Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (12): 2161-2171.doi: 10.3724/SP.J.1042.2021.02161
• Regular Articles • Previous Articles Next Articles
MAO Huomin1, LIU Qin2, LÜ Jianxiang2, MOU Yi2()
Received:
2021-02-08
Published:
2021-10-26
Contact:
MOU Yi
E-mail:mouyi5@mail.sysu.edu.cn
CLC Number:
MAO Huomin, LIU Qin, LÜ Jianxiang, MOU Yi. The relation between non-symbolic magnitude representation and symbolic fraction representation[J]. Advances in Psychological Science, 2021, 29(12): 2161-2171.
[1] | 高瑞彦, 牛美心, 杨涛, 周新林. (2018). 4-8年级学生分数数量表征的准确性及形式. 心理发展与教育, 34(4), 443-452. https://doi.org/10.16187/j.cnki.issn1001-4918.2018.04.08 |
[2] | 高婷, 刘儒德, 刘颖, 庄鸿娟. (2016). 小学生分数比较中的加工模式: 基于反应时和口语报告的研究. 心理发展与教育, 32(4), 463-470. https://doi.org/10.16187/j.cnki.issn1001-4918.2016.04.10 |
[3] | 刘春晖, 辛自强. (2010). 分数认知的“整数偏向”研究: 理论与方法. 心理科学进展, 18(1), 65-74. |
[4] | 孙玉, 司继伟, 黄碧娟. (2016). 分数的数量表征. 心理科学进展, 24(4), 1207-1216. https://doi.org/10.3724/SP.J.1042.2016.01207 |
[5] | 辛自强, 韩玉蕾. (2014). 小学低年级儿童的等值分数概念发展及干预. 心理学报, 46(6), 791-806. https://doi.org/10.3724/SP.J.1041.2014.00791 |
[6] | 辛自强, 刘国芳. (2011). 非符号分数与整数计算能力的发展及其与数字记忆的关系. 心理科学, 34(3), 520-526. https://doi.org/CNKI:SUN:XLKX.0.2011-03-003 |
[7] | 杨伊生, 刘儒德. (2008). 儿童分数概念发展研究综述. 内蒙古师范大学学报(教育科学版), 21(6), 130-134. |
[8] | 张丽, 卢彩芳, 杨新荣. (2014). 3-6年级儿童整数数量表征与分数数量表征的关系. 心理发展与教育, 30(1), 1-8. https://doi.org/CNKI:SUN:XLFZ.0.2014-01-001 |
[9] | 张丽, 辛自强, 王琦, 李红. (2012). 整数构成对分数加工的影响. 心理发展与教育, 28(1), 31-38. https://doi.org/CNKI:SUN:XLFZ.0.2012-01-005 |
[10] |
Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C.(2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447-455. https://doi.org/10.1016/j.jecp.2012.06.004
doi: 10.1016/j.jecp.2012.06.004 URL pmid: 22832199 |
[11] |
Bailey, D. H., Siegler, R. S., & Geary, D. C.(2014). Early predictors of middle school fraction knowledge. Developmental Science, 17(5), 775-785. https://doi.org/10.1111/desc.12155
doi: 10.1111/desc.12155 URL pmid: 24576209 |
[12] |
Barner, D.(2017). Language, procedures, and the non- perceptual origin of number word meanings. Journal of Child Language, 44(3), 553-590. https://doi.org/10.1017/S0305000917000058
doi: 10.1017/S0305000917000058 URL pmid: 28376934 |
[13] |
Begolli, K. N., Booth, J. L., Holmes, C. A., & Newcombe, N. S.(2020). How many apples make a quarter? The challenge of discrete proportional formats. Journal of Experimental Child Psychology, 192, 104774. https://doi.org/10.1016/j.jecp.2019.104774
doi: 10.1016/j.jecp.2019.104774 URL |
[14] |
Bhatia, P., Delem, M., Léone, J., Boisin, E., Cheylus, A., Gardes, M.-L., & Prado, J.(2020). The ratio processing system and its role in fraction understanding: Evidence from a match-to-sample task in children and adults with and without dyscalculia. Quarterly Journal of Experimental Psychology, 73(12), 2158-2176. https://doi.org/10.1177/1747021820940631
