Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (5): 729-743.doi: 10.3724/SP.J.1042.2025.0729
• Conceptual Framework • Next Articles
LEI Xu(
), WENG Linman, YU Jing
Received:2024-11-12
Online:2025-05-15
Published:2025-03-20
Contact:
LEI Xu
E-mail:xlei@swu.edu.cn
CLC Number:
LEI Xu, WENG Linman, YU Jing. Memory consolidation during wakeful rest: Evidence from EEG and fMRI[J]. Advances in Psychological Science, 2025, 33(5): 729-743.
| [1] |
刘威, 陈瑞欣, 郭金朋. (2024). 应激下人类情景记忆巩固的神经重放机制. 心理科学进展, 32(7), 1031-1047. https://link.cnki.net/urlid/11.4766.R.20240509.0846.010
doi: 10.3724/SP.J.1042.2024.01031 URL |
| [2] |
Antony, J. W., Gobel, E. W., O'Hare, J. K., Reber, P. J., & Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. Nature Neuroscience, 15(8), 1114-1116. https://doi.org/10.1038/nn.3152
doi: 10.1038/nn.3152 URL pmid: 22751035 |
| [3] | Bang, J. W., Sasaki, Y., Watanabe, T., & Rahnev, D. (2018). Feature-specific awake reactivation in human V1 after visual training. The Journal of Neuroscience, 38(45), 9648-9657. https://doi.org/10.1523/jneurosci.0884-18.2018 |
| [4] |
Barrett, T. R., & Ekstrand, B. R. (1972). Effect of sleep on memory. 3. Controlling for time-of-day effects. Journal of Experimental Psychology, 96(2), 321-327. https://doi.org/10.1037/h0033625
doi: 10.1037/h0033625 URL pmid: 4345763 |
| [5] | Baxter, B. S., Mylonas, D., Kwok, K. S., Talbot, C. E., Patel, R., Zhu, L.,... Manoach, D. S. (2023). The effects of closed- loop auditory stimulation on sleep oscillatory dynamics in relation to motor procedural memory consolidation. Sleep, 46(10). https://doi.org/10.1093/sleep/zsad206 |
| [6] | Brodt, S., Inostroza, M., Niethard, N., & Born, J. (2023). Sleep- A brain-state serving systems memory consolidation. Neuron, 111(7), 1050-1075. https://doi.org/10.1016/j.neuron.2023.03.005 |
| [7] | Buzsáki, G. (1996). The hippocampo-neocortical dialogue. Cereb Cortex, 6(2), 81-92. https://doi.org/10.1093/cercor/6.2.81 |
| [8] |
Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. https://doi.org/10.1002/hipo.22488
doi: 10.1002/hipo.22488 URL pmid: 26135716 |
| [9] |
Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14(2), 147-153. https://doi.org/10.1038/nn.2732
doi: 10.1038/nn.2732 URL pmid: 21270783 |
| [10] | Cellini, N., & Capuozzo, A. (2018). Shaping memory consolidation via targeted memory reactivation during sleep. Annals of the New York Academy of Sciences, 1426(1), 52-71. https://doi.org/10.1111/nyas.13855 |
| [11] | Choi, J., & Jun, S. C. (2022). Spindle-targeted acoustic stimulation may stabilize an ongoing nap. Journal of Sleep Research, 31(6), e13583. https://doi.org/10.1111/jsr.13583 |
| [12] | Choi, J., Won, K., & Jun, S. C. (2019). Acoustic stimulation following sleep spindle activity may enhance procedural memory consolidation during a nap. IEEE Access, 7, 56297-56307. https://doi.org/10.1109/ACCESS.2019.2913457 |
| [13] |
Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718-731. https://doi.org/10.1038/nrn.2016.113
doi: 10.1038/nrn.2016.113 URL pmid: 27654862 |
| [14] | Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N., & Lewis, P. A. (2014). Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence. The Journal of Neuroscience, 34(48), 15870-15876. https://doi.org/10.1523/jneurosci.1011-14.2014 |
| [15] | Dastgheib, M., Kulanayagam, A., & Dringenberg, H. C. (2022). Is the role of sleep in memory consolidation overrated? Neuroscience & Biobehavioral Reviews, 140, 104799. https://doi.org/10.1016/j.neubiorev.2022.104799 |
