Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (3): 522-535.doi: 10.3724/SP.J.1042.2022.00522
• Research Method • Previous Articles Next Articles
LIU Yaohui1, XU Huiying1, CHEN Qipeng1, ZHAN Peida1,2()
Received:
2021-07-08
Online:
2022-03-15
Published:
2022-01-25
Contact:
ZHAN Peida
E-mail:pdzhan@gmail.com
CLC Number:
LIU Yaohui, XU Huiying, CHEN Qipeng, ZHAN Peida. The measurement of problem-solving competence using process data[J]. Advances in Psychological Science, 2022, 30(3): 522-535.
[1] | 成素梅, 荣小雪. (2003). 波普尔的证伪方法与非充分决定性论题. 自然辩证法研究, 19(1), 15-19+29. |
[2] | 何珺子, 王小军. (2017). 认知能力和非认知能力的教育回报率--基于国际成人能力测评项目的实证研究. 经济与管理研究, 38(5), 66-74. |
[3] |
洪永淼, 汪寿阳. (2021). 大数据、机器学习与统计学: 挑战与机遇. 计量经济学报, 1(1), 17-35.
doi: 10.12012/T03-19 |
[4] | 李一茗, 黎坚. (2020). 复杂问题解决能力的概念、影响因素及培养策略. 北京师范大学学报(社会科学版), (5), 36-48. |
[5] | 刘红云, 骆方. (2008). 多水平项目反应理论模型在测验发展中的应用. 心理学报, 40(1), 92-100. |
[6] | 孙鑫, 黎坚, 符植煜. (2018). 利用游戏log-file预测学生推理能力和数学成绩--机器学习的应用. 心理学报, 50(7), 761-770. |
[7] | 王光宏, 蒋平. (2004). 数据挖掘综述. 同济大学学报(自然科学版), 32(2), 246-252. |
[8] | 吴忭, 胡艺龄, 赵玥颖. (2019). 如何使用数据: 回归基于理解的深度学习和测评--访国际知名学习科学专家戴维·谢弗. 开放教育研究, 25(1), 4-12. |
[9] | 徐俊怡, 李中权. (2021). 基于游戏的心理测评. 心理科学进展, 29(3), 394-403. |
[10] | 袁建林, 刘红云. (2017). 核心素养测量: 理论依据与实践指向. 教育研究, 38(7), 21-36. |
[11] | 袁建林, 刘红云. (2020). 过程性测量:教育测量的新范式. 中国考试, (12), 1-9. |
[12] | 詹沛达. (2019). 计算机化多维测验中作答时间和作答精度数据的联合分析. 心理科学, 42(1), 170-178. |
[13] | 张博, 黎坚, 徐楚, 李一茗. (2014). 11-14岁超常儿童与普通儿童问题解决能力的发展比较. 心理学报, 46(12), 1823-1834. |
[14] | 张生, 任岩, 骆方. (2019). 学生高阶思维能力的评价: 复杂问题解决的测量述评. 中国特殊教育, 10, 90-96. |
[15] | 钟志贤. (2004). 促进学习者高阶思维发展的教学设计假设. 电化教育研究, (12), 21-28. |
[16] | 祖霁云, Patrick Kyllonen. (2019). 非认知能力的重要性及其测量. 中国考试, (9), 22-31. |
[17] | Agard, C., & von Davier, A. (2018). The virtual world and reality of testing: Building virtual assessments. In H. Jiao & R. Lissitz (Eds.), Technology enhanced innovative assessment: Development, modeling, and scoring from an interdisciplinary perspective (pp.1-30). Charlotte, NC: Information Age Publishing. |
[18] |
Autor, D., & Dorn, D. (2009). This job is "getting old": Measuring changes in job opportunities using occupational age structure. American Economic Review, 99(2), 45-51.
