Advances in Psychological Science ›› 2018, Vol. 26 ›› Issue (8): 1417-1428.doi: 10.3724/SP.J.1042.2018.01417
• Regular Articles • Previous Articles Next Articles
ZHANG Yifan1, QI Xingliang2, CAI Houde1,2()
Received:
2017-06-06
Online:
2018-08-15
Published:
2018-07-02
Contact:
CAI Houde
E-mail:caihoude@163.com
CLC Number:
ZHANG Yifan, QI Xingliang, CAI Houde. Neural mechanisms underlying dynamic changes of active maternal behavior in rodents[J]. Advances in Psychological Science, 2018, 26(8): 1417-1428.
1 | 陈磊磊, 聂莉娜, 李钰, 程鹏, 李鸣, 高军 . ( 2017). 五羟色胺系统对母性行为的调控及其机制. 心理科学进展, 25( 12), 2089-2098. |
2 | 刘飞, 蔡厚德 . ( 2010). 情绪生理机制研究的外周与中枢神经系统整合模型. 心理科学进展, 18( 4), 616-622. |
3 |
Afonso, V. M, King, S., Chatterjee D., & Fleming A. S . ( 2009). Hormones that increase maternal responsiveness affect accumbal dopaminergic responses to pup- and food-stimuli in the female rat. Hormones and Behavior, 56( 1), 11-23.
doi: 10.1016/j.yhbeh.2009.02.003 URL |
4 |
Afonso V. M., Shams W. M., Jin D., & Fleming A. S . ( 2013). Distal pup cues evoke dopamine responses in hormonally primed rats in the absence of pup experience or ongoing maternal behavior. Journal of Neuroscience, 33( 6), 2305-2312.
doi: 10.1523/JNEUROSCI.2081-12.2013 URL |
5 |
Afonso V. M., Sison M., Lovic V., & Fleming A. S . ( 2007). Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behavioral Neuroscience, 121( 3), 515-526.
doi: 10.1037/0735-7044.121.3.515 URL |
6 |
Atzil S., Hendler T., & Feldman R . ( 2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36( 13), 2603-2615.
doi: 10.1038/npp.2011.172 URL |
7 |
Balleine, B. W., & Dickinson, A . ( 1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37( 4-5), 407-419.
doi: 10.1016/S0028-3908(98)00033-1 URL |
8 |
Banerjee S. B., & Liu R. C . ( 2013). Storing maternal memories: Hypothesizing an interaction of experience and estrogen on sensory cortical plasticity to learn infant cues. Frontiers in Neuroendocrinology, 34( 4), 300-314.
doi: 10.1016/j.yfrne.2013.07.008 URL |
9 |
Benedetto L., Pereira M., Ferreira A., & Torterolo P . ( 2014). Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides, 58, 20-25.
doi: 10.1016/j.peptides.2014.05.012 URL |
10 | Cortés-Mendoza J., Díaz de León-Guerrero S., Pedraza-Alva G., & Pérez-Martínez L . ( 2013). Shaping synaptic plasticity: The role of activity-mediated epigenetic regulation on gene transcription. International Journal of Developmental Neuroscience, 31( 6), 359-369. |
11 |
Dalley J. W., Cardinal R. N., & Robbins T. W . ( 2004). Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neuroscience and Biobehavioral Reviews, 28, 771-784.
doi: 10.1016/j.neubiorev.2004.09.006 URL |
12 | D'Cunha T. M., King S. J., Fleming A. S., & Lévy F . ( 2011). Oxytocin receptors in the nucleus accumbens shell are involved in the consolidation of maternal memory in postpartum rats. Hormones & Behavior, 59( 1), 14-21. |
13 |
Dilgen J., Tejeda H. A., & O'Donnell P . ( 2013). Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. Journal of Neurophysiology, 110( 1), 221-229.
doi: 10.1152/jn.00531.2012 URL |
14 |
Dobolyi A., Grattan D. R., & Stolzenberg D. S . ( 2014). Preoptic inputs and mechanisms that regulate maternal responsiveness. Journal of Neuroendocrinology, 26( 10), 627-640.
doi: 10.1111/jne.12185 URL |
15 |
Febo M., Numan M., & Ferris C. F . ( 2005). Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. Journal of Neuroscience, 25( 50), 11637-11644.
doi: 10.1523/JNEUROSCI.3604-05.2005 URL |
16 | Fleming A. S., Ruble D., Krieger H., & Wong P. Y . ( 1997). Hormonal and experiential correlates of maternal responsiveness during pregnancy and the puerperium in human mothers. Hormones & Behavior, 31( 2), 145-158. |
17 |
Gagnidze K., Weil Z. M., Faustino L. C., Schaafsma S. M., & Pfaff D. W . ( 2013). Early histone modifications in the ventromedial hypothalamus and preoptic area following oestradiol administration. Journal of Neuroendocrinology, 25( 10), 939-955.