| [16] |
Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63(4), 497-507. https://doi.org/10.1016/j.neuron.2009.07.027
doi: 10.1016/j.neuron.2009.07.027 URL pmid: 19709631 |
| [17] |
Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic 'up' states fragments of wakefulness? Trends in Neurosciences, 30(7), 334-342. https://doi.org/10.1016/j.tins.2007.04.006
doi: 10.1016/j.tins.2007.04.006 URL pmid: 17481741 |
| [18] | Deuker, L., Olligs, J., Fell, J., Kranz, T. A., Mormann, F., Montag, C.,... Axmacher, N. (2013). Memory consolidation by replay of stimulus-specific neural activity. The Journal of Neuroscience, 33(49), 19373-19383. https://doi.org/10.1523/jneurosci.0414-13.2013 |
| [19] |
Dewar, M., Alber, J., Butler, C., Cowan, N., & Della Sala, S. (2012). Brief wakeful resting boosts new memories over the long term. Psychological Science, 23(9), 955-960. https://doi.org/10.1177/0956797612441220
doi: 10.1177/0956797612441220 URL pmid: 22829465 |
| [20] |
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114-126. https://doi.org/10.1038/nrn2762
doi: 10.1038/nrn2762 URL pmid: 20046194 |
| [21] |
Dudai, Y., Karni, A., & Born, J. (2015). The consolidation and transformation of memory. Neuron, 88(1), 20-32. https://doi.org/10.1016/j.neuron.2015.09.004
doi: 10.1016/j.neuron.2015.09.004 URL pmid: 26447570 |
| [22] |
Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20(1), 1-10. https://doi.org/10.1002/hipo.20707
doi: 10.1002/hipo.20707 URL pmid: 19816984 |
| [23] |
Fernández-Ruiz, A., Oliva, A., Fermino de Oliveira, E., Rocha-Almeida, F., Tingley, D., & Buzsáki, G. (2019). Long-duration hippocampal sharp wave ripples improve memory. Science, 364(6445), 1082-1086. https://doi.org/10.1126/science.aax0758
doi: 10.1126/science.aax0758 URL pmid: 31197012 |
| [24] | Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680-683. https://doi.org/10.1038/nature04587 |
| [25] |
Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nature Reviews Neuroscience, 6(2), 119-130. https://doi.org/10.1038/nrn1607
doi: 10.1038/nrn1607 URL pmid: 15685217 |
| [26] | Gais, S., Lucas, B., & Born, J. (2006). Sleep after learning aids memory recall. Learning & Memory, 13(3), 259-262. https://doi.org/10.1101/lm.132106 |
| [27] | Genzel, L., & Robertson, E. M. (2015). To Replay, Perchance to Consolidate. PLoS Biology, 13(10), e1002285. https://doi.org/10.1371/journal.pbio.1002285 |
| [28] |
Geva-Sagiv, M., Mankin, E. A., Eliashiv, D., Epstein, S., Cherry, N., Kalender, G.,... Fried, I. (2023). Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nature Neuroscience, 26(6), 1100-1110. https://doi.org/10.1038/s41593-023-01324-5
doi: 10.1038/s41593-023-01324-5 URL pmid: 37264156 |
| [29] | Gilson, M., Nitsche, M. A., & Peigneux, P. (2021). Prefrontal transcranial direct current stimulation globally improves learning but does not selectively potentiate the benefits of targeted memory reactivation on awake memory consolidation. Brain Sciences, 11(8), 1104. https://doi.org/10.3390/brainsci11081104 |
| [30] |
Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12(10), 1222-1223. https://doi.org/10.1038/nn.2384
doi: 10.1038/nn.2384 URL pmid: 19749750 |
| [31] |
Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H. J.,... Boyden, E. S. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 169(6), 1029-1041.e1016. https://doi.org/10.1016/j.cell.2017.05.024