doi: 10.1257/aer.99.2.45 URL |
[19] | Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian theory of mind: Modeling joint belief-desire attribution. Proceedings of the annual meeting of the cognitive science society, 33. |
[20] | Banfield, J., & Wilkerson, B. (2014). Increasing student intrinsic motivation and self-efficacy through gamification pedagogy. Contemporary Issues in Education Research, 7(4), 291-298. |
[21] | Bergner, Y., Shu, Z., & von Davier, A. A. (2014). Visualization and confirmatory clustering of sequence data from a simulation- based assessment task. Proceedings of the 7th International Conference on Educational Data Mining (pp.177-184), London, UK. |
[22] |
Bergner, Y., & von Davier, A. (2018). Process data in NAEP: Past, present, and future. Journal of Educational and Behavioral Statistics, 44(6), 706-732. doi: 10.3102/1076998618784700
doi: 10.3102/1076998618784700 URL |
[23] |
Bezirhan, U., Davier, M. V., & Grabovsky, I. (2021). Modeling item revisit behavior: The hierarchical speed-accuracy- revisits model. Educational and Psychological Measurement, 81(2), 363-387. doi: 10.1177/0013164420950556
doi: 10.1177/0013164420950556 URL |
[24] | Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. Alexandria, VA: ASCD. |
[25] |
Carroll, K. A. & Harris, C. M. (2020). Using a repetitive instructional intervention to improve students' higher-order thinking skills. College Teaching, 69(2), 82-90.
doi: 10.1080/87567555.2020.1823310 URL |
[26] |
Chen, Y. (2020). A continuous-time dynamic choice measurement model for problem-solving process data. Psychometrika, 85(4), 1052-1075.
doi: 10.1007/s11336-020-09734-1 URL |
[27] |
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69(3), 333-353.
doi: 10.1007/BF02295640 URL |
[28] |
Dicerbo, K. E. & Kidwai, K. (2013). Detecting player goals from game log files. Vox Sanguinis, 11(3), 350-376.
doi: 10.1111/j.1423-0410.1966.tb04613.x URL |
[29] |
Diehl, M., Marsiske, M., Horgas, A., Rosenberg, A., Saczynski, J., & Willi, S. (2005). The revised observed tasks of daily living: A performance-based assessment of everyday problem solving in older adults. Journal of Applied Gerontology, 24(3), 211-230.
doi: 10.1177/0733464804273772 URL |
[30] |
Diserens, D., Schwartz, M. W., Guenin, M., & Taylor, L. A. (1986). Measuring the problem-solving ability of students and residents by microcomputer. Journal of Medical Education, 61(6), 461-466.
pmid: 3712410 |
[31] | Doerner, D. (1980). On the difficulties people have in dealing with complexity. Simulation & Gaming, 11(1), 87-106. |
[32] | Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996). Knowledge discovery and data mining: Towards a unifying framework. Shapiro, 96, 82-88. |
[33] | Fossey, W. A. (2017). An evaluation of clustering algorithms for modeling game-based assessment work processes. Unpublished doctoral dissertation, University of Maryland, College Park. URL https://drum.lib.umd.edu/bitstream/handle/1903/20363/Fossey_umd_0117E_18587.pdf?sequence=1 |
[34] |
Fox, J. P., & Marianti, S. (2016). Joint modeling of ability and differential speed using responses and response times. Multivariate Behavioral Research, 51(4), 540-553.
doi: 10.1080/00273171.2016.1171128 URL |
[35] | Frensch, P. A., & Funke, J. (2002). Thinking and problem solving. In N. Cowan (Ed.). Experimental psychology and its implications for human development: Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. Oxford, UK: Eolss Publishers. |
[36] | Funke, J. (1983). Einige bemerkungen zu problemen der problemlöseforschung oder: Ist testintelligenz doch ein prädiktor? [Some comments to problems of problem solving research, or: An intelligence test is a predictor, isn’t it?]. Diagnostica, 29, 283-302. |
[37] |
Greiff, S., Wüstenberg, S., & Avvisati, F. (2015). Computer- generated log-file analyses as a window into students' minds? A showcase study based on the PISA 2012 assessment of problem solving. Computers & Education, 91, 92-105.
doi: 10.1016/j.compedu.2015.10.018 URL |
[38] |
Greiff, S., Wüstenberg, S., & Funke, J. (2012). Dynamic problem solving: A new assessment perspective. Applied Psychological Measurement, 36(3), 189-213.
doi: 10.1177/0146621612439620 URL |
[39] |
Greiff, S., Wüstenberg, S., Holt, D. V., Goldhammer, F., & Funke, J. (2013). Computer-based assessment of complex problem solving: Concept, implementation, and application. Educational Technology Research and Development, 61(3), 407-421.
doi: 10.1007/s11423-013-9301-x URL |
[40] |
Han, Z., He, Q., & von Davier, M. (2019). Predictive feature generation and selection using process data from PISA interactive problem-solving items: An application of random forests. Front Psychology, 10, 2461.
