Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (5): 834-844.doi: 10.3724/SP.J.1042.2024.00834
• Regular Articles • Previous Articles Next Articles
GAO Limei1, WANG Kai1,2,3,4,5, LI Dandan1,2,4()
Received:
2023-01-10
Online:
2024-05-15
Published:
2024-03-05
Contact:
LI Dandan
E-mail:lidandan050295@163.com
CLC Number:
GAO Limei, WANG Kai, LI Dandan. The application of social robots in intervention for children with autism spectrum disorders[J]. Advances in Psychological Science, 2024, 32(5): 834-844.
类型 | 名称 | 干预方向 | 自由度/移动性(单位:Dof ) | 肢体完整度 | 面部真实度 | 简单介绍 |
---|---|---|---|---|---|---|
非 仿 人 机 器 人 | Cozmo | 共情能力 | 可移动 | 无 | 无 | 通过轮子向各个方向移动, 手部也可以进行简单互动(Ghiglino et al., |
Pekoppa | 社交沟通 | 无 | 无 | 无 | 通过点头对语音做出反应(Giannopulu et al., | |
Kiwi | 社交沟通 | 无 | 无 | 基本面部特征 | 无法自主移动, 多用于游戏提示(Jain et al., | |
Jibo | 联合注意 | 3 | 无 | 基本面部特征 | 可将头部和身体旋转360度(Scassellati et al., | |
Keepon | 社交沟通 | 4 | 无 | 基本面部特征 | 同步节奏跳舞, 也可对人类触摸做出反应(Kozima et al., | |
Pleo | 动作模仿 | 14 | 无 | 无 | 恐龙外形, 可进行身体运动和发声(Peca et al., | |
仿 人 机 器 人 | Robota | 共情能力 | 5 | 完整 | 具备面部特征 | 通过运动和声音表达情绪(Robins et al., |
Actroid-F | 社交沟通 | 12 | 完整 | 具备面部特征 | 女性, 可完成眨眼、呼吸、凝视和头部移动等活动(Kumazaki, Warren et al., | |
CommU | 联合注意 | 14 | 不完整 | 具备面部特征 | 脸部可以显示简化的表情, 噪音很小(Kumazaki, Yoshikawa et al., | |
Zeno/Milo | 共情能力 动作模仿 | 14 | 完整 | 具备面部特征 | 可表达情绪, 做出多种肢体动作(Schadenberg et al., | |
I-Sobot | 社交语言 动作模仿 | 17 | 完整 | 具备面部特征 | 完成多种动作、发音和声音指令, 还可以演奏音乐等(Srinivasan et al., | |
Kaspar | 社交语言 共情能力 | 17 | 完整 | 具备面部特征 | 腿部没有激活, 有手势动作和表情, 通过语音进行交互(Huijnen et al., | |
Flobi | 联合注意 | 18 | 不完整 | 具备面部特征 | 机器人头, 面部表情真实(Damm et al., | |
Nao | 多种 社交技能 | 25 | 完整 | 具备面部特征 | 具备语言能力, 肢体灵活, 可进行二次开发(Cao et al., |
类型 | 名称 | 干预方向 | 自由度/移动性(单位:Dof ) | 肢体完整度 | 面部真实度 | 简单介绍 |
---|---|---|---|---|---|---|
非 仿 人 机 器 人 | Cozmo | 共情能力 | 可移动 | 无 | 无 | 通过轮子向各个方向移动, 手部也可以进行简单互动(Ghiglino et al., |
Pekoppa | 社交沟通 | 无 | 无 | 无 | 通过点头对语音做出反应(Giannopulu et al., | |
Kiwi | 社交沟通 | 无 | 无 | 基本面部特征 | 无法自主移动, 多用于游戏提示(Jain et al., | |
Jibo | 联合注意 | 3 | 无 | 基本面部特征 | 可将头部和身体旋转360度(Scassellati et al., | |
Keepon | 社交沟通 | 4 | 无 | 基本面部特征 | 同步节奏跳舞, 也可对人类触摸做出反应(Kozima et al., | |
Pleo | 动作模仿 | 14 | 无 | 无 | 恐龙外形, 可进行身体运动和发声(Peca et al., | |
仿 人 机 器 人 | Robota | 共情能力 | 5 | 完整 | 具备面部特征 | 通过运动和声音表达情绪(Robins et al., |
Actroid-F | 社交沟通 | 12 | 完整 | 具备面部特征 | 女性, 可完成眨眼、呼吸、凝视和头部移动等活动(Kumazaki, Warren et al., | |
CommU | 联合注意 | 14 | 不完整 | 具备面部特征 | 脸部可以显示简化的表情, 噪音很小(Kumazaki, Yoshikawa et al., | |