doi: 10.1177/1747021820940631 URL |
[15] |
Boyer, T. W., & Levine, S. C.(2012). Child proportional scaling: Is 1/3=2/6=3/9=4/12?. Journal of Experimental Child Psychology, 111(3), 516-533. https://doi.org/10.1016/j.jecp.2011.11.001
doi: 10.1016/j.jecp.2011.11.001 URL pmid: 22154533 |
[16] |
Boyer, T. W., & Levine, S. C.(2015). Prompting children to reason proportionally: Processing discrete units as continuous amounts. Developmental Psychology, 51(5), 615-620. https://doi.org/10.1037/a0039010
doi: 10.1037/a0039010 URL pmid: 25751097 |
[17] |
Boyer, T. W., Levine, S. C., & Huttenlocher, J.(2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478-1490. https://doi.org/10.1037/a0013110
doi: 10.1037/a0013110 URL pmid: 18793078 |
[18] |
Braithwaite, D. W., & Siegler, R. S.(2018). Children learn spurious associations in their math textbooks: Examples from fraction arithmetic. Journal of Experimental Psychology: Learning Memory and Cognition, 44(11), 1765-1777. https://doi.org/10.1037/xlm0000546
doi: 10.1037/xlm0000546 URL |
[19] |
Braithwaite, D. W., Tian, J., & Siegler, R. S.(2018). Do children understand fraction addition?. Developmental Science, 21(4), e12601. https://doi.org/10.1111/desc.12601
doi: 10.1111/desc.2018.21.issue-4 URL |
[20] |
Chen, Q. X., & Li, J. G.(2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172. https://doi.org/10.1016/j.actpsy.2014.01.016
doi: 10.1016/j.actpsy.2014.01.016 URL |
[21] | Chu, F. W., vanMarle, K., & Geary, D. C.(2016). Predicting children's reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 775. https://doi.org/10.3389/fpsyg.2016.00775 |
[22] |
Cui, J. X., Li, L. N., Li, M. Y., Siegler, R., & Zhou, X. L.(2020). Middle temporal cortex is involved in processing fractions. Neuroscience Letters, 725, 134901. https://doi.org/10.1016/j.neulet.2020.134901
doi: 10.1016/j.neulet.2020.134901 URL |
[23] |
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L.(2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506. https://doi.org/10.1080/02643290244000239
doi: 10.1080/02643290244000239 URL |
[24] |
Denison, S., Reed, C., & Xu, F.(2013). The emergence of probabilistic reasoning in very young infants: Evidence from 4.5- and 6-month-olds. Developmental Psychology, 49(2), 243-249. https://doi.org/10.1037/a0028278
doi: 10.1037/a0028278 URL |
[25] |
Denison, S., & Xu, F.(2014). The origins of probabilistic inference in human infants. Cognition, 130(3), 335-347. https://doi.org/10.1016/j.cognition.2013.12.001
doi: 10.1016/j.cognition.2013.12.001 URL |
[26] |
de Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D.(2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55.