doi: 10.3389/fpsyg.2019.02461 URL |
[41] | Hao, J., Shu, Z., & von Davier, A. (2015). Analyzing process data from game/scenario-based tasks: An edit distance approach. Journal of Educational Data Mining, 7(1), 33-50. |
[42] | Hao, J., Smith, L., Mislevy, R., von Davier, A., & Bauer, M. (2016). Taming log files from game/simulation-based assessments: Data models and data analysis tools (Research Report No. RR-16-10) Princeton, NJ: Educational Testing Service. |
[43] |
He, Q., Borgonovi, F., & Paccagnella, M. (2021). Leveraging process data to assess adults’ problem-solving skills: Using sequence mining to identify behavioral patterns across digital tasks. Computers & Education, 166(17), 104170.
doi: 10.1016/j.compedu.2021.104170 URL |
[44] | He, Q., & von Davier, M. (2016). Analyzing process data from problem-solving items with N-Grams: Insights from a computer-based large-scale assessment. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Handbook of research on technology tools for real-world skill development (pp.750-777). IGI Global. http://doi:10.4018/978-1-4666-9441-5.ch029 |
[45] |
Jeon, M., Boeck, P. D., Luo, J., Li, X., & Lu, Z. L. (2021). Modeling within-item dependencies in parallel data on test responses and brain activation. Psychometrika, 86(1), 239-271.
doi: 10.1007/s11336-020-09741-2 URL |
[46] | Jiao, H., Liao, D., & Zhan, P. (2019). Utilizing process data for cognitive diagnosis. In M. von Davier & Y. S. Lee (Eds.), Handbook of diagnostic classification models: Models and model extensions, applications, software packages (pp.421-436). Cham: Springer International Publishing. |
[47] | Jiao, H., & Lissitz, R. (2018). Technology enhanced innovative assessment: Development, modeling, and scoring from an interdisciplinary perspective. Charlotte, NC: Information Age Publishing. |
[48] | Johnson, R. B., & Christensen, L. (2014). Educational research: Quantitative, qualitative and mixed methods approaches (5th edition, pp.59-65). Thousand Oaks, CA: SAGE Publications. |
[49] |
Li, J., Zhang, B., Du, H., Zhu, Z., & Li, Y. (2015). Metacognitive planning: Development and validation of an online measure. Psychological Assessment, 27(1), 260-271.
doi: 10.1037/pas0000019 URL |
[50] |
Liu, C., & Cheng, Y. (2018). An application of the support vector machine for attribute-by-attribute classification in cognitive diagnosis. Applied Psychological Measurement, 42(1), 58-72.
doi: 10.1177/0146621617712246 pmid: 29881112 |
[51] |
Liu, H. Y., Liu, Y., & Li, M. (2018). Analysis of process data of PISA 2012 computer-based problem solving: Application of the modified multilevel mixture IRT model. Frontiers in Psychology, 9, 1372.
doi: 10.3389/fpsyg.2018.01372 URL |
[52] |
Man, K. W., & Harring, J. R. (2020). Assessing preknowledge cheating via innovative measures: A multiple-group analysis of jointly modeling item responses, response times, and visual fixation counts. Educational and Psychological Measurement, 81(3), 441-465.
doi: 10.1177/0013164420968630 URL |
[53] |
Man, K. W., Harring, J. R., Jiao, H., & Zhan, P. (2019). Joint modeling of compensatory multidimensional item responses and response times. Applied Psychological Measurement, 43(8), 639-654.
doi: 10.1177/0146621618824853 URL |
[54] |
Marshall, J. (1977). Assessment of problem-solving ability. Medical Education, 11(5), 329-334.
pmid: 904495 |
[55] | Mayer, R.E. (1990). Problem solving. In M. W. Eysenck (Ed.), The Blackwell dictionary of cognitive psychology (pp.284-288). Basil Blackwell, Oxford. |
[56] |
Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (2003). Focus article: On the structure of educational assessments. Measurement: Interdisciplinary Research and Perspectives, 1(1), 3-62.
doi: 10.1207/S15366359MEA0101_02 URL |
[57] |
Molenaar, D., Bolsinova, M., & Vermunt, J. (2018). A semi‐parametric within‐subject mixture approach to the analyses of responses and response times. British Journal of Mathematical and Statistical Psychology, 71(2), 205-228.
