Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (3): 381-393.doi: 10.3724/SP.J.1042.2021.00381
• ·Research Method· • Next Articles
WANG Jun1, SONG Qiongya1, XU Yuepei2,3, JIA Binbin4, LU Chunlei5, CHEN Xi6, DAI Zixu7, HUANG Zhiyue8, LI Zhenjiang9, LIN Jingxi10, LUO Wanying11, SHI Sainan12, ZHANG Yingying13, ZANG Yufeng14, ZUO Xi-Nian15, HU Chuanpeng16()
Received:
2020-07-14
Online:
2021-03-15
Published:
2021-01-26
Contact:
HU Chuanpeng
E-mail:hcp4715@hotmail.com
CLC Number:
WANG Jun, SONG Qiongya, XU Yuepei, JIA Binbin, LU Chunlei, CHEN Xi, DAI Zixu, HUANG Zhiyue, LI Zhenjiang, LIN Jingxi, LUO Wanying, SHI Sainan, ZHANG Yingying, ZANG Yufeng, ZUO Xi-Nian, HU Chuanpeng. Interpreting nonsignificant results: A quantitative investigation based on 500 Chinese psychological research[J]. Advances in Psychological Science, 2021, 29(3): 381-393.
类别 | 分类标准 | 示例 |
---|---|---|
基于频率主义的正确解读 | 根据NHST的逻辑对不显著结果进行解读, 即仅说明其结果无法拒绝零假设, 或无法支持备择假设。 | 结果表明没有证据支持干预组和控制组有(显著)差异。 |
基于频率主义的错误解读 ——推广至总体 | 将不显著结果解读为支持了研究中样本所在总体水平上的零假设。 | 结果表明干预没有效果。 |
基于频率主义的错误解读 ——基于当前样本 | 将不显著结果解读为支持了研究中样本中的零假设。 | 结果表明干预组和控制组之间没有 差异。 |
基于贝叶斯因子的解读 | 利用贝叶斯因子支持零假设而非备择假设。 | BF01 > 10, 表明有强的证据支持零假设。 |
难以判断 | 由于阴性陈述的语言措辞, 对其类别难以做出明确判断。 | 除恐惧情绪外, 基本表情的强度越大, 被试对表情的识别越好。 |
类别 | 分类标准 | 示例 |
---|---|---|
基于频率主义的正确解读 | 根据NHST的逻辑对不显著结果进行解读, 即仅说明其结果无法拒绝零假设, 或无法支持备择假设。 | 结果表明没有证据支持干预组和控制组有(显著)差异。 |
基于频率主义的错误解读 ——推广至总体 | 将不显著结果解读为支持了研究中样本所在总体水平上的零假设。 | 结果表明干预没有效果。 |
基于频率主义的错误解读 ——基于当前样本 | 将不显著结果解读为支持了研究中样本中的零假设。 | 结果表明干预组和控制组之间没有 差异。 |
基于贝叶斯因子的解读 | 利用贝叶斯因子支持零假设而非备择假设。 | BF01 > 10, 表明有强的证据支持零假设。 |
难以判断 | 由于阴性陈述的语言措辞, 对其类别难以做出明确判断。 | 除恐惧情绪外, 基本表情的强度越大, 被试对表情的识别越好。 |
[1] | 程开明, 李泗娥. (2019). 科学研究中的P值: 误解、操纵及改进. 数量经济技术经济研究, (7), 117-136. doi: 10.13653/j.cnki.jqte.2019.07.007 |
[2] | 崔诣晨, 王沛, 崔亚娟. (2019). 知觉冲突印象形成的认知控制策略: 以刻板化信息与反刻板化信息为例. 心理学报, 51(10), 1157-1170. doi: 10.3724/SP.J.1041.2019.01157 |
[3] | 郝丽, 刘乐平, 申亚飞. (2016). 统计显著性: 一个被误读的P值. 统计与信息论坛, 31(12), 3-10. |
[4] | 胡传鹏, 孔祥祯, Eric-Jan, Wagenmakers, Alexander, Ly, 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965. doi: 10.3724/SP.J.1042.2018. 00951 |
[5] |
胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题: 从危机到契机. 心理科学进展, 24(9), 1504-1518. doi: 10.3724/SP.J.1042.2016. 01504
doi: 10.3724/SP.J.1042.2016.01504 URL |
[6] | 陆春雷, 王珺, 宋琼雅, 贾彬彬, 许岳培, 胡传鹏. (2020). 从不显著结果中提取信息的方法: 原理及其实现. 2020-10-21取自 www.chinaxiv.org/abs/202001.00113 |
[7] | 骆大森. (2017). 心理学可重复性危机两种根源的评估. 心理与行为研究, 15(5), 577-586. |
[8] | 吕小康. (2012). Fisher与Neyman-Pearson的分歧与心理统计中的假设检验争议. 心理科学, 35(6), 1502-1506. doi: 10.16719/j.cnki.1671-6981.2012.06.042 |
[9] | 吕小康. (2014). 从工具到范式: 假设检验争议的知识社会学反思. 社会, 34(6), 216-236. doi: 10.15992/j.cnki.31- 1123/c.2014.06.011 |
[10] | 卢淑华. (2009). 社会统计学(第四版). 北京: 北京大学出版社. |
[11] | 谢书书, 张积家, 朱君. (2019). 颜色范畴知觉效应发生在大脑两半球: 来自纳西族和汉族的证据. 心理学报, 51(11), 1229-1243. doi: 10.3724/SP.J.1041.2019.01229 |
[12] | 张厚粲, 徐建平. (2015). 现代心理与教育统计学(第四版). 北京: 北京师范大学出版社. |
[13] |
仲晓波. (2016). 关于假设检验的争议: 问题的澄清与解决. 心理科学进展, 24(10), 1670-1676. doi: 10.3724/SP.J. 1042.2016.01670
doi: 10.3724/SP.J.1042.2016.01670 URL |
[14] |
Aczel, B., Palfi, B., & Szaszi, B. (2017). Estimating the evidential value of significant results in psychological science. PloS One, 12(8), e0182651. doi: 10.1371/journal. pone.0182651
URL pmid: 28859154 |
[15] |