Zeno/Milo | 共情能力 动作模仿 | 14 | 完整 | 具备面部特征 | 可表达情绪, 做出多种肢体动作(Schadenberg et al., | |
I-Sobot | 社交语言 动作模仿 | 17 | 完整 | 具备面部特征 | 完成多种动作、发音和声音指令, 还可以演奏音乐等(Srinivasan et al., | |
Kaspar | 社交语言 共情能力 | 17 | 完整 | 具备面部特征 | 腿部没有激活, 有手势动作和表情, 通过语音进行交互(Huijnen et al., | |
Flobi | 联合注意 | 18 | 不完整 | 具备面部特征 | 机器人头, 面部表情真实(Damm et al., | |
Nao | 多种 社交技能 | 25 | 完整 | 具备面部特征 | 具备语言能力, 肢体灵活, 可进行二次开发(Cao et al., |
[1] |
范晓壮, 毕小彬, 谢宇, 贺荟中. (2020). 高功能自闭症个体对威胁性情绪面孔的注意偏向. 心理科学进展 28(7), 1172-1186.
doi: 10.3724/SP.J.1042.2020.01172 |
[2] | 黄碧玉. (2018). 社交机器人对孤独症儿童社交行为诱导效果研究 (硕士学位论文). 浙江工业大学. |
[3] |
王磊, 贺荟中, 毕小彬, 周丽, 范晓壮. (2021). 社会动机理论视角下自闭症谱系障碍者的社交缺陷. 心理科学进展 29(12), 2209-2223.
doi: 10.3724/SP.J.1042.2021.02209 |
[4] | 王蒙娜. (2019). 基于社交机器人的孤独症儿童共同注意干预效果研究 (硕士学位论文). 浙江工业大学. |
[5] | Alabdulkareem, A., Alhakbani, N., & Al-Nafjan, A. (2022). A systematic review of research on robot-assisted therapy for children with autism. Sensors, 22(3), 944. |
[6] |
Amirova, A., Rakhymbayeva, N., Zhanatkyzy, A., Telisheva, Z., & Sandygulova, A. (2022). Effects of parental involvement in robot-assisted autism therapy. Journal of Autism and Developmental Disorders, 53(1), 438-455.
doi: 10.1007/s10803-022-05429-x pmid: 35088233 |
[7] |
Barnes, J. A., Park, C. H., Howard, A., & Jeon, M. (2021). Child-robot interaction in a musical dance game: An exploratory comparison study between typically developing children and children with autism. International Journal of Human-Computer Interaction, 37(3), 249-266.
doi: 10.1080/10447318.2020.1819667 pmid: 33767571 |
[8] | Baron-Cohen, S. (2000). Theory of mind and autism: A review. International Review of Research in Mental Retardation, 23, 169-184. |
[9] |
Bekele, E., Crittendon, J. A., Swanson, A., Sarkar, N., & Warren, Z. E. (2014). Pilot clinical application of an adaptive robotic system for young children with autism. Autism, 18(5), 598-608.
doi: 10.1177/1362361313479454 pmid: 24104517 |
[10] | Bekele, E. T., Lahiri, U., Swanson, A. R., Crittendon, J. A., Warren, Z. E., & Sarkar, N. (2013). A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 21(2), 289-299. |
[11] |
Boccanfuso, L., Scarborough, S., Abramson, R. K., Hall, A. V., Wright, H. H., & O’Kane, J. M. (2017). A low-cost socially assistive robot and robot-assisted intervention for children with autism spectrum disorder: Field trials and lessons learned. Autonomous Robots, 41(3), 637-655.