doi: 10.1016/j.tine.2013.06.001 URL |
[27] |
DeWolf, M., Bassok, M., & Holyoak, K. J.(2015). Conceptual structure and the procedural affordances of rational numbers: Relational reasoning with fractions and decimals. Journal of Experimental Psychology: General, 144(1), 127-150. https://doi.org/10.1037/xge0000034
doi: 10.1037/xge0000034 URL |
[28] |
Drucker, C. B., Rossa, M. A., & Brannon, E. M.(2016). Comparison of discrete ratios by rhesus macaques (Macaca mulatta). Animal Cognition, 19(1), 75-89. https://doi.org/10.1007/s10071-015-0914-9
doi: 10.1007/s10071-015-0914-9 URL |
[29] |
Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E.(2018). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1), 56-74. https://doi.org/10.1080/15248372.2018.1551218
doi: 10.1080/15248372.2018.1551218 URL |
[30] |
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S.(2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72. https://doi.org/10.1016/j.jecp.2014.01.013
doi: 10.1016/j.jecp.2014.01.013 URL pmid: 24699178 |
[31] |
Feigenson, L., Dehaene, S., & Spelke, E.(2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314. https://doi.org/10.1016/j.tics.2004.05.002
URL pmid: 15242690 |
[32] |
Fuhs, M. W., & McNeil, N. M.(2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136-148. https://doi.org/10.1111/desc.12013
doi: 10.1111/desc.2012.16.issue-1 URL |
[33] |
Gallistel, C. R.(2007). Commentary on Le Corre & Carey. Cognition, 105(2), 439-445. https://doi.org/10.1016/j.cognition.2007.01.010
doi: 10.1016/j.cognition.2007.01.010 URL |
[34] |
Gallistel, C. R., & Gelman, I. I.(2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59-65. https://doi.org/10.1016/s1364-6613(99)01424-2
URL pmid: 10652523 |
[35] |
Geary, D. C., & vanMarle, K.(2016). Young children's core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52(12), 2130-2144. https://doi.org/10.1037/dev0000214
doi: 10.1037/dev0000214 URL |
[36] |
Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M.(2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLOS ONE, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374
doi: 10.1371/journal.pone.0067374 URL |
[37] | Gilmore, C., & Cragg, L.(2018). Heterogeneity of function in numerical cognition. . In H. Avishai, & F. Wim (Eds.), The role of executive function skills in the development of children's mathematical competencies (pp. 263-286)Elsevier. https://doi.org/10.1016/B978-0-12-811529-9.00014-5 |
[38] | Goswami, U.(1989). Relational complexity and the development of analogical reasoning. Cognitive Development, 4(3), 251-268. https://doi.org/10.1016/0885-2014(89)90008-7 |
[39] |
Gouet, C., Carvajal, S., Halberda, J., & Peña, M.(2020). Training nonsymbolic proportional reasoning in children and its effects on their symbolic math abilities. Cognition, 197, 104154. https://doi.org/10.1016/j.cognition.2019.104154
doi: 10.1016/j.cognition.2019.104154 URL |
[40] |
Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D.(2015). General and math-specific predictors of sixth-graders' knowledge of fractions. Cognitive Development, 35, 34-49. https://doi.org/10.1016/j.cogdev.2015.02.001
doi: 10.1016/j.cogdev.2015.02.001 URL |
[41] |
Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G.(2019). Surpassing the subitizing threshold: Appetitive-aversive conditioning improves discrimination of numerosities in honeybees. The Journal of Experimental Biology, 222(Pt 19), jeb205658. https://doi.org/10.1242/jeb.205658
doi: 10.1242/jeb.205658 URL |
[42] |
Hyde, D. C., Boas, D. A., Blair, C., & Carey, S.(2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. NeuroImage, 53(2), 647- 652. https://doi:10.1016/j.neuroimage.2010.06.030
doi: https://doi:10.1016/j.neuroimage.2010.06.030 URL |
[43] |
Hyde, D. C., Khanum, S., & Spelke, E. S.(2014). Brief non- symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107. https://doi.org/10.1016/j.cognition.2013.12.007
doi: 10.1016/j.cognition.2013.12.007 URL |
[44] | Hyde, D. C., & Mou, Y.(2015). Neural and behavioral signatures core numerical abilities and early numerical development. In D. B. Berch, D. C. Geary, & K. Mann Koepke (Eds.), Mathematical cognition and learning, (Vol.2, pp. 51-77)Elsevier. https://doi.org/10.1016/B978-0-12-801871-2.00003-4 |
[45] | Hyde, D. C., Simon, C. E., Berteletti, I., & Mou, Y.(2016). The relationship between non-verbal systems of number and counting development: A neural signatures approach. Developmental Science, 20(6), https://doi.org/10.1111/desc.12464 |
[46] |
Hyde, D. C., & Spelke, E. S.(2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360-371. https://doi.org/10.1111/j.1467-7687.2010.00987.