Aczel, B., Palfi, B., Szollosi, A., Kovacs, M., Szaszi, B., Szecsi, P., … Wagenmakers, E. -J. (2018). Quantifying support for the null hypothesis in psychology: An empirical investigation. Advances in Methods and Practices in Psychological Science, 1(3), 357-366. doi: 10.1177/ 251524591877374
doi: 10.1177/2515245918773742 URL |
[16] |
Algermissen, J., & Mehler, D. M. (2018). May the power be with you: Are there highly powered studies in neuroscience, and how can we get more of them? Journal of Neurophysiology, 119(6), 2114-2117. doi: 10.1152/jn.00765. 2017
doi: 10.1152/jn.00765.2017 URL pmid: 29465324 |
[17] | American Psychological Association. (2010). Publication Manual of the American Psychological Association. Washington DC: American Psychological Association. |
[18] |
Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up against statistical significance. Nature, 567, 305-307. doi: 10.1038/d41586-019-00857-9
doi: 10.1038/d41586-019-00857-9 URL pmid: 30894741 |
[19] | Baker, M. (2016). 1, 500 scientists lift the lid on reproducibility. Nature, 553, 452-454. doi: 10.1038/533452a |
[20] |
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafo, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365-376. doi: 10.1038/nrn3475
URL pmid: 23571845 |
[21] |
Cassidy, S. A., Dimova, R., Giguère, B., Spence, J. R., & Stanley, D. J. (2019). Failing grade: 89% of introduction- to-psychology textbooks that define or explain statistical significance do so incorrectly. Advances in Methods and Practices in Psychological Science, 2(3), 233-239. doi: 10. 1177/2515245919858072
doi: 10.1177/2515245919858072 URL |
[22] |
Chen, X., Lu, B., & Yan, C. -G. (2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Human Brain Mapping, 39(1), 300-318. doi: 10.1101/128645
doi: 10.1002/hbm.23843 URL pmid: 29024299 |
[23] |
Chuard, P. J., Vrtílek, M., Head, M. L., & Jennions, M. D. (2019). Evidence that nonsignificant results are sometimes preferred: Reverse P-hacking or selective reporting? PLoS Biology, 17(1), e3000127. doi: 10.1371/journal.pbio.3000127
doi: 10.1371/journal.pbio.3000127 URL pmid: 30682013 |
[24] |
Dienes, Z. (2014). Using Bayes to get the most out of non- significant results. Frontiers in Psychology, 5, 781. doi: 10.3389/fpsyg.2014.00781
doi: 10.3389/fpsyg.2014.00781 URL pmid: 25120503 |
[25] |
Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 78-89. doi: 10.1016/j.jmp.2015.10.003
doi: 10.1016/j.jmp.2015.10.003 URL |
[26] |
Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70(3), 193-242. doi: 10.1037/h0044139
doi: 10.1037/h0044139 URL |
[27] |
Fanelli, D. (2012). Negative results are disappearing from most disciplines and countries. Scientometrics, 90(3), 891-904. doi: 10.1007/s11192-011-0494-7
doi: 10.1007/s11192-011-0494-7 URL |
[28] |
Fiedler, K., Kutzner, F., & Krueger, J. I. (2012). The long way from α-error control to validity proper. Perspectives on Psychological Science, 7(6), 661-669. doi: 10.1177/ 1745691612462587
URL pmid: 26168128 |
[29] |
Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378-382. doi: 10.1037/h0031619
doi: 10.1037/h0031619 URL |
[30] |
Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer. Science, 345(6203), 1502-1505. doi: 10.1126/science. 1255484
doi: 10.1126/science.1255484 URL pmid: 25170047 |
[31] | Gamer, M., Lemon, J., & Singh, I. F. P.(2019). irr: Various coefficients of interrater reliability and agreement (R package version 0.84.1) [Computer software]. Retrieved from https://CRAN.R-project.org/package=irr. |