doi: 10.1007/s10514-016-9554-4 URL |
[12] |
Bono, M. A., Daley, T., & Sigman, M. (2004). Relations among joint attention, amount of intervention and language gain in autism. Journal of Autism and Developmental Disorders, 34(5), 495-505.
pmid: 15628604 |
[13] |
Cabibihan, J.-J., Javed, H., Ang, M., & Aljunied, S. M. (2013). Why robots? A survey on the roles and benefits of social robots in the therapy of children with autism. International Journal of Social Robotics, 5(4), 593-618.
doi: 10.1007/s12369-013-0202-2 URL |
[14] |
Cao, W., Song, W., Li, X., Zheng, S., Zhang, G., Wu, Y., He, S., Zhu, H., & Chen, J. (2019). Interaction with social robots: Improving gaze toward face but not necessarily joint attention in children with autism spectrum disorder. Frontiers in Psychology, 10, 1503.
doi: 10.3389/fpsyg.2019.01503 pmid: 31333540 |
[15] |
Chen, Y., Zhou, Z., Cao, M., Liu, M., Lin, Z., Yang, W., Yang, X., Dhaidhai, D., & Xiong, P. (2022). Extended Reality (XR) and telehealth interventions for children or adolescents with autism spectrum disorder: Systematic review of qualitative and quantitative studies. Neuroscience and Biobehavioral Reviews, 138, 104683.
doi: 10.1016/j.neubiorev.2022.104683 URL |
[16] |
Chevalier, P., Ghiglino, D., Floris, F., Priolo, T., & Wykowska, A. (2021). Visual and hearing sensitivity affect robot-based training for children diagnosed with autism spectrum disorder. Frontiers in Robotics and AI, 8, 748853.
doi: 10.3389/frobt.2021.748853 URL |
[17] |
Chevalier, P., Kompatsiari, K., Ciardo, F., & Wykowska, A. (2020). Examining joint attention with the use of humanoid robots-a new approach to study fundamental mechanisms of social cognition. Psychonomic Bulletin & Review, 27(2), 217-236.
doi: 10.3758/s13423-019-01689-4 |
[18] |
Coeckelbergh, M., Pop, C., Simut, R., Peca, A., Pintea, S., David, D., & Vanderborght, B. (2016). A Survey of expectations about the role of robots in robot-assisted therapy for children with ASD: Ethical acceptability, trust, sociability, appearance, and attachment. Science and Engineering Ethics, 22(1), 47-65.
doi: 10.1007/s11948-015-9649-x pmid: 25894654 |
[19] | Conti, D., Trubia, G., Buono, S., Nuovo, S. D., & Nuovo, A. D. (2021). An empirical study on integrating a small humanoid robot to support the therapy of children with autism spectrum disorder and intellectual disability. Interaction Studies, 22(2), 177-211. |
[20] |
Croes, E. A. J., & Antheunis, M. L. (2021). Can we be friends with Mitsuku? A longitudinal study on the process of relationship formation between humans and a social chatbot. Journal of Social and Personal Relationships, 38(1), 279-300.
doi: 10.1177/0265407520959463 URL |
[21] | Damm, O., Malchus, K., Jaecks, P., Krach, S., Paulus, F., Naber, M., Jansen, A., Kamp-Becker, I., Einhaeuser- Treyer, W., Stenneken, P., & Wrede, B. (2013). Different gaze behavior in human-robot interaction in Asperger’s syndrome: An eye-tracking study. 2013 IEEE International Workshop on Robot and Human Communication (pp. 368-369). IEEE. |
[22] |
Dautenhahn, K., Nehaniv, C. L., Walters, M. L., Robins, B., Kose-Bagci, H., Mirza, N. A., & Blow, M. (2009). KASPAR - A minimally expressive humanoid robot for human-robot interaction research. Applied Bionics and Biomechanics, 6(3-4), 369-397.
doi: 10.1155/2009/708594 URL |
[23] |
David, D. O., Costescu, C. A., Matu, S., Szentagotai, A., & Dobrean, A. (2018). Developing joint attention for children with autism in robot-enhanced therapy. International Journal of Social Robotics, 10(5), 595-605.
