25] |
Dykiert, D., Hall, D., van Gemeren, N., Benson, R., Der, G., Starr, J. M., & Deary, I. J. (2010). The effects of high altitude on choice reaction time mean and intra-individual variability: Results of the Edinburgh altitude research expedition of 2008. Neuropsychology, 24(3), 391-401. https://doi.org/10.1037/a0018502
doi: 10.1037/a0018502 URL pmid: 20438216 |
[26] |
Enette, L., Vogel, T., Fanon, J. L., & Lang, P. O. (2017). Effect of interval and continuous aerobic training on basal serum and plasma brain-derived neurotrophic factor values in seniors: A systematic review of intervention studies. Rejuvenation Research, 20(6), 473-483. https://doi.org/10.1089/rej.2016.1886
doi: 10.1089/rej.2016.1886 URL |
[27] |
Hackett, P. H., & Roach, R. C. (2001). High-altitude illness. The New England Journal of Medicine, 345(2), 107-114. https://doi.org/10.1056/NEJM200107123450206
doi: 10.1056/NEJM200107123450206 URL |
[28] |
Helan, M., Aravamudan, B., Hartman, W. R., Thompson, M. A., Johnson, B. D., Pabelick, C. M., & Prakash, Y. S. (2014). BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. Journal of Molecular and Cellular Cardiology, 68, 89-97. https://doi.org/10.1016/j.yjmcc.2014.01.006
doi: 10.1016/j.yjmcc.2014.01.006 URL pmid: 24462831 |
[29] |
Hornbein, T. F., Townes, B. D., Schoene, R. B., Sutton, J. R., & Houston, C. S. (1989). The cost to the central nervous system of climbing to extremely high altitude. The New England Journal of Medicine, 321(25), 1714-1719. https://doi.org/10.1056/NEJM198912213212505
doi: 10.1056/NEJM198912213212505 URL |
[30] |
Jansen, G. F., Krins, A., Basnyat, B., Odoom, J. A., & Ince, C. (2007). Role of the altitude level on cerebral autoregulation in residents at high altitude. Journal of Applied Physiology, 103(2), 518-523. https://doi.org/10.1152/japplphysiol.01429.2006
doi: 10.1152/japplphysiol.01429.2006 URL pmid: 17463295 |
[31] |
Joanny, P., Steinberg, J., Robach, P., Richalet, J. P., Gortan, C., Gardette, B., & Jammes, Y. (2001). Operation everest III (comex'97): The effect of simulated severe hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation, 49(3), 307-314. https://doi.org/10.1016/S0300-9572(00)00373-7
URL pmid: 11723998 |
[32] |
Jung, M., Zou, L., Yu, J. J., Ryu, S., Kong, Z. W., Yang, L., … Loprinzi, P. D. (2020). Does exercise have a protective effect on cognitive function under hypoxia? A systematic review with meta-analysis. Journal of Sport and Health Science, 9(6), 562-577. https://doi.org/10.1016/j.jshs.2020.04.004
doi: 10.1016/j.jshs.2020.04.004 URL pmid: 32325144 |
[33] |
Kim, C., Ryan, E. J., Seo, Y., Peacock, C., Gunstad, J., Muller, M. D., Ridgel, A. L., & Glickman, E. L. (2015). Low intensity exercise does not impact cognitive function during exposure to normobaric hypoxia. Physiology & Behavior, 151, 24-28. https://doi.org/10.1016/j.physbeh.2015.07.003
doi: 10.1016/j.physbeh.2015.07.003 URL |
[34] |
Kitaoka, Y., Hoshino, D., & Hatta, H. (2012). Monocarboxylate transporter and lactate metabolism. The Journal of Physical Fitness and Sports Medicine, 1(2), 247-252. https://doi.org/10.7600/jpfsm.1.247
doi: 10.7600/jpfsm.1.247 URL |
[35] |
Komiyama, T., Katayama, K., Sudo, M., Ishida, K., Higaki, Y., & Ando, S. (2017). Cognitive function during exercise under severe hypoxia. Scientific Reports, 7(1), 10000. https://doi.org/10.1038/s41598-017-10332-y
doi: 10.1038/s41598-017-10332-y URL pmid: 28855602 |
[36] |
Komiyama, T., Sudo, M., Higaki, Y., Kiyonaga, A., Tanaka, H., & Ando, S. (2015). Does moderate hypoxia alter working memory and executive function during prolonged exercise? Physiology & Behavior, 139, 290-296. https://doi.org/10.1016/j.physbeh.2014.11.057
doi: 10.1016/j.physbeh.2014.11.057 URL |
[37] |