doi: 10.1111/jne.2013.25.issue-10 URL |
18 |
Jin S. H., Blendy J. A., & Thomas S. A . ( 2005). Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior. Neuroscience, 133( 3), 647-655.
doi: 10.1016/j.neuroscience.2005.03.017 URL |
19 | Kesner R. P . ( 2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology, 28( 2), 219-228. |
20 |
Killcross, S., & Coutureau, E . ( 2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cerebral Cortex, 13( 4), 400-408.
doi: 10.1093/cercor/13.4.400 URL |
21 | Kim P., Strathearn L., & Swain J. E . ( 2016). The maternal brain and its plasticity in humans. Hormones & Behavior, 77, 113-123. |
22 |
Kuroda K. O., Meaney M. J., Uetani N., Fortin Y., Ponton A., & Kato T . ( 2007). ERK-fosB signaling in dorsal MPOA neurons plays a major role in the initiation of parental behavior in mice. Molecular and Cellular Neuroscience, 36( 2), 121-131.
doi: 10.1016/j.mcn.2007.05.010 URL |
23 | Laurent, H. K., & Ablow, J. C . ( 2012). A cry in the dark: Depressed mothers show reduced neural activation to their own infant’s cry. Social Cognitive & Affective Neuroscience, 7( 2), 125-134. |
24 |
Lee A., Clancy S., & Fleming A. S . ( 1999). Mother rats bar-press for pups: Effects of lesions of the MPOA and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behavioural Brain Research, 100( 1-2), 15-31.
doi: 10.1016/S0166-4328(98)00109-0 URL |
25 |
Li, M., & Fleming, A. S . ( 2003). The nucleus accumbens shell is critical for normal expression of pup-retrieval in postpartum female rats. Behavioural Brain Research, 145( 1-2), 99-111.
doi: 10.1016/S0166-4328(03)00135-9 URL |
26 |
Lonstein J. S., Lévy F., & Fleming A. S . ( 2015). Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Hormones and Behavior, 73, 156-185.
doi: 10.1016/j.yhbeh.2015.06.011 URL |
27 |
Marlin B. J., Mitre M., D'Amour J. A., Chao M. V., & Froemke R. C . ( 2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520( 7548), 499-504.
doi: 10.1038/nature14402 URL |
28 |
Mattson, B. J., & Morrell, J. I . ( 2005). Preference for cocaine- versus pup-associated cues differentially activates neurons expressing either Fos or cocaine- and amphetamine- regulated transcript in lactating, maternal rodents. Neuroscience, 135( 2), 315-328.
doi: 10.1016/j.neuroscience.2005.06.045 URL |
29 |
Mattson B. J., Williams S., Rosenblatt J. S., & Morrell J. I . ( 2001). Comparison of two positive reinforcing stimuli: Pups and cocaine throughout the postpartum period. Behavioral Neuroscience, 115( 3), 683-694.
doi: 10.1037/0735-7044.115.3.683 URL |
30 | Moltz, H., & Wiener, E . ( 1966). Effects of ovariectomy on maternal behavior of primiparous and multiparous rats. Journal of Comparative & Physiological Psychology, 62( 3), 382-387. |
31 |
Nicola, S. M . ( 2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 191( 3), 521-550.
doi: 10.1007/s00213-006-0510-4 URL |
32 |
Numan, M . ( 2006). Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behavioral and Cognitive Neuroscience Reviews, 5( 4), 163-190.
doi: 10.1177/1534582306288790 URL |
33 |
Numan M., Bress J. A., Ranker L. R., Gary A. J., Denicola A. L., Bettis J. K., & Knapp S. E . ( 2010). The importance of the basolateral/basomedial amygdala for goal-directed maternal responses in postpartum rats. Behavioural Brain Research, 214( 2), 368-376.
doi: 10.1016/j.bbr.2010.06.006 URL |
34 | Numan M., Rosenblatt J. S., & Komisaruk B. R . ( 1977). Medial preoptic area and onset of maternal behavior in the rat. Journal of Comparative & Physiological Psychology, 91( 1), 146-164. |
35 |
Numan, M., & Stolzenberg, D. S . ( 2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Frontiers in Neuroendocrinology, 30( 1), 46-64.
doi: 10.1016/j.yfrne.2008.10.002 URL |
36 |
Numan, M., & Young, L. J . ( 2016). Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Hormones and Behavior, 77, 98-112.