doi: 10.1007/s12369-017-0457-0 |
[24] |
De Korte, M. W., van den Berk-Smeekens, I., van Dongen-Boomsma, M., Oosterling, I. J., Den Boer, J. C., Barakova, E. I., ... Staal, W. G. (2020). Self-initiations in young children with autism during pivotal response treatment with and without robot assistance. Autism, 24(8), 2117-2128.
doi: 10.1177/1362361320935006 URL |
[25] |
Dziobek, I., Rogers, K., Fleck, S., Bahnemann, M., Heekeren, H. R., Wolf, O. T., & Convit, A. (2008). Dissociation of cognitive and emotional empathy in adults with Asperger syndrome using the Multifaceted Empathy Test (MET). Journal of Autism and Developmental Disorders, 38(3), 464-473.
doi: 10.1007/s10803-007-0486-x pmid: 17990089 |
[26] |
Eigsti, I.-M., de Marchena, A. B., Schuh, J. M., & Kelley, E. (2011). Language acquisition in autism spectrum disorders: A developmental review. Research in Autism Spectrum Disorders, 5(2), 681-691.
doi: 10.1016/j.rasd.2010.09.001 URL |
[27] | Genovese, A., & Butler, M. G. (2023). The autism spectrum: Behavioral, psychiatric and genetic associations. Genes, 14(3), 677. |
[28] |
Ghiglino, D., Chevalier, P., Floris, F., Priolo, T., & Wykowska, A. (2021). Follow the white robot: Efficacy of robot- assistive training for children with autism spectrum disorder. Research in Autism Spectrum Disorders, 86, 101822.
doi: 10.1016/j.rasd.2021.101822 URL |
[29] | Giannopulu, I., Etournaud, A., Terada, K., Velonaki, M., & Watanabe, T. (2020). Ordered interpersonal synchronisation in ASD children via robots. Scientific Reports, 10(1), 17380. |
[30] | Giannopulu, I., Terada, K., & Watanabe, T. (2018). Communication using robots: A perception-action scenario in moderate ASD. Journal of Experimental & Theoretical Artificial Intelligence, 30(5), 603-613. |
[31] |
Goldman, E. J., Baumann, A.-E., & Poulin-Dubois, D. (2023). Preschoolers’ anthropomorphizing of robots: Do human-like properties matter? Frontiers in Psychology, 13, 1102370.
doi: 10.3389/fpsyg.2022.1102370 URL |
[32] |
Holeva, V., Nikopoulou, V. A., Lytridis, C., Bazinas, C., Kechayas, P., Sidiropoulos, G., ... Evangeliou, A. (2022). Effectiveness of a robot-assisted psychological intervention for children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 54(2), 577-593.
doi: 10.1007/s10803-022-05796-5 pmid: 36331688 |
[33] |
Holopainen, A., de Veld, D. M. J., Hoddenbach, E., & Begeer, S. (2019). Does theory of mind training enhance empathy in autism? Journal of Autism and Developmental Disorders, 49(10), 3965-3972.
doi: 10.1007/s10803-018-3671-1 pmid: 30074122 |
[34] |
Huijnen, C. A. G. J., Lexis, M. A. S., Jansens, R., & de Witte, L. P. (2019). Roles, strengths and challenges of using robots in interventions for children with autism spectrum disorder (ASD). Journal of Autism and Developmental Disorders, 49(1), 11-21.
doi: 10.1007/s10803-018-3683-x pmid: 30019273 |
[35] |
Huskens, B., Verschuur, R., Gillesen, J., Didden, R., & Barakova, E. (2013). Promoting question-asking in school- aged children with autism spectrum disorders: Effectiveness of a robot intervention compared to a human-trainer intervention. Developmental Neurorehabilitation, 16(5), 345-356.
doi: 10.3109/17518423.2012.739212 pmid: 23586852 |
[36] | Jain, S., Thiagarajan, B., Shi, Z., Clabaugh, C., & Matarić, M. J. (2020). Modeling engagement in long-term, in-home socially assistive robot interventions for children with autism spectrum disorders. Science Robotics, 5(39), eaaz3791. |
[37] |
Kahn, P. H., Gary, H. E., & Shen, S. (2013). Children’s social relationships with current and near-future robots. Child Development Perspectives, 7(1), 32-37.