Krzeszowiak, J., Zawadzki, M., Markiewicz-Górka, I., Kawalec, A., & Pawlas, K. (2014). The influence of 9-day trekking in the alps on the level of oxidative stress parameters and blood parameters in native lowlanders. Annals of Agricultural and Environmental Medicine, 21(3), 585-589. https://doi.org/10.5604/12321966.1120607
doi: 10.5604/12321966.1120607 URL pmid: 25292134 |
[38] |
Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12-24. https://doi.org/10.1016/j.brainres.2010.03.091
doi: 10.1016/j.brainres.2010.03.091 URL pmid: 20381468 |
[39] |
Lefferts, W. K., Babcock, M. C., Tiss, M. J., Ives, S. J., White, C. N., Brutsaert, T. D., & Heffernan, K. S. (2016). Effect of hypoxia on cerebrovascular and cognitive function during moderate intensity exercise. Physiology & Behavior, 165, 108-118. https://doi.org/10.1016/j.physbeh.2016.07.003
doi: 10.1016/j.physbeh.2016.07.003 URL |
[40] |
Li, Y., & Wang, Y. (2022). Effects of long-term exposure to high altitude hypoxia on cognitive function and its mechanism: A narrative review. Brain Sciences, 12(6), 808. https://doi.org/10.3390/brainsci12060808
doi: 10.3390/brainsci12060808 URL |
[41] |
Li, Y., Wang, Y., Yu, F., & Chen, A. (2021). Large‐scale reconfiguration of connectivity patterns among attentional networks during context-dependent adjustment of cognitive control. Human Brain Mapping, 42(12), 3821-3832. https://doi.org/10.1002/hbm.25467
doi: 10.1002/hbm.v42.12 URL |
[42] |
Ludyga, S., Gerber, M., Pühse, U., Looser, V. N., & Kamijo, K. (2020). Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nature Human Behaviour, 4(6), 603-612. https://doi.org/10.1038/s41562-020-0851-8
doi: 10.1038/s41562-020-0851-8 URL pmid: 32231280 |
[43] |
Luks, A. M., & Hackett, P. H. (2022). Medical conditions and high-altitude travel. The New England Journal of Medicine, 386(4), 364-373. https://doi.org/10.1056/NEJMra2104829
doi: 10.1056/NEJMra2104829 URL pmid: 35081281 |
[44] |
Ma, H., Huang, X., Liu, M., Ma, H., & Zhang, D. (2018). Aging of stimulus-driven and goal-directed attentional processes in young immigrants with long-term high altitude exposure in Tibet: An ERP study. Scientific Reports, 8(1), 17417. https://doi.org/10.1038/s41598-018-34706-y
doi: 10.1038/s41598-018-34706-y URL pmid: 30479363 |
[45] | Mancini, A., Bellingacci, L., Canonichesi, J., & Di Filippo, M. (2023). Immunity and cognition. In N.Rezaei, & N.Yazdanpanah Eds. Translational neuroimmunology, (Vol. 7, pp. 129-149). Academic Press. https://doi.org/10.1016/B978-0-323-85841-0.00017-1 |
[46] |
McMorris, T., Hale, B. J., Barwood, M., Costello, J., & Corbett, J. (2017). Effect of acute hypoxia on cognition: A systematic review and meta-regression analysis. Neuroscience and Biobehavioral Reviews, 74(Pt A),225-232. https://doi.org/10.1016/j.neubiorev.2017.01.019
doi: S0149-7634(16)30707-2 URL pmid: 28111267 |
[47] |
Medawar, P. (1961). Immunological Tolerance. Nature, 189, 14-17. https://doi.org/10.1038/189014a0
doi: 10.1038/189014a0 URL |
[48] |
Millet, G. P., Faiss, R., & Pialoux, V. (2012). Point: Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. Journal of Applied Physiology (1985), 112(10), 1783-1784. https://doi.org/10.1152/japplphysiol.00067.2012
doi: 10.1152/japplphysiol.00067.2012 URL |
[49] |
Miller, L. E., McGinnis, G. R., Kliszczewicz, B., Slivka, D., Hailes, W., Cuddy, J., ... Quindry, J. C. (2013). Blood oxidative-stress markers during a high-altitude trek. International Journal of Sport Nutrition and Exercise Metabolism, 23(1), 65-72. https://doi.org/10.1123/ijsnem.23.1.65
URL pmid: 23006582 |
[50] |
Milusheva, E. A., Doda, M., Baranyi, M., & Vizi, E. S. (1996). Effect of hypoxia and glucose deprivation on ATP level, adenylate energy charge and [ca2+] o-dependent and independent release of [3H] dopamine in rat striatal slices. Neurochemistry International, 28(5-6), 501-507. https://doi.org/10.1016/0197-0186(95)00129-8
URL pmid: 8792331 |
[51] |
Moreau, D., & Chou, E. (2019). The acute effect of high-intensity exercise on executive function: A meta- analysis. Perspectives on Psychological Science, 14(5), 734-764. https://doi.org/10.1177/1745691619850568