doi: S0092-8674(17)30584-6 URL pmid: 28575667 |
| [32] | Guo, W., He, Y., Zhang, W., Sun, Y., Wang, J., Liu, S., & Ming, D. (2023). A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Frontiers in Neuroscience, 17, 1092539. https://doi.org/10.3389/fnins.2023.1092539 |
| [33] |
Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T., & Walker, M. P. (2018). Old brains come uncoupled in sleep: Slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron, 97(1), 221-230.e4. https://doi.org/10.1016/j.neuron.2017.11.020
doi: S0896-6273(17)31073-5 URL pmid: 29249289 |
| [34] | Hu, X., Cheng, L. Y., Chiu, M. H., & Paller, K. A. (2020). Promoting memory consolidation during sleep: A meta- analysis of targeted memory reactivation. Psychological Bulletin, 146(3), 218-244. https://doi.org/10.1037/bul0000223 |
| [35] |
Humiston, G. B., Tucker, M. A., Summer, T., & Wamsley, E. J. (2019). Resting states and memory consolidation: A preregistered replication and meta-analysis. Scientific Reports, 9(1), 19345. https://doi.org/10.1038/s41598-019-56033-6
doi: 10.1038/s41598-019-56033-6 URL pmid: 31852988 |
| [36] |
Humiston, G. B., & Wamsley, E. J. (2018). A brief period of eyes-closed rest enhances motor skill consolidation. Neurobiology of Learning and Memory, 155, 1-6. https://doi.org/10.1016/j.nlm.2018.06.002
doi: S1074-7427(18)30139-4 URL pmid: 29883710 |
| [37] | Inayat, S., Qandeel, Nazariahangarkolaee, M., Singh, S., McNaughton, B. L., Whishaw, I. Q., & Mohajerani, M. H. (2020). Low acetylcholine during early sleep is important for motor memory consolidation. Sleep, 43(6). https://doi. org/10.1093/sleep/zsz297 |
| [38] |
Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100-107. https://doi.org/10.1038/nn1825
doi: 10.1038/nn1825 URL pmid: 17173043 |
| [39] |
Karlsson, M. P., & Frank, L. M. (2009). Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 12(7), 913-918. https://doi.org/10.1038/nn.2344
doi: 10.1038/nn.2344 URL pmid: 19525943 |
| [40] | Ketz, N., Jones, A. P., Bryant, N. B., Clark, V. P., & Pilly, P. K. (2018). Closed-loop slow-wave tACS improves sleep-dependent long-term memory generalization by modulating endogenous oscillations. The Journal of Neuroscience, 38(33), 7314-7326. https://doi.org/10.1523/jneurosci.0273-18.2018 |
| [41] |
Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1598-1610. https://doi.org/10.1038/s41593-019-0467-3
doi: 10.1038/s41593-019-0467-3 URL pmid: 31451802 |
| [42] | Kudrimoti, H. S., Barnes, C. A., & McNaughton, B. L. (1999). Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics. The Journal of Neuroscience, 19(10), 4090-4101. https://doi.org/10.1523/jneurosci.19-10-04090.1999 |
| [43] |
Lakatos, P., Gross, J., & Thut, G. (2019). A new unifying account of the roles of neuronal entrainment. Current Biology, 29(18), R890-R905. https://doi.org/10.1016/j.cub.2019.07.075
doi: 10.1016/j.cub.2019.07.075 URL |
| [44] |
Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder, K.,... Nissen, C. (2014). The reorganisation of memory during sleep. Sleep Medicine Reviews, 18(6), 531-541. https://doi.org/10.1016/j.smrv.2014.03.005
doi: 10.1016/j.smrv.2014.03.005 URL pmid: 24813468 |
| [45] | Latchoumane, C. V., Ngo, H. V., Born, J., & Shin, H. S. (2017). Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron, 95(2), 424-435.e6. https://doi.org/10.1016/j.neuron.2017.06.025 |