doi: 10.1111/desc.2011.14.issue-2 URL |
[47] |
Jacob, S. N., & Nieder, A.(2009a). Notation-independent representation of fractions in the human parietal cortex. The Journal of Neuroscience, 29(14), 4652-4657. https://doi.org/10.1523/JNEUROSCI.0651-09.2009
doi: 10.1523/JNEUROSCI.0651-09.2009 URL |
[48] |
Jacob, S. N., & Nieder, A.(2009b). Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience, 30(7), 1432-1442. https://doi.org/10.1111/j.1460-9568.2009.06932.
doi: 10.1111/ejn.2009.30.issue-7 URL |
[49] |
Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D.(2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45-58. https://doi.org/10.1016/j.jecp.2013.02.001
doi: 10.1016/j.jecp.2013.02.001 URL pmid: 23506808 |
[50] |
Jordan, N. C., Resnick, I., Rodrigues, J., Hansen, N., & Dyson, N.(2017). Delaware longitudinal study of fraction learning: implications for helping children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 621- 630. https://doi.org/10.1177/0022219416662033
doi: 10.1177/0022219416662033 URL pmid: 27506551 |
[51] | Jordan, N. C., Rodrigues, J., Hansen, N., & Resnick, I.(2017). Fraction development in children: Importance of building numerical magnitude understanding. In D. C. Geary, D. B. Berch, R. J. Ochsendorf, K. M. Koepke, In Mathematical Cognition and Learning, Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts (pp.125- 140). Elsevier. https://doi.org/10.1016/B978-0-12-801871-2.00003-4. |
[52] |
Kalra, P. B., Binzak, J. V., Matthews, P. G., & Hubbard, E. M.(2020). Symbolic fractions elicit an analog magnitude representation in school-age children. Journal of Experimental Child Psychology, 195, 104844. https://doi.org/10.1016/j.jecp.2020.104844
doi: 10.1016/j.jecp.2020.104844 URL |
[53] | Keller, L., & Libertus, M.(2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6, 685. https://doi.org/10.3389/fpsyg.2015.00685 |
[54] |
LeFevre, J.-A., Fast, L., Skwarchuk, S.-L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M.(2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753-1767. https://doi.org/10.1111/j.1467-8624.2010.01508.
doi: 10.1111/cdev.2010.81.issue-6 URL |
[55] |
Leibovich, T., & Ansari, D.(2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 70(1), 12-23. https://doi.org/10.1037/cep0000070
doi: 10.1037/cep0000070 URL |
[56] |
Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J.(2016). The precision of mapping between number words and the approximate number system predicts children's formal math abilities. Journal of Experimental Child Psychology, 150, 207-226. https://doi.org/10.1016/j.jecp.2016.06.003
doi: S0022-0965(16)30052-2 URL pmid: 27348475 |
[57] |
Lyons, I. M., Bugden, S., Zheng, S., de Jesus, S.,& Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 54(3), 440-457. https://doi.org/10.1037/dev0000445
doi: 10.1037/dev0000445 URL pmid: 29154653 |
[58] |
Matejko, A. A., & Ansari, D.(2016). Trajectories of symbolic and nonsymbolic magnitude processing in the first year of formal schooling. PlOS ONE, 11(3), e0149863. https://doi.org/10.1371/journal.pone.0149863
doi: 10.1371/journal.pone.0149863 URL |
[59] |
Matthews, P. G., & Chesney, D. L.(2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, 78, 28-56. https://doi.org/10.1016/j.cogpsych.2015.01.006
doi: 10.1016/j.cogpsych.2015.01.006 URL |
[60] |
Matthews, P. G., Lewis, M. R., & Hubbard, E. M.(2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191-202. https://doi.org/10.1177/0956797615617799
doi: 10.1177/0956797615617799 URL |
[61] |
McCrink, K., & Wynn, K.(2007). Ratio abstraction by 6- month-old infants. Psychological Science, 18(8), 740-745. https://doi.org/10.1111/j.1467-9280.2007.01969.