doi: 10.1111/bmsp.2018.71.issue-2 URL |
[58] |
Molenaar, D., Oberski, D., Vermunt, J., & de Boeck, P. (2016). Hidden Markov item response theory models for responses and response times. Multivariate Behavioral Research, 51(5), 606-626.
doi: 10.1080/00273171.2016.1192983 pmid: 27712114 |
[59] | NCES. (2014). NAEP TEL Wells sample item. National Center for Education Statistics. Retrieved February 24, 2019, from http://nces.ed.gov/nationsreportcard/tel/wells_item.aspx |
[60] |
Novak, J. D. (1961). An approach to the interpretation and measurement of problem solving ability. Science Education, 45(2), 122-131.
doi: 10.1002/(ISSN)1098-237X URL |
[61] | OECD. (2003). The PISA 2003 assessment framework: Mathematics, reading, science and problem solving knowledge and skills. Paris: OECD Publishing. |
[62] | OECD.(2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. Paris: OECD Publishing. |
[63] | OECD.(2014). PISA 2012 results: Creative problem solving: Students' skills in tackling real-life problems (Volume V). Paris: OECD Publishing. |
[64] | OECD.(2016). PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. Paris, PISA, OECD Publishing. |
[65] | OECD.(2019). PISA 2021 creative thinking framework: Third Draft[R]. Paris: OECD Publishing. |
[66] |
Omodei, M. M., & Wearing, A. J. (1995). The fire chief microworld generating program: An illustration of computer-simulated microworlds as an experimental paradigm for studying complex decision-making behavior. Behavior Research Methods Instruments & Computers, 27(3), 303-316.
doi: 10.3758/BF03200423 URL |
[67] |
Qiao, X., & Jiao, H. (2018). Data mining techniques in analyzing process data: A didactic. Frontiers in Psychology, 9, 2231.
doi: 10.3389/fpsyg.2018.02231 pmid: 30532716 |
[68] | Shu, Z., Bergner, Y., Zhu, M., Hao, J., von Davier, A. (2017). An item response theory analysis of problem-solving processes in scenario-based tasks. Psychological Test and Assessment Modeling, 59(1), 109-131. |
[69] | Shute, V., Ke, F., & Wang, L. (2017). Assessment and adaptation in games. In P. Wouters & H. van Oostendorp (Eds.), Instructional techniques to facilitate learning and motivation of serious games (pp.59-78). New York, NY: Springer. |
[70] | Shute, V., & Moore, G. (2018). Consistency and validity in game-based stealth assessment. In H. Jiao & R. Lissitz (Eds.), Technology enhanced innovative assessment: Development, modeling, and scoring from an interdisciplinary perspective (pp.31-51). Charlotte, NC: Information Age Publishing. |
[71] | Shute, V. J., & Rahimi, S. (2020). Stealth assessment of creativity in a physics video game. Computers in Human Behavior, 116, 1-13. |
[72] | Soller, A., & Stevens, R. (2007). Applications of stochastic analyses for collaborative learning and cognitive assessment. In G. R. Hancock & K. M. Samuelsen (Eds.) Advances in latent variable mixture models (pp.217-253). Information Age Publishing. |
[73] | Stanek, S. & Sabat, A. (2019). The use of IT tools in the assessment and development of leadership abilities. Problemy Zarządzania - Management Issues, 5(85), 89-110. |
[74] |
Ulitzsch, E., He, Q., Ulitzsch, V., Molter, H., Nichterlein, A., Niedermeier, R., & Pohl, S. (2021). Combining clickstream analyses and graph-modeled data clustering for identifying common response processes. Psychometrika, 86(1), 190-214.
doi: 10.1007/s11336-020-09743-0 pmid: 33544300 |
[75] |
Unal, E., & Cakir, H. (2021). The effect of technology- supported collaborative problem solving method on students’ achievement and engagement. Education and Information Technologies, 26, 4127-4150.
doi: 10.1007/s10639-021-10463-w URL |
[76] | van der Linden, W. J. (2006). A lognormal model for response times on test items. Journal of Educational and Behavioral Statistics, 31(2), 181-204. |
[77] |
van der Linden, W. J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287-308.
doi: 10.1007/s11336-006-1478-z URL |
[78] |
Wang, S. Y., Zhang, S. S., Douglas, J., & Culpepper, S. (2018). Using response times to assess learning progress: A joint model for responses and response times. Measurement: Interdisciplinary Research and Perspectives, 16(1), 45-58.