[32] | Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: What you always wanted to know about significance testing but were afraid to ask. SAGE Publications, Inc. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences(pp. 392-410). Thousand Oaks, CA: SAGE Publications, Inc. |
[33] |
Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. European Journal of Epidemiology, 31(4), 337-350. doi: 10.1007/s10654-016-0149-3
URL pmid: 27209009 |
[34] | Gronau, Q. F., Ly, A., & Wagenmakers, E. -J. (2019). Informed bayesian t-tests. The American Statistician, 1-14. doi: 10. 1080/00031305.2018.1562983 |
[35] |
Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-hacking in science. PLoS Biology, 13(3). doi: 10.1371/journal.pbio. 1002106
URL pmid: 25761097 |
[36] |
Hoekstra, R., Monden, R., van Ravenzwaaij, D., & Wagenmakers, E. -J. (2018). Bayesian reanalysis of null results reported in medicine: Strong yet variable evidence for the absence of treatment effects. PloS One, 13(4), e0195474. doi: 10.1371/journal.pone.0195474
doi: 10.1371/journal.pone.0196682 URL pmid: 29709011 |
[37] |
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124. doi: 10. 1371/journal.pmed.0020124
URL pmid: 16060722 |
[38] | Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press. |
[39] | Jia, X. -Z., Zhao, N., Barton, B., Burciu, R., Carriere, N., Cerasa, A., … Zang, Y. -F. (2018). Small effect size leads to reproducibility failure in resting-state fMRI studies. Retrieved October 21, 2020, from https://www.biorxiv. org/content/10.1101/285171v1 |
[40] | Kendall, M. G., & Gibbons, J. D. (1990). Rank correlation methods (5th ed.). London, England: Edward Arnold. |
[41] |
Klein, R. A., Ratliff, K. A., Vianello, M., Adams Jr, R. B., Bahník, Š., Bernstein, M. J., … Nosek, B. A. (2014). Investigating variation in replicability: A “many labs” replication project. Social Psychology, 45(3), 142-152. doi: 10.1027/1864-9335/a000178
doi: 10.1027/1864-9335/a000178 URL |
[42] |
Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6(3), 299-312. doi: 10.1177/ 1745691611406925
doi: 10.1177/1745691611406925 URL |
[43] |
Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin and Review, 25(1), 178-206. doi: 10.3758/ s13423-016-1221-4
URL pmid: 28176294 |
[44] |
Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size. PloS One, 9(9), e105825. doi: 10.1371/journal.pone.0105825
doi: 10.1371/journal.pone.0105825 URL pmid: 25192357 |
[45] | Lakens, D., McLatchie, N., Isager, P. M., Scheel, A. M., & Dienes, Z. (2018). Improving inferences about null effects with Bayes factors and equivalence tests. The Journals of Gerontology: Series B. Advance online publication. http:// doi/10.1093/geronb/gby065 |
[46] |
Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological research: A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259-269. doi: 10.1177/2515245918770963
doi: 10.1177/2515245918770963 URL |
[47] |
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. doi: 10.2307/2529310
URL pmid: 843571 |
[48] | Lee, M. D., & Wagenmakers, E. -J.(2014) Bayesian cognitive modeling: A practical course Cambridge, England: Cambridge University Press A practical course . Cambridge, England: Cambridge University Press. |