URL pmid: 17680947 |
[62] |
McCrink, K., & Wynn, K.(2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400- 408. https://doi.org/10.1016/j.jecp.2009.01.013
doi: 10.1016/j.jecp.2009.01.013 URL pmid: 19285683 |
[63] |
Mock, J., Huber, S., Bloechle, J., Bahnmueller, J., Moeller, K., & Klein, E.(2019). Processing symbolic and non- symbolic proportions: Domain-specific numerical and domain-general processes in intraparietal cortex. Brain Research, 1714, 133-146. https://doi.org/10.1016/j.brainres.2019.02.029
doi: 10.1016/j.brainres.2019.02.029 URL |
[64] |
Mock, J., Huber, S., Bloechle, J., Dietrich, J. F., Bahnmueller, J., Rennig, J., ... Moeller, K.(2018). Magnitude processing of symbolic and non-symbolic proportions: An fMRI study. Behavioral and Brain Functions, 14(1), 9. https://doi.org/10.1186/s12993-018-0141-z
doi: 10.1186/s12993-018-0141-z URL |
[65] |
Mou, Y., Berteletti, I., & Hyde, D. C.(2018). What counts in preschool number knowledge? A Bayes factor analytic approach toward theoretical model development. Journal of Experimental Child Psychology, 166, 116-133. https://doi.org/10.1016/j.jecp.2017.07.016
doi: S0022-0965(16)30265-X URL pmid: 28888192 |
[66] |
Mou, Y., Li, Y. R., Hoard, M. K., Nugent, L. D., Chu, F. W., Rouder, J. N., & Geary, D. C.(2016). Developmental foundations of children's fraction magnitude knowledge. Cognitive Development, 39, 141-153. https://doi.org/10.1016/j.cogdev.2016.05.002
URL pmid: 27773965 |
[67] |
Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A.(2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67-84. https://doi: 10.1080/15248372.2014.996289
doi: 10.1080/15248372.2014.996289 URL |
[68] |
Mundy, E., & Gilmore, C. K.(2009). Children's mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490-502. https://doi.org/10.1016/j.jecp.2009.02.003
doi: 10.1016/j.jecp.2009.02.003 URL |
[69] |
Negen, J., & Sarnecka, B. W.(2015). Is there really a link between exact-number knowledge and approximate number system acuity in young children?. The British Journal of Developmental Psychology, 33(1), 92-105. https://doi.org/10.1111/bjdp.12071
doi: 10.1111/bjdp.2015.33.issue-1 URL |
[70] |
Nieder, A.(2016). The neuronal code for number. Nature Reviews Neuroscience, 17(6), 366-382. https://doi.org/10.1038/nrn.2016.40
doi: 10.1038/nrn.2016.40 URL |
[71] |
Ni, Y. J., & Zhou, Y.-D.(2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3
doi: 10.1207/s15326985ep4001_3 URL |
[72] | Park, Y., Binzak, J., Toomarian, E., Kalra, P., Matthews, P. G., & Hubbard, E.(2018, July) Developmental changes in children's processing of nonsymbolic ratio magnitudes: A cross-sectional fMRI study. Paper presented to 40th Annual Meetings of Cognitive Science Society, Madison, WI, USA. |
[73] | Park, Y., Viegut, A. A., & Matthews, P. G.(2020). More than the sum of its parts: Exploring the development of ratio magnitude versus simple magnitude perception. Developmental Science, e13043. https://doi.org/10.1111/ DESC.13043 |
[74] |
Piazza, M.(2010). Neurocognitive start-up tools for symbolic number representations. Trends in cognitive Sciences, 14(12), 542-551. https://doi.org/10.1016/j.tics.2010.09.008
doi: 10.1016/j.tics.2010.09.008 URL |
[75] |
Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B.(2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology, 67(2), 271-280. https://doi.org/10.1080/17470218.2013.803581
doi: 10.1080/17470218.2013.803581 URL |
[76] |
Sasanguie, D., de Smedt, B., Defever, E., & Reynvoet, B..(2012). Association between basic numerical abilities and mathematics achievement. The British Journal of Developmental Psychology, 30(Pt 2), 344-357. https://doi.org/10.1111/j.2044-835X.2011.02048.