doi: 10.1177/1745691619850568 URL pmid: 31365839 |
[52] |
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154-160. https://doi.org/10.1136/bjsports-2016-096587
doi: 10.1136/bjsports-2016-096587 URL pmid: 28438770 |
[53] |
Nybo, L., & Rasmussen, P. (2007). Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exercise and Sport Sciences Reviews, 35(3), 110-118. https://doi.org/10.1097/jes.0b013e3180a031ec
URL pmid: 17620929 |
[54] |
Ochi, G., Yamada, Y., Hyodo, K., Suwabe, K., Fukuie, T., Byun, K., Dan, I., & Soya, H. (2018). Neural basis for reduced executive performance with hypoxic exercise. NeuroImage, 171, 75-83. https://doi.org/10.1016/j.neuroimage.2017.12.091
doi: S1053-8119(17)31115-1 URL pmid: 29305162 |
[55] |
Peltonen, J. E., Paterson, D. H., Shoemaker, J. K., DeLorey, D. S., duManoir, G. R., Petrella, R. J., & Kowalchuk, J. M. (2009). Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise. Respiratory Physiology & Neurobiology, 169(1), 24-35. https://doi.org/10.1016/j.resp.2009.08.013
doi: 10.1016/j.resp.2009.08.013 URL |
[56] |
Quindry, J., Dumke, C., Slivka, D., & Ruby, B. (2016). Impact of extreme exercise at high altitude on oxidative stress in humans. The Journal of Physiology, 594(18), 5093-5104. https://doi.org/10.1113/JP270651
doi: 10.1113/JP270651 URL pmid: 26453842 |
[57] |
Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180-190. https://doi.org/10.1016/j.tics.2010.01.008
doi: 10.1016/j.tics.2010.01.008 URL pmid: 20206576 |
[58] |
Regard, M., Oelz, O., Brugger, P., & Landis, T. (1989). Persistent cognitive impairment in climbers after repeated exposure to extreme altitude. Neurology, 39(2), 210. https://doi.org/10.1212/WNL.39.2.210
doi: 10.1212/WNL.39.2.210 URL |
[59] |
Robinet, C., & Pellerin, L. (2010). Brain-derived neurotrophic factor enhances the expression of the monocarboxylate transporter 2 through translational activation in mouse cultured cortical neurons. Journal of Cerebral Blood Flow and Metabolism, 30(2), 286-298. https://doi.org/10.1038/jcbfm.2009.208
doi: 10.1038/jcbfm.2009.208 URL pmid: 19794395 |
[60] |
Schega, L., Peter, B., Brigadski, T., Leßmann, V., Isermann, B., Hamacher, D., & Törpel, A. (2016). Effect of intermittent normobaric hypoxia on aerobic capacity and cognitive function in older people. Journal of Science and Medicine in Sport, 19(11), 941-945. https://doi.org/10.1016/j.jsams.2016.02.012
doi: S1440-2440(16)00063-3 URL pmid: 27134133 |
[61] |
Shannon, O. M., Duckworth, L., Barlow, M. J., Deighton, K., Matu, J., Williams, E. L., ... O'Hara, J. P. (2017). Effects of dietary nitrate supplementation on physiological responses, cognitive function, and exercise performance at moderate and very-high simulated altitude. Frontiers in Physiology, 8, 401-401. https://doi.org/10.3389/fphys.2017.00401
doi: 10.3389/fphys.2017.00401 URL pmid: 28649204 |
[62] |
Simonson, T. S., Yang, Y., Huff, C. D., Yun, H., Qin, G., Witherspoon, D. J., ... Ge, R. (2010). Genetic evidence for high-altitude adaptation in Tibet. Science, 329(5987), 72-75. https://doi.org/10.1126/science.1189406
doi: 10.1126/science.1189406 URL pmid: 20466884 |
[63] |
Sinha, S., Ray, U. S., Saha, M., Singh, S. N., & Tomar, O. S. (2009). Antioxidant and redox status after maximal aerobic exercise at high altitude in acclimatized lowlanders and native highlanders. European Journal of Applied Physiology, 106, 807-814. https://doi.org/10.1007/s00421-009-1082-x
doi: 10.1007/s00421-009-1082-x URL pmid: 19466447 |
[64] |
Sorond, F. A., Hurwitz, S., Salat, D. H., Greve, D. N., & Fisher, N. D. L. (2013). Neurovascular coupling, cerebral white matter integrity, and response to cocoa in older people. Neurology, 81(10), 904-909. https://doi.org/10.1212/WNL.0b013e3182a351aa
doi: 10.1212/WNL.0b013e3182a351aa URL pmid: 23925758 |