[49] | Ly, A., Raj, A., Etz, A., Marsman, M., Gronau, Q. F., & Wagenmakers, E. -J. (2018). Bayesian reanalyses from summary statistics: A guide for academic consumers. Advances in Methods and Practices in Psychological Science, 1(3), 367-374.doi: 10.1177/2515245918779348 |
[50] | Ly, A., Verhagen, J., & Wagenmakers, E. -J. (2016a). An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72, 43-55. doi: 10.1016/j.jmp. 2016.01.003 |
[51] | Ly, A., Verhagen, J., & Wagenmakers, E. -J. (2016b). Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19-32. doi: 10.1016/j.jmp. 2015.06.004 |
[52] | Lyu, X. -K., Xu, Y. P., Zhao, X. -F., Zuo, X. -N., & Hu, C. -P. (2020). Beyond psychology: The prevalence of misinterpretation of p-value and confidence intervals across different fields. Journal of Pacific Rim Psychology, 14, e6. doi: 10.1017/prp.2019.28 |
[53] |
Lyu, Z. Y., Peng, K. P., & Hu, C. -P. (2018). P-value, confidence intervals and statistical inference: A new dataset of misinterpretation. Frontiers in Psychology, 9, 868. doi: 10.3389/fpsyg.2018.00868
URL pmid: 29937743 |
[54] | McElreath, R. (2018). Statistical rethinking: A Bayesian course with examples in R and Stan. Virginia Beach, VA: Chapman and Hall/CRC Press. |
[55] | Meehl, P.E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34(2), 103-115. doi: 10.1086/288135 |
[56] |
Miller, G. (2011). ESP paper rekindles discussion about statistics. Science, 331(6015), 272-273. doi: 10.1126/ science.331.6015.272
URL pmid: 21252321 |
[57] | Morey, R. D., Rouder, J. N., & Jamil, T. (2015). BayesFactor: Computation of Bayes factors for common designs (Version 0.9.12-2) [Computer software]. Retrieved from https://cran. r-project.org/web/packages/BayesFactor/BayesFactor. pdf. |
[58] |
Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5(2), 241-301. doi: 10.1037/1082-989X.5.2.241
URL pmid: 10937333 |
[59] | Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), 943-950. doi: 10.1126/science.aac4716 |
[60] |
Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113(3), 553. doi: 10.1037/0033-2909.113.3.553
URL pmid: 8316613 |
[61] |
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16(2), 225-237. doi: 10.3758/PBR.16.2.225
URL pmid: 19293088 |
[62] | Schäfer, T., & Schwarz, M. (2019). The meaningfulness of effect sizes in psychological research: Differences between sub-disciplines and the impact of potential biases. Frontiers in Psychology, 10, 813. doi: 10.3389/fpsyg.2019.00813 |
[63] | Schönbrodt, F. (2015). Grades of evidence - A cheat sheet [Web log post]. Retrieved from http://www.nicebread.de/ grades-of-evidence-a-cheat-sheet/. |
[64] | Signorell, A. (2017). DescTools: Tools for descriptive statistics (Version 0.99.22) [Computer software]. Retrieved from . https://cran.r-project.org/web/packages/DescTools/index.html. |
[65] | Stussi, Y., Pourtois, G., & Sander, D. (2018). Enhanced pavlovian aversive conditioning to positive emotional stimuli. Journal of Experimental Psychology: General, 147(6), 905-923. doi: 10.1037/xge0000424 |
[66] | van Doorn, J., Ly, A., Marsman, M., & Wagenmakers, E. -J. (2018). Bayesian inference for Kendall’s rank correlation coefficient. The American Statistician, 72(4), 303-308. doi: 10.1080/00031305.2016.1264998 |
[67] |
Wagenmakers, E. -J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example Applications with JASP. Psychonomic Bulletin and Review, 25(1), 58-76. doi: 10. 3758/s13423-017-1323-7
URL pmid: 28685272 |
[68] |