doi: 10.1111/cdep.2013.7.issue-1 URL |
[38] |
Kahn, P. H., Kanda, T., Ishiguro, H., Freier, N. G., Severson, R. L., Gill, B. T., Ruckert, J. H., & Shen, S. (2012). “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Developmental Psychology, 48(2), 303-314.
doi: 10.1037/a0027033 URL |
[39] |
Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R., & Scassellati, B. (2013). Social robots as embedded reinforcers of social behavior in children with autism. Journal of Autism and Developmental Disorders, 43(5), 1038-1049.
doi: 10.1007/s10803-012-1645-2 pmid: 23111617 |
[40] |
Koegel, L. K., Carter, C. M., & Koegel, R. L. (2003). Teaching children with autism self-initiations as a pivotal response. Topics in Language Disorders, 23(2), 134-145.
doi: 10.1097/00011363-200304000-00006 URL |
[41] | Kouroupa, A., Laws, K. R., Irvine, K., Mengoni, S. E., Baird, A., & Sharma, S. (2022). The use of social robots with children and young people on the autism spectrum: A systematic review and meta-analysis. PLOS ONE, 17(6), e0269800. |
[42] |
Kozima, H., Michalowski, M. P., & Nakagawa, C. (2009). Keepon. International Journal of Social Robotics, 1(1), 3-18.
doi: 10.1007/s12369-008-0009-8 URL |
[43] | Kozima, H., Nakagawa, C., & Yasuda, Y. (2005). Interactive robots for communication-care: A case-study in autism therapy. ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005, 341-346. |
[44] |
Kumazaki, H., Muramatsu, T., Yoshikawa, Y., Matsumoto, Y., Ishiguro, H., Kikuchi, M., Sumiyoshi, T., & Mimura, M. (2020). Optimal robot for intervention for individuals with autism spectrum disorders. Psychiatry and Clinical Neurosciences, 74(11), 581-586.
doi: 10.1111/pcn.v74.11 URL |
[45] |
Kumazaki, H., Muramatsu, T., Yoshikawa, Y., Matsumoto, Y., Ishiguro, H., Sumiyoshi, T., Mimura, M., & Kikuchi, M. (2019). Comedic experience with two robots aided a child with autism spectrum disorder to realize the importance of nonverbal communication. Psychiatry and Clinical Neurosciences, 73(7), 423-423.
doi: 10.1111/pcn.12846 pmid: 30968495 |
[46] | Kumazaki, H., Warren, Z., Muramatsu, T., Yoshikawa, Y., Matsumoto, Y., Miyao, M., ... Kikuchi, M. (2017). A pilot study for robot appearance preferences among high- functioning individuals with autism spectrum disorder: Implications for therapeutic use. PLOS ONE, 12(10), e0186581. |
[47] |
Kumazaki, H., Warren, Z., Swanson, A., Yoshikawa, Y., Matsumoto, Y., Takahashi, H., ... Kikuchi, M. (2018). Can robotic systems promote self-disclosure in adolescents with autism spectrum disorder? A pilot study. Frontiers in Psychiatry, 9, 36.
doi: 10.3389/fpsyt.2018.00036 pmid: 29479324 |
[48] |
Kumazaki, H., Yoshikawa, Y., Yoshimura, Y., Ikeda, T., Hasegawa, C., Saito, D. N., ... Kikuchi, M. (2018). The impact of robotic intervention on joint attention in children with autism spectrum disorders. Molecular Autism, 9, 46.
doi: 10.1186/s13229-018-0230-8 pmid: 30202508 |
[49] |
Leaf, J. B., Cihon, J. H., Leaf, R., McEachin, J., Liu, N., Russell, N., Unumb, L., Shapiro, S., & Khosrowshahi, D. (2022). Concerns about ABA-based intervention: An evaluation and recommendations. Journal of Autism and Developmental Disorders, 52(6), 2838-2853.
doi: 10.1007/s10803-021-05137-y |
[50] |
Lewkowicz, D. J., & Ghazanfar, A. A. (2012). The development of the uncanny valley in infants. Developmental Psychobiology, 54(2), 124-132.