doi: 10.1111/bjdp.2012.30.issue-2 URL |
[77] | Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & de Smedt, B.(2017). Associations of non- symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), https://doi.org/10.1111/desc.12372 |
[78] |
Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. L.(2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Sciences, 17(1), 13-19. https://doi.org/10.1016/j.tics.2012.11.004
doi: 10.1016/j.tics.2012.11.004 URL pmid: 23219805 |
[79] |
Siegler, R. S., & Pyke, A. A.(2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994-2004. https://doi.org/10.1037/a0031200
doi: 10.1037/a0031200 URL pmid: 23244401 |
[80] |
Siegler, R. S., Thompson, C. A., & Schneider, M.(2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273-296. https://doi.org/10.1016/j.cogpsych.2011.03.001
doi: 10.1016/j.cogpsych.2011.03.001 URL pmid: 21569877 |
[81] | Spelke, E. S.(2011). Natural number and natural geometry. In S. Dehaene, & E. M. Brannon (Eds.), Space, time and number in the brain (pp. 287-317)Elsevier. https://doi.org/10.1016/B978-0-12-385948-8.00018-9 |
[82] |
Spelke, E. S.(2017). Core knowledge, language, and number. Language Learning and Development, 13(2), 147-170. https://doi.org/10.1080/15475441.2016.1263572
doi: 10.1080/15475441.2016.1263572 URL |
[83] | Starr, A., & Brannon, E. M.(2015). Evolutionary and developmental continuities in numerical cognition. In D. C. Geary, D. B. Berch, & K. M. Koepke (Eds.), Mathematical Cognition and Learning (Vol.1, pp. 123-144). Elsevier. https://doi.org/10.1016/B978-0-12-420133-0.00005-3 |
[84] |
Starr, A., Tomlinson, R. C., & Brannon, E. M.(2018). The acuity and manipulability of the ANS have separable influences on preschoolers' symbolic math achievement. Frontiers in Psychology, 9, 2554. https://doi.org/10.3389/fpsyg.2018.02554
doi: 10.3389/fpsyg.2018.02554 URL |
[85] |
Suárez-Pellicioni, M., & Booth, J. R.(2018). Fluency in symbolic arithmetic refines the approximate number system in parietal cortex. Human Brain Mapping, 39(10), 3956-3971. https://doi.org/10.1002/hbm.24223
doi: 10.1002/hbm.24223 URL pmid: 30024084 |
[86] |
Szkudlarek, E., & Brannon, E. M.(2018). Approximate arithmetic training improves informal math performance in low achieving preschoolers. Frontiers in Psychology, 9, 606. https://doi.org/10.3389/fpsyg.2018.00606
doi: 10.3389/fpsyg.2018.00606 URL pmid: 29867624 |
[87] |
Vallentin, D., & Nieder, A.(2008). Behavioral and prefrontal representation of spatial proportions in the monkey. Current Biology, 18(18), 1420-1425. https://doi.org/10.1016/j.cub.2008.08.042
doi: 10.1016/j.cub.2008.08.042 URL pmid: 18804374 |
[88] |
vanMarle, K., Chu, F. W., Li, Y. R., & Geary, D. C.(2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4), 492-505. https://doi.org/10.1111/desc.12143
doi: 10.1111/desc.2014.17.issue-4 URL |
[89] |
vanMarle, K., Mou, Y., & Seok, J. H.(2016). Analog magnitudes support large number ordinal judgments in infancy. Perception, 45(1-2), 32-43. https://doi.org/10.1177/0301006615602630
doi: 10.1177/0301006616671273 URL |
[90] | Wang, J. J., Halberda, J., & Feigenson, L.(2020). Emergence of the link between the approximate number system and symbolic math ability. Child Development, Advance online publication. https://doi.org/10.1111/cdev.13454 |