doi: 10.1080/15366367.2018.1435105 URL |
[79] | Weir, K. (2018). Designing smarter tech tools: New technology in educational gaming, health-care communication, robotics and more is benefiting from psychologists’ input. URL https://www.apa.org/monitor/2018/11/cover-tech-tools.aspx |
[80] | Zhan, P., & He, K. (2021). A longitudinal diagnostic model with hierarchical learning trajectories. Educational Measurement: Issues and Practice, 40(3), 18-30. https://doi.org/10.1111/emip.12422 |
[81] |
Zhan, P., Jiao, H., & Liao, D. (2018). Cognitive diagnosis modelling incorporating item response times. British Journal of Mathematical and Statistical Psychology, 71(2), 262-286.
doi: 10.1111/bmsp.2018.71.issue-2 URL |
[82] | Zhan, P., & Qiao, X. (2020, July 13). A diagnostic classification analysis of problem-solving competence using process data: An item expansion method. https://doi.org/10.31234/osf.io/wtyae |
[83] | Zhao, W., Shute, V., & Wang, L. (2015). Stealth assessment of problem-solving skills from gameplay. Interservice/ Industry Training, Simulation, and Education Conference (I/ITSEC), (15212), 1-11. |
[84] | Zoanetti, N. (2010). Interactive computer based assessment tasks: How problem-solving process data can inform instruction. Australasian Journal of Educational Technology, 26(5), 585-606. |
[1] | FANG Junyan, WEN Zhonglin. The endogeneity issue in longitudinal research: Sources and solutions [J]. Advances in Psychological Science, 2023, 31(4): 507-518. |
[2] | HUANG Shunsen, CHEN Haojie, LAI Xiaoxiong, DAI Xinran, WANG Yun. Multiverse-style analysis: Introduction and application [J]. Advances in Psychological Science, 2023, 31(2): 196-208. |
[3] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[4] | BAO Han-Wu-Shuang, WANG Zi-Xi, CHENG Xi, SU Zhan, YANG Ying, ZHANG Guang-Yao, WANG Bo, CAI Hua-Jian. Using word embeddings to investigate human psychology: Methods and applications [J]. Advances in Psychological Science, 0, (): 0-0. |
[5] | ZHU Xun, GU Xin. Evaluation of predictors’ relative importance: Methods and applications [J]. Advances in Psychological Science, 2023, 31(1): 145-158. |
[6] | FANG Jie, WEN Zhonglin. Moderation analysis for longitudinal data [J]. Advances in Psychological Science, 2022, 30(11): 2461-2472. |
[7] | ZHAI Hongkun, LI Qiang, WEI Xiaowei. Power analysis in structural equation modeling: Principles and methods [J]. Advances in Psychological Science, 2022, 30(9): 2117-2130. |
[8] | WANG Yang, WEN Zhonglin, WANG Huihui, GUAN Fang. The second type of mediated moderation [J]. Advances in Psychological Science, 2022, 30(9): 2131-2142. |
[9] | WEN Zhonglin, XIE Jinyan, FANG Jie, WANG Yifan. Methodological research on hypothesis test and related issues in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1667-1681. |
[10] | WEN Zhonglin, CHEN Hongxi, FANG Jie, YE Baojuan, CAI Baozhen. Research on test reliability in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1682-1691. |
[11] | WEN Zhonglin, FANG Jie, XIE Jinyan, OUYANG Jinying. Methodological research on mediation effects in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1692-1702. |
[12] | FANG Jie, WEN Zhonglin, OUYANG Jinying, CAI Baozhen. Methodological research on moderation effects in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1703-1714. |
[13] | WANG Yang, WEN Zhonglin, LI Wei, FANG Jie. Methodological research and model development on structural equation models in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1715-1733. |
[14] | LIU Yuan, DU Hongyan, FANG Jie, WEN Zhonglin. Methodology study and model development for analyzing longitudinal data in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1734-1746. |
[15] | LIN Jiao-Min, LI Ai-Mei, ZHOU Ya-Ran, HE Jun-Hong, ZHOU Lei. The prospect of gaze manipulation technology in decision-making research: Altering decision-making [J]. Advances in Psychological Science, 2022, 30(8): 1794-1803. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||