doi: 10.1002/dev.20583 pmid: 21761407 |
[51] |
Maliske, L. Z., Schurz, M., & Kanske, P. (2023). Interactions within the social brain: Co-activation and connectivity among networks enabling empathy and Theory of Mind. Neuroscience & Biobehavioral Reviews, 147, 105080. https://doi.org/10.1016/j.neubiorev.2023.105080.
doi: 10.1016/j.neubiorev.2023.105080 URL |
[52] |
Markram, K., & Markram, H.(2010). The intense world theory - A unifying theory of the neurobiology of autism. Frontiers in Human Neuroscience, 4, 224. https://doi.org/10.3389/fnhum.2010.00224.
doi: 10.3389/fnhum.2010.00224 URL pmid: 21191475 |
[53] |
Matsuda, Y.-T., Okamoto, Y., Ida, M., Okanoya, K., & Myowa-Yamakoshi, M. (2012). Infants prefer the faces of strangers or mothers to morphed faces: An uncanny valley between social novelty and familiarity. Biology Letters, 8(5), 725-728.
doi: 10.1098/rsbl.2012.0346 URL |
[54] | Mottron, L. (2017). Should we change targets and methods of early intervention in autism, in favor of a strengths- based education? European Child & Adolescent Psychiatry, 26(7), 815-825. |
[55] |
Peca, A., Simut, R., Pintea, S., Costescu, C., & Vanderborght, B. (2014). How do typically developing children and children with autism perceive different social robots? Computers in Human Behavior, 41, 268-277.
doi: 10.1016/j.chb.2014.09.035 URL |
[56] |
Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., & Pioggia, G. (2016). Autism and social robotics: A systematic review. Autism Research, 9(2), 165-183.
doi: 10.1002/aur.1527 pmid: 26483270 |
[57] |
Robins, B., Dautenhahn, K., & Dubowski, J. (2006). Does appearance matter in the interaction of children with autism with a humanoid robot? Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems, 7(3), 479-512.
doi: 10.1075/is URL |
[58] |
Salimi, Z., Jenabi, E., & Bashirian, S. (2021). Are social robots ready yet to be used in care and therapy of autism spectrum disorder: A systematic review of randomized controlled trials. Neuroscience and Biobehavioral Reviews, 129, 1-16.
doi: 10.1016/j.neubiorev.2021.04.009 pmid: 33862066 |
[59] |
Sano, M., Yoshimura, Y., Hirosawa, T., Hasegawa, C., An, K.-M., Tanaka, S., Naitou, N., & Kikuchi, M. (2021). Joint attention and intelligence in children with autism spectrum disorder without severe intellectual disability. Autism Research, 14(12), 2603-2612.
doi: 10.1002/aur.2600 pmid: 34427050 |
[60] |
Santos, L., Geminiani, A., Schydlo, P., Olivieri, I., Santos- Victor, J., & Pedrocchi, A. (2021). Design of a robotic coach for motor, social and cognitive skills training toward applications with ASD children. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1223-1232.
doi: 10.1109/TNSRE.2021.3091320 URL |
[61] |
Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2012). The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience, 7(4), 413-422.
doi: 10.1093/scan/nsr025 pmid: 21515639 |
[62] | Scassellati, B., Boccanfuso, L., Huang, C.-M., Mademtzi, M., Qin, M., Salomons, N., Ventola, P., & Shic, F. (2018). Improving social skills in children with ASD using a long-term, in-home social robot. Science Robotics, 3(21), eaat7544. |
[63] | Schadenberg, B. R., Reidsma, D., Evers, V., Davison, D. P., Li, J. J., Heylen, D. K. J., ... Pellicano, E. (2021). Predictable robots for autistic children-variance in robot behaviour, idiosyncrasies in autistic children’s characteristics, and child-robot engagement. ACM Transactions on Computer-Human Interaction, 28(5), 36. |
[64] | Shahmoradi, L., & Rezayi, S. (2022). Cognitive rehabilitation in people with autism spectrum disorder: A systematic review of emerging virtual reality-based approaches. Journal of Neuroengineering and Rehabilitation, 19(1), 91. |
[65] |
So, W.-C., Cheng, C.-H., Lam, W.-Y., Huang, Y., Ng, K.-C., Tung, H.-C., & Wong, W. (2020). A robot-based play-drama intervention may improve the joint attention and functional play behaviors of Chinese-speaking preschoolers with autism spectrum disorder: A Pilot Study. Journal of Autism and Developmental Disorders, 50(2), 467-481.