| [46] | Liu, Y., Dolan, R. J., Higgins, C., Penagos, H., Woolrich, M. W., Ólafsdóttir, H. F.,... Behrens, T. E. (2021). Temporally delayed linear modelling (TDLM) measures replay in both animals and humans. Elife, 10, https://doi.org/10.7554/eLife.66917 |
| [47] |
Liu, Y., Dolan, R. J., Kurth-Nelson, Z., & Behrens, T. E. J. (2019). Human replay spontaneously reorganizes experience. Cell, 178(3), 640-652.e14. https://doi.org/10.1016/j.cell.2019.06.012
doi: S0092-8674(19)30640-3 URL pmid: 31280961 |
| [48] | Liu, Z. X., Grady, C., & Moscovitch, M. (2018). The effect of prior knowledge on post-encoding brain connectivity and its relation to subsequent memory. Neuroimage, 167, 211-223. https://doi.org/10.1016/j.neuroimage.2017.11.032 |
| [49] |
Lustenberger, C., Boyle, M. R., Alagapan, S., Mellin, J. M., Vaughn, B. V., & Fröhlich, F. (2016). Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation. Current Biology, 26(16), 2127-2136. https://doi.org/10.1016/j.cub.2016.06.044
doi: 10.1016/j.cub.2016.06.044 URL pmid: 27476602 |
| [50] |
McNamara, C. G., Tejero-Cantero, Á., Trouche, S., Campo- Urriza, N., & Dupret, D. (2014). Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nature Neuroscience, 17(12), 1658-1660. https://doi.org/10.1038/nn.3843
doi: 10.1038/nn.3843 URL pmid: 25326690 |
| [51] |
Mednick, S. C., Cai, D. J., Shuman, T., Anagnostaras, S., & Wixted, J. T. (2011). An opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, 34(10), 504-514. https://doi.org/10.1016/j.tins.2011.06.003
doi: 10.1016/j.tins.2011.06.003 URL pmid: 21742389 |
| [52] |
Mölle, M., & Born, J. (2011). Slow oscillations orchestrating fast oscillations and memory consolidation. Progress in Brain Research, 193, 93-110. https://doi.org/10.1016/b978-0-444-53839-0.00007-7
doi: 10.1016/B978-0-444-53839-0.00007-7 URL pmid: 21854958 |
| [53] | Mölle, M., Marshall, L., Gais, S., & Born, J. (2002). Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. The Journal of Neuroscience, 22(24), 10941-10947. https://doi.org/10.1523/jneurosci.22-24-10941.2002 |
| [54] | Mushtaq, M., Marshall, L., Ul Haq, R., & Martinetz, T. (2024). Possible mechanisms to improve sleep spindles via closed loop stimulation during slow wave sleep: A computational study. PLoS One, 19(6), e0306218. https://doi.org/10.1371/journal.pone.0306218 |
| [55] | Ngo, H. V., Martinetz, T., Born, J., & Mölle, M. (2013). Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron, 78(3), 545-553. https://doi.org/10.1016/j.neuron.2013.03.006 |
| [56] | Ngo, H. V., & Staresina, B. P. (2022). Shaping overnight consolidation via slow-oscillation closed-loop targeted memory reactivation. Proceedings of the National Academy of Sciences, 119(44), e2123428119. https://doi.org/10.1073/pnas.2123428119 |
| [57] | Niethard, N., Ngo, H. V., Ehrlich, I., & Born, J. (2018). Cortical circuit activity underlying sleep slow oscillations and spindles. Proceedings of the National Academy of Sciences, 115(39), E9220-E9229. https://doi.org/10.1073/pnas.1805517115 |
| [58] |
Nokia, M. S., Mikkonen, J. E., Penttonen, M., & Wikgren, J. (2012). Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Frontiers in Behavioral Neuroscience, 6, 84. https://doi.org/10.3389/fnbeh.2012.00084
doi: 10.3389/fnbeh.2012.00084 URL pmid: 23316148 |