[91] | Xu, F., & Garcia, V.(2008). Intuitive statistics by 8-month- old infants. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5012-5015. https://doi.org/10.1073/pnas.0704450105 |
[92] |
Zhang, L., Wang, Q., Lin, C., Ding, C., & Zhou, X.(2013). An ERP study of the processing of common and decimal fractions: How different they are. PLOS ONE, 8(7), e69487. https://doi.org/10.1371/journal.pone.0069487
doi: 10.1371/journal.pone.0069487 URL |
[1] | ZHANG Libin, ZHANG Qiwen, WANG Chenxu, ZHANG Yunyun. The co-varying relationship between children and adolescents’ peer networks and bullying-related behaviors from the perspective of social networks [J]. Advances in Psychological Science, 2023, 31(3): 416-427. |
[2] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[3] | YIN Rong. Comparative studies of mind reading: Similarities and differences in theory of mind between non-human primates and humans and corresponding explanations [J]. Advances in Psychological Science, 2022, 30(11): 2540-2557. |
[4] | HOU Wenwen, SU Yi (ESTHER). The influence of atypical attention and memory on vocabulary delay in children with autism spectrum disorder [J]. Advances in Psychological Science, 2022, 30(11): 2558-2569. |
[5] | ZHENG Zhiwei, XIAO Fengqiu, SHAO Qi, ZHAO Xiaofeng, HUANG Yan, LI Juan. Neural mechanisms of successful episodic memory aging [J]. Advances in Psychological Science, 2022, 30(10): 2254-2268. |
[6] | JIANG Danying, YANG Yunmei, LI Jing. Children's distributive justice in group context [J]. Advances in Psychological Science, 2022, 30(9): 2004-2019. |
[7] | DU Yufei, OUYANG Huiyue, YU Lin. The relationship between grandparenting and depression in Eastern and Western cultures: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(9): 1981-1992. |
[8] | CHEN Bizhong, SUN Xiaojun. Cross-temporal changes of college students' time management disposition in the mainland of China during 1999~2020 [J]. Advances in Psychological Science, 2022, 30(9): 1968-1980. |
[9] | JIANG Jiali, LI Liyan, LI Ziying, LEI Xiuya, MENG Zelong. Predictors of continuation and cessation of non-suicidal self-injury in adolescents [J]. Advances in Psychological Science, 2022, 30(7): 1536-1545. |
[10] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
[11] | CAO Xinyun, TONG Yu, WANG Fuxing, LI Hui. Video chat and child development [J]. Advances in Psychological Science, 2022, 30(6): 1282-1293. |
[12] | LIU Haidan, LI Minyi. Associations between home literacy environment and children’s receptive vocabulary: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(3): 556-579. |
[13] | ZHAO Xinxian, YANG Xiaohu. Prosody perception in older adults [J]. Advances in Psychological Science, 2022, 30(3): 613-621. |
[14] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
[15] | CHEN Jing, RAN Guangming, ZHANG Qi, NIU Xiang. The association between peer victimization and aggressive behavior in children and adolescents: A three-level meta-analysis [J]. Advances in Psychological Science, 2022, 30(2): 275-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||