doi: 10.1007/s10803-019-04270-z |
[66] |
So, W.-C., Wong, M. K.-Y., Lam, W.-Y., Cheng, C.-H., Yang, J.-H., Huang, Y., ... Lee, C.-C. (2018). Robot-based intervention may reduce delay in the production of intransitive gestures in Chinese-speaking preschoolers with autism spectrum disorder. Molecular Autism, 9, 34.
doi: 10.1186/s13229-018-0217-5 |
[67] |
Srinivasan, S. M., Eigsti, I.-M., Gifford, T., & Bhat, A. N. (2016). The effects of embodied rhythm and robotic interventions on the spontaneous and responsive verbal communication skills of children with autism spectrum disorder (ASD): A further outcome of a pilot randomized controlled trial. Research in Autism Spectrum Disorders, 27, 73-87.
pmid: 27668011 |
[68] |
Srinivasan, S. M., Lynch, K. A., Bubela, D. J., Gifford, T. D., & Bhat, A. N. (2013). Effect of interactions between a child and a robot on the imitation and praxis performance of typically developing children and a child with autism: A preliminary study. Perceptual and Motor Skills, 116(3), 885-904.
pmid: 24175461 |
[69] |
Srinivasan, S. M., Park, I. K., Neelly, L. B., & Bhat, A. N. (2015). A comparison of the effects of rhythm and robotic interventions on repetitive behaviors and affective states of children with autism spectrum disorder (ASD). Research in Autism Spectrum Disorders, 18, 51-63.
pmid: 26251668 |
[70] |
Steckenfinger, S. A., & Ghazanfar, A. A. (2009). Monkey visual behavior falls into the uncanny valley. Proceedings of the National Academy of Sciences, 106(43), 18362-18366.
doi: 10.1073/pnas.0910063106 URL |
[71] | Stieglitz Ham, H., Bartolo, A., Corley, M., Swanson, S., & Rajendran, G. (2010). Case report: Selective deficit in the production of intransitive gestures in an individual with autism. Cortex, 46(3), 407-409. |
[72] | Ueyama, Y. (2015). A bayesian model of the uncanny valley effect for explaining the effects of therapeutic robots in autism spectrum disorder. PLOS ONE, 10(9), e0138642. |
[73] | van den Berk-Smeekens, I., van Dongen-Boomsma, M., De Korte, M. W. P., Den Boer, J. C., Oosterling, I. J., Peters-Scheffer, N. C., ... Glennon, J. C. (2020). Adherence and acceptability of a robot-assisted pivotal response treatment protocol for children with autism spectrum disorder. Scientific Reports, 10(1), 8110. |
[74] |
van Straten, C. L., Peter, J., Kühne, R., & Barco, A. (2022). On sharing and caring: Investigating the effects of a robot’s self-disclosure and question- asking on children’s robot perceptions and child-robot relationship formation. Computers in Human Behavior, 129, 107135.
doi: 10.1016/j.chb.2021.107135 URL |
[75] |
van Straten, C. L., Smeekens, I., Barakova, E., Glennon, J., Buitelaar, J., & Chen, A. (2018). Effects of robots’ intonation and bodily appearance on robot-mediated communicative treatment outcomes for children with autism spectrum disorder. Personal and Ubiquitous Computing, 22(2), 379-390.
doi: 10.1007/s00779-017-1060-y URL |
[76] |
Verschuur, R., Huskens, B., & Didden, R. (2019). Effectiveness of parent education in pivotal response treatment on pivotal and collateral responses. Journal of Autism and Developmental Disorders, 49(9), 3477-3493.
doi: 10.1007/s10803-019-04061-6 pmid: 31127486 |
[77] |
Warren, Z. E., Zheng, Z., Swanson, A. R., Bekele, E., Zhang, L., Crittendon, J. A., Weitlauf, A. F., & Sarkar, N. (2015). Can robotic interaction improve joint attention skills? Journal of Autism and Developmental Disorders, 45(11), 3726-3734.