doi: 10.1016/j.yhbeh.2015.05.015 URL |
37 |
Olazábal D., Pereira M., Agrati D., Ferreira A., Fleming A. S., González-Mariscal G.,.. Uriarte N . ( 2013 a). New theoretical and experimental approaches on maternal motivation in mammals. Neuroscience and Biobehavioral Reviews, 37, 1860-1874.
doi: 10.1016/j.neubiorev.2013.04.003 URL |
38 |
Olazábal D., Pereira M., Agrati D., Ferreira A., Fleming A. S., González-Mariscal G.,.. Uriarte N . ( 2013 b). Flexibility and adaptation of the neural substrate that supports maternal behavior in mammals. Neuroscience and Biobehavioral Reviews, 37, 1875-1892.
doi: 10.1016/j.neubiorev.2013.04.004 URL |
39 |
Parada M., King S., Li M., & Fleming A. S . ( 2008). The roles of accumbal dopamine D1 and D2 receptors in maternal memory in rats. Behavioral Neuroscience, 122( 2), 368-376.
doi: 10.1037/0735-7044.122.2.368 URL |
40 |
Peña, C. J., & Champagne, F. A . ( 2015). Neonatal overexpression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring. Developmental Neurobiology, 75( 10), 1114-1124.
doi: 10.1002/dneu.v75.10 URL |
41 | Pereira, M . ( 2016). Structural and functional plasticity in the maternal brain circuitry. In H. J. V. Rutherford & L. C. Mayes (Eds.), Maternal brain plasticity: Preclinical and human research and implications for intervention. New Directions for Child and Adolescent Development (no. 153, pp. 23-46). Wiley Periodicals, Inc. |
42 |
Pereira, M., & Ferreira, A . ( 2016). Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Hormones and Behavior, 77, 72-85.
doi: 10.1016/j.yhbeh.2015.08.005 URL |
43 |
Pereira, M., & Morrell, J. I . ( 2009). The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period: Facilitation followed by inhibition. Behavioural Brain Research, 205( 1), 238-248.
doi: 10.1016/j.bbr.2009.06.026 URL |
44 |
Pereira, M., & Morrell, J. I . ( 2010). The medial preoptic area is necessary for motivated choice of pup- over cocaine- associated environments by early postpartum rats. Neuroscience, 167( 2), 216-231.
doi: 10.1016/j.neuroscience.2010.02.015 URL |
45 |
Pereira, M., & Morrell, J. I . ( 2011). Functional mapping of the neural circuitry of rat maternal motivation: Effects of site-specific transient neural inactivation. Journal of Neuroendocrinology, 23( 11), 1020-1035.
doi: 10.1111/j.1365-2826.2011.02200.x URL |
46 | Reisbick S., Rosenblatt J. S., & Mayer A. D . ( 1975). Decline of maternal behavior in the virgin and lactating rat. Journal of Comparative & Physiological Psychology, 89( 7), 722-732. |
47 |
Riccio, A . ( 2010). Dynamic epigenetic regulation in neurons: Enzymes, stimuli and signaling pathways. Nature Neuroscience, 13( 11), 1330-1337.
doi: 10.1038/nn.2671 URL |
48 |
Romero-Fernandez W., Borroto-Escuela D. O., Agnati L. F., & Fuxe K . ( 2013). Evidence for the existence of dopamine D2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor-receptor interactions. Molecular Psychiatry, 18( 8), 849-850.
doi: 10.1038/mp.2012.103 URL |
49 |
Root D. H., Melendez R. I., Zaborszky L., & Napier T. C . ( 2015). The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Progress in Neurobiology, 130, 29-70.
doi: 10.1016/j.pneurobio.2015.03.005 URL |
50 |
Rosenblatt, J. S . ( 1967). Nonhormonal basis of maternal behavior in the rat. Science, 156( 3781), 1512-1513.
doi: 10.1126/science.156.3781.1512 URL |
51 | Rosenblatt, J. S., & Siegel, H. I . ( 1981). Factors governing the onset and maintenance of maternal behavior among nonprimate mammals. In D. J. Gubernick & P. H. Klopfer (Eds.), Parental care in mammals ( pp. 13-76). Boston, MA: Springer. |
52 | Sabihi S., Dong S. M., Durosko N. E., & Leuner B . ( 2014). Oxytocin in the medial prefrontal cortex regulates maternal care, maternal aggression and anxiety during the postpartum period. Frontiers in Behavioral Neuroscience, 8, 258. |
53 |
Seifritz E., Esposito F., Neuhoff J. G., Lüthi A., Mustovic H., Dammann G.,.. Di Salle F . ( 2003). Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54( 12), 1367-1375.