[65] | Steele, A. R., Tymko, M. M., Meah, V. L., Simpson, L. L., Gasho, C., Dawkins, T. G., ... Steinback, C. D. (2021). Global REACH 2018: Volume regulation in high-altitude andeans with and without chronic mountain sickness. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 321(3), 504-512. https://doi.org/10.1152/ajpregu.00102.2021 |
[66] |
Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends in Neurosciences, 43(7), 533-543. https://doi.org/10.1016/j.tins.2020.04.010
doi: S0166-2236(20)30101-6 URL pmid: 32409017 |
[67] |
Su, R., Wang, C., Liu, W., Han, C., Fan, J., Ma, H., ... Zhang, D. (2022). Intensity-dependent acute aerobic exercise: Effect on reactive control of attentional functions in acclimatized lowlanders at high altitude. Physiology & Behavior, 250, 113785. https://doi.org/10.1016/j.physbeh.2022.113785
doi: 10.1016/j.physbeh.2022.113785 URL |
[68] |
Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103(1), 177-183. https://doi.org/10.1152/japplphysiol.01460.2006
doi: 10.1152/japplphysiol.01460.2006 URL pmid: 17431082 |
[69] | Sun, S., Loprinzi, P. D., Guan, H., Zou, L., Kong, Z., Hu, Y., Shi, Q., & Nie, J. (2019). The effects of high-intensity interval exercise and hypoxia on cognition in sedentary young adults. Medicina (Kaunas, Lithuania), 55(2), 43. https://doi.org/10.3390/medicina55020043 |
[70] |
Sweller, J. (2016). Working memory, long-term memory, and instructional design. Journal of Applied Research in Memory and Cognition, 5(4), 360-367. https://doi.org/10.1016/j.jarmac.2015.12.002
doi: 10.1016/j.jarmac.2015.12.002 URL |
[71] | Taylor, L., Watkins, S. L., Marshall, H., Dascombe, B. J., & Foster, J. (2016). The impact of different environmental conditions on cognitive function: A focused review. Frontiers in Physiology, 6, 372-372. https://doi.org/10.3389/fphys.2015.00372 |
[72] |
Vermehren-Schmaedick, A., Jenkins, V. K., Knopp, S. J., Balkowiec, A., & Bissonnette, J. M. (2012). Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice. Neuroscience, 206, 1-6. https://doi.org/10.1016/j.neuroscience.2012.01.017
doi: 10.1016/j.neuroscience.2012.01.017 URL pmid: 22297041 |
[73] | Vij, A. G., Dutta, R., & Satija, N. K. (2005). Acclimatization to oxidative stress at high altitude. High Altitude Medicine & Biology, 6(4), 301-310. https://doi.org/10.1089/ham.2005.6.301 |
[74] | Villafuerte, F. C., & Corante, N. (2016). Chronic mountain sickness: Clinical aspects, etiology, management, and treatment. High Altitude Medicine & Biology, 17(2), 61-69. https://doi.org/10.1089/ham.2016.0031 |
[75] |
Villafuerte, F. C., Cardenas, R., & Monge-C, C. (2004). Optimal hemoglobin concentration and high altitude: A theoretical approach for andean men at rest. Journal of Applied Physiology, 96(5), 1581-1588. https://doi.org/10.1152/japplphysiol.00328.2003
URL pmid: 14672972 |
[76] |
Virués-Ortega, J., Garrido, E., Javierre, C., & Kloezeman, K. C. (2006). Human behaviour and development under high-altitude conditions. Developmental Science, 9(4), 400-410. https://doi.org/10.1111/j.1467-7687.2006.00505.x
URL pmid: 16764613 |
[77] |
Walsh, J. J., Drouin, P. J., King, T. J., D'Urzo, K. A., Tschakovsky, M. E., Cheung, S. S., & Day, T. A. (2020). Acute aerobic exercise impairs aspects of cognitive function at high altitude. Physiology & Behavior, 223, 112979-112979. https://doi.org/10.1016/j.physbeh.2020.112979
doi: 10.1016/j.physbeh.2020.112979 URL |
[78] |
Wang, N. N., Yu, S. F., Dang, P., Hu, Q. L., Su, R., Li, H., ... Zhang, D. L. (2023). Association between the acceleration of access to visual awareness of grating orientation with higher heart rate at high-altitude. Physiology & Behavior, 268, 114235. https://doi.org/10.1016/j.physbeh.2023.114235
doi: 10.1016/j.physbeh.2023.114235 URL |
[79] | Welford, A. T. (1984). Psychomotor performance. Annual Review of Gerontology and Geriatrics, 4(1), 237-273. |
[80] |