doi: 10.1007/s10803-013-1918-4 pmid: 24014194 |
[78] |
Zhang, Y., Song, W., Tan, Z., Wang, Y., Lam, C. M., Hoi, S. P., Xiong, Q., Chen, J., & Yi, L. (2019). Theory of robot mind: False belief attribution to social robots in children with and without autism. Frontiers in Psychology, 10, 1732.
doi: 10.3389/fpsyg.2019.01732 pmid: 31447726 |
[79] |
Zheng, Z., Nie, G., Swanson, A., Weitlauf, A., Warren, Z., & Sarkar, N. (2020). A randomized controlled trial of an intelligent robotic response to joint attention intervention system. Journal of Autism and Developmental Disorders, 50(8), 2819-2831.
doi: 10.1007/s10803-020-04388-5 pmid: 32026173 |
[80] |
Zheng, Z., Young, E. M., Swanson, A. R., Weitlauf, A. S., Warren, Z. E., & Sarkar, N. (2016). Robot-mediated imitation skill training for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 682-691.
doi: 10.1109/TNSRE.2015.2475724 pmid: 26353376 |
[1] | FU Chunye, LI Aixin, LYU Xiaokang, WANG Chongying. Visual perception in individuals with autism spectrum disorder: Bayesian and predictive coding-based perspective [J]. Advances in Psychological Science, 2024, 32(7): 1164-1178. |
[2] | JING Wei, CHEN Qi, XUE Yun Qing, YANG Miao, ZHANG Jie. Predictive coding deficits in autism: Abnormalities in feedback or feedforward connectivities? [J]. Advances in Psychological Science, 2024, 32(5): 813-833. |
[3] | CHEN Yan, LI Jing. The impact of interpersonal synchronization on autistic children’s cooperative behavior and its intervention promotion [J]. Advances in Psychological Science, 2024, 32(4): 639-653. |
[4] | HUANG Xinyu, LI Ye. Trust dampening and trust promoting: A dual-pathway of trust calibration in human-robot interaction [J]. Advances in Psychological Science, 2024, 32(3): 527-542. |
[5] | Fang Yang, Jinyu Tian, Peijun Yuan, Chunyan Liu, Xinyuan Zhang, Li Yang, Yi Jiang. Unconscious, but not Conscious, Gaze-triggered Social Attention Reflects the Autistic Traits in Adults and Children [J]. Advances in Psychological Science, 2023, 31(suppl.): 98-98. |
[6] | LI Sijin, WANG Tingdong, PENG Zhilin, ZHANG Dandan. Perception, discrimination, and learning of speech in newborns [J]. Advances in Psychological Science, 2023, 31(12): 2295-2305. |
[7] | DENG Shichang, LIN Zihan, LU Yuqian, LI Xiangqian. New playmates in the age of intelligence: Characteristics of children’s interactions with robots and their impact on child development [J]. Advances in Psychological Science, 2023, 31(12): 2319-2336. |
[8] | XIAO Shihua, LI Jing. Implementation of Naturalistic Developmental Behavioral Interventions: An early intervention program for children with autism spectrum disorder [J]. Advances in Psychological Science, 2023, 31(12): 2350-2367. |
[9] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
[10] | XU Hui, WANG Tao. Social motivation deficits in individuals with autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(5): 1050-1061. |
[11] | ZAHNG Yuyan, XU Liying, YU Feng, DING Xiaojun, WU Jiahua, ZHAO Liang. A three-dimensional motivation model of algorithm aversion [J]. Advances in Psychological Science, 2022, 30(5): 1093-1105. |
[12] | CHEN Guanghua, TAO Guanpeng, ZHAI Luyu, BAI Xuejun. Early screening tools for Autism Spectrum Disorder in infancy and toddlers [J]. Advances in Psychological Science, 2022, 30(4): 738-760. |
[13] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[14] | LIU Min, HU Yang, LIU Qiaoyun. Potential early identification markers for children with autism spectrum disorder: Unusual vocalizations and theoretical explanations [J]. Advances in Psychological Science, 2022, 30(3): 635-647. |
[15] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||