doi: 10.1016/S0006-3223(03)00697-8 URL |
54 |
Seip, K. M., & Morrell, J. I . ( 2009). Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup- but not cocaine- paired contexts. Behavioral Neuroscience, 123( 6), 1325-1338.
doi: 10.1037/a0017666 URL |
55 |
Seip K. M., Pereira M., Wansaw M. P., Reiss J. I., Dziopa E. I., & Morrell J. I . ( 2008). Incentive salience of cocaine across the postpartum period of the female rat. Psychopharmacology, 199( 1), 119-130.
doi: 10.1007/s00213-008-1140-9 URL |
56 |
Sesack, S. R., & Grace, A. A . ( 2010). Cortico-basal ganglia reward network: Microcircuitry. Neuropsychopharmacology, 35( 1), 27-47.
doi: 10.1038/npp.2009.93 URL |
57 |
Stolzenberg, D. S., & Champagne, F. A . ( 2016). Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Hormones and Behavior, 77, 204-210.
doi: 10.1016/j.yhbeh.2015.07.005 URL |
58 |
Strathearn, L . ( 2011). Maternal neglect: Oxytocin, dopamine and the neurobiology of attachment. Journal of Neuroendocrinology, 23( 11), 1054-1065.
doi: 10.1111/j.1365-2826.2011.02228.x URL |
59 | Swain J. E., Tasgin E., Mayes L. C., Feldman R., Constable R. T., & Leckman J. F . ( 2008). Maternal brain response to own baby-cry is affected by cesarean section delivery. Journal of Child Psychology & Psychiatry, 49( 10), 1042-1052. |
60 |
Tzschentke T. M . ( 2007). Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12( 3-4), 227-462.
doi: 10.1111/adb.2007.12.issue-3-4 URL |
61 |
Wansaw M. P., Pereira M., & Morrell J. I . ( 2008). Characterization of maternal motivation in the lactating rat: Contrasts between early and late postpartum responses. Hormones and Behavior, 54( 2), 294-301.
doi: 10.1016/j.yhbeh.2008.03.005 URL |
62 |
Wu Z., Autry A. E., Bergan J. F., Watabe-Uchida M., & Dulac C. G . ( 2014). Galanin neurons in the medial preoptic area govern parental behaviour. Nature, 509( 7500), 325-330.
doi: 10.1038/nature13307 URL |
63 |
Zha, X., & Xu, X. H . ( 2015). Dissecting the hypothalamic pathways that underlie innate behaviors. Neuroscience Bulletin, 31( 6), 629-648.
doi: 10.1007/s12264-015-1564-2 URL |
[1] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[2] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[3] | LIU Yuan, DU Hongyan, FANG Jie, WEN Zhonglin. Methodology study and model development for analyzing longitudinal data in China’s mainland [J]. Advances in Psychological Science, 2022, 30(8): 1734-1746. |
[4] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[5] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[6] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[7] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[8] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
[9] | GUO Ying, GONG Xianmin, WANG Dahua. The cognitive and neural mechanisms underlying false memory: An information processing perspective [J]. Advances in Psychological Science, 2021, 29(1): 79-92. |
[10] | YANG Xiaomeng, WANG Fuxing, WANG Yanqing, ZHAO Tingting, GAO Chunying, HU Xiangen. Are pupils the window of our mind? Pupil-related application in psychology and pupillometry [J]. Advances in Psychological Science, 2020, 28(7): 1029-1041. |
[11] | ZHANG Jingjing, LIANG Xiaoyue, CHEN Yidi, CHEN Qingrong. The cognitive mechanism of music syntactic processing and the influence of music structure on its processing [J]. Advances in Psychological Science, 2020, 28(6): 883-892. |
[12] | WANG Xin, HANG Mingli, LIANG Dandan. The cognitive neural mechanisms of verb argument structure complexity processing [J]. Advances in Psychological Science, 2020, 28(1): 62-74. |
[13] | WEI Tongqi, CAO Hui, BI Hong-Yan, YANG Yang. Writing deficits in developmental dyslexia and its neural mechanisms [J]. Advances in Psychological Science, 2020, 28(1): 75-84. |
[14] | CHEN Xiaowen, CAI Wenshu, XIE Tong, FU Shimin. The characteristics and neural mechanisms of visual orienting and visual search in autism spectrum disorders [J]. Advances in Psychological Science, 2020, 28(1): 98-109. |
[15] | Huan HUANG, Bo LIU, Chenchen ZHOU, Ming JI. Mechanisms of commission errors in aftereffects of completed intentions [J]. Advances in Psychological Science, 2018, 26(9): 1600-1607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||