Wagenmakers, E. -J., Wetzels, R., Borsboom, D., & van der Maas, H. L. J. (2011). Why psychologists must change the way they analyze their data: the case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100(3), 426-432. doi: 10.1037/a0022790
URL pmid: 21280965 |
[69] | Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129-133. doi: 10.1080/ 00031305.2016.1154108 |
[70] |
Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. -J. (2011). Statistical evidence in experimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291-298. doi: 10.1177/1745691611406923
URL pmid: 26168519 |
[71] | Ziliak, S. T., & McCloskey, D. N.(2008). The cult of statistical significance. Ann Arbor: University of Michigan Press. |
[1] | FANG Junyan, WEN Zhonglin. The endogeneity issue in longitudinal research: Sources and solutions [J]. Advances in Psychological Science, 2023, 31(4): 507-518. |
[2] | HUANG Shunsen, CHEN Haojie, LAI Xiaoxiong, DAI Xinran, WANG Yun. Multiverse-style analysis: Introduction and application [J]. Advances in Psychological Science, 2023, 31(2): 196-208. |
[3] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[4] | BAO Han-Wu-Shuang, WANG Zi-Xi, CHENG Xi, SU Zhan, YANG Ying, ZHANG Guang-Yao, WANG Bo, CAI Hua-Jian. Using word embeddings to investigate human psychology: Methods and applications [J]. Advances in Psychological Science, 0, (): 0-0. |
[5] | ZHU Xun, GU Xin. Evaluation of predictors’ relative importance: Methods and applications [J]. Advances in Psychological Science, 2023, 31(1): 145-158. |
[6] | FANG Jie, WEN Zhonglin. Moderation analysis for longitudinal data [J]. Advances in Psychological Science, 2022, 30(11): 2461-2472. |
[7] | ZHAI Hongkun, LI Qiang, WEI Xiaowei. Power analysis in structural equation modeling: Principles and methods [J]. Advances in Psychological Science, 2022, 30(9): 2117-2130. |
[8] | WANG Yang, WEN Zhonglin, WANG Huihui, GUAN Fang. The second type of mediated moderation [J]. Advances in Psychological Science, 2022, 30(9): 2131-2142. |
[9] | WEN Zhonglin, XIE Jinyan, FANG Jie, WANG Yifan. Methodological research on hypothesis test and related issues in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1667-1681. |
[10] | WEN Zhonglin, CHEN Hongxi, FANG Jie, YE Baojuan, CAI Baozhen. Research on test reliability in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1682-1691. |
[11] | WEN Zhonglin, FANG Jie, XIE Jinyan, OUYANG Jinying. Methodological research on mediation effects in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1692-1702. |
[12] | FANG Jie, WEN Zhonglin, OUYANG Jinying, CAI Baozhen. Methodological research on moderation effects in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1703-1714. |
[13] | WANG Yang, WEN Zhonglin, LI Wei, FANG Jie. Methodological research and model development on structural equation models in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1715-1733. |
[14] | LIU Yuan, DU Hongyan, FANG Jie, WEN Zhonglin. Methodology study and model development for analyzing longitudinal data in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1734-1746. |
[15] | LIN Jiao-Min, LI Ai-Mei, ZHOU Ya-Ran, HE Jun-Hong, ZHOU Lei. The prospect of gaze manipulation technology in decision-making research: Altering decision-making [J]. Advances in Psychological Science, 2022, 30(8): 1794-1803. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||