West, J. B. (1984). Human physiology at extreme altitudes on mount everest. Science, 223(4638), 784-788. https://doi.org/10.1126/science.6364351
URL pmid: 6364351 |
[81] | Wu, T., & Kayser, B. (2006). High altitude adaptation in Tibetans. High Altitude Medicine & Biology, 7(3), 193-208. https://doi.org/10.1089/ham.2006.7.193 |
[82] |
Xue, X. J., Su, R., Li, Z. F., Bu, X. O., Dang, P., Yu, S. F., ... Zhang, D. L. (2022). Oxygen metabolism-induced stress response underlies heart-brain interaction governing human consciousness-breaking and attention. Neuroscience Bulletin, 38(2), 166-180. https://10.1007/s12264-021-00761-1
doi: 10.1007/s12264-021-00761-1 URL |
[83] |
Yu, S., Wang, N., Hu, Q., Dang, P., Chang, S., Huang, X., … Zhang, D. (2023). Neurodynamics of awareness detection in Tibetan immigrants: Evidence from electroencephalography analysis. Neuroscience, 522, 69-80. https://doi.org/10.1016/j.neuroscience.2023.04.025
doi: 10.1016/j.neuroscience.2023.04.025 URL |
[84] |
Zhang, D., Zhang, X., Ma, H., Wang, Y., Ma, H., & Liu, M. (2018). Competition among the attentional networks due to resource reduction in Tibetan indigenous residents: Evidence from event-related potentials. Scientific Reports, 8(1), 610. https://doi.org/10.1038/s41598-017-18886-7
doi: 10.1038/s41598-017-18886-7 URL pmid: 29330442 |
[85] |
Zhang, X., Xie, W., Du, W., Liu, Y., Lin, J., Yin, W., ... Zhang, J. (2023). Consistent differences in brain structure and functional connectivity in high-altitude native Tibetans and immigrants. Brain Imaging and Behavior, 17, 271-281. https://doi.org/10.1007/s11682-023-00759-5
doi: 10.1007/s11682-023-00759-5 URL |
[86] |
Zhang, X., & Zhang, J. (2022). The human brain in a high altitude natural environment: A review. Frontiers in Human Neuroscience, 16, 915995. https://doi.org/10.3389/fnhum.2022.915995
doi: 10.3389/fnhum.2022.915995 URL |
[87] | Zubieta-Calleja, G. R., Paulev, P., Zubieta-Calleja, L., & Zubieta-Castillo, G. (2007). Altitude adaptation through hematocrit changes. Journal of Physiology and Pharmacology, 58(5), 811-818. |
[1] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
[2] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[3] | CAO Jinjing, QIU Shiming, DING Xianfeng, CHENG Xiaorong, FAN Zhao. The gradedness and richness of consciousness: Two pathways toward decoding consciousness [J]. Advances in Psychological Science, 2023, 31(7): 1172-1185. |
[4] | CHEN Jing, ZHANG Manlu, LI Yuyang. The promotive effect of Physical activity calorie equivalent (PACE) labels on healthy behaviors and its cognitive mechanisms [J]. Advances in Psychological Science, 2023, 31(7): 1228-1238. |
[5] | CHEN Zi-Wei, FU Di, LIU Xun. Better to misidentify than to miss: A review of occurrence mechanisms and applications of face pareidolia [J]. Advances in Psychological Science, 2023, 31(2): 240-255. |
[6] | XU Shaoqing, LIU Xinhua, ZHANG Huiping, LI Bo, TANG Xinfeng, QU Gaiping, BAO Yuqin, ZHAO Junping, FU Zhongfang. Enhancing mindfulness interventions for test anxiety: A perspective based on the NIH stage model [J]. Advances in Psychological Science, 2023, 31(12): 2380-2392. |
[7] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[8] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[9] | ZHANG Siyuan, LI Xuebing. The application of different frequencies of transcranial alternating current stimulation in mental disorders [J]. Advances in Psychological Science, 2022, 30(9): 2053-2066. |
[10] | WANG Yang, WEN Zhonglin, WANG Huihui, GUAN Fang. The second type of mediated moderation [J]. Advances in Psychological Science, 2022, 30(9): 2131-2142. |
[11] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[12] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[13] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[14] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[15] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||