| [59] | O'Keefe, J., Burgess, N., Donnett, J. G., Jeffery, K. J., & Maguire, E. A.(1998). Place cells, navigational accuracy, and the human hippocampus. Philosophical Transactions of the Royal Society of London, 353(1373), 1333-1340. https://doi.org/10.1098/rstb.1998.0287 |
| [60] |
O'Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J.(2010). Play it again: Reactivation of waking experience and memory. Trends in Neurosciences, 33(5), 220-229. https://doi.org/10.1016/j.tins.2010.01.006
doi: 10.1016/j.tins.2010.01.006 URL pmid: 20207025 |
| [61] | Oyanedel, C. N., Durán, E., Niethard, N., Inostroza, M., & Born, J. (2020). Temporal associations between sleep slow oscillations, spindles and ripples. The European Journal of Neuroscience, 52(12), 4762-4778. https://doi.org/10.1111/ejn.14906 |
| [62] | Paller, K. A., Creery, J. D., & Schechtman, E. (2021). Memory and sleep: How sleep cognition can change the waking mind for the better. Annual Review of Psychology, 72, 123-150. https://doi.org/10.1146/annurev-psych-010419-050815 |
| [63] | Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9(8), 2907-2918. https://doi.org/10.1523/jneurosci.09-08-02907.1989 |
| [64] |
Peigneux, P., Laureys, S., Fuchs, S., Collette, F., Perrin, F., Reggers, J.,... Maquet, P. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535-545. https://doi.org/10.1016/j.neuron.2004.10.007
doi: 10.1016/j.neuron.2004.10.007 URL pmid: 15504332 |
| [65] |
Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9(4), 534-547. https://doi.org/10.1162/jocn.1997.9.4.534
doi: 10.1162/jocn.1997.9.4.534 URL pmid: 23968216 |
| [66] |
Polanía, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience, 21(2), 174-187. https://doi.org/10.1038/s41593-017-0054-4
doi: 10.1038/s41593-017-0054-4 URL pmid: 29311747 |
| [67] |
Rasch, B., & Born, J. (2013). About sleep's role in memory. Physiological Reviews, 93(2), 681-766. https://doi.org/10.1152/physrev.00032.2012
doi: 10.1152/physrev.00032.2012 URL pmid: 23589831 |
| [68] |
Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429. https://doi. org/10.1126/science.1138581
doi: 10.1126/science.1138581 pmid: 17347444 |
| [69] | Rosanova, M., & Ulrich, D. (2005). Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. The Journal of Neuroscience, 25(41), 9398-9405. https://doi.org/10.1523/jneurosci.2149-05.2005 |
| [70] | Rubin, D. B., Hosman, T., Kelemen, J. N., Kapitonava, A., Willett, F. R., Coughlin, B. F.,... Cash, S. S. (2022). Learned motor patterns are replayed in human motor cortex during sleep. The Journal of Neuroscience, 42(25), 5007-5020. https://doi.org/10.1523/jneurosci.2074-21.2022 |
| [71] |
Rudoy, J. D., Voss, J. L., Westerberg, C. E., & Paller, K. A. (2009). Strengthening individual memories by reactivating them during sleep. Science, 326(5956), 1079. https://doi. org/10.1126/science.1179013
doi: 10.1126/science.1179013 URL pmid: 19965421 |
| [72] | Sandrini, M., Manenti, R., Gobbi, E., Rusich, D., Bartl, G., & Cotelli, M. (2019). Transcranial direct current stimulation applied after encoding facilitates episodic memory consolidation in older adults. Neurobiology of Learning and Memory, 163, 107037. https://doi.org/10.1016/j.nlm.2019.107037 |
| [73] |
Schapiro, A. C., McDevitt, E. A., Rogers, T. T., Mednick, S. C., & Norman, K. A. (2018). Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nature Communications, 9(1), 3920. https://doi.org/10.1038/s41467-018-06213-1
doi: 10.1038/s41467-018-06213-1 URL pmid: 30254219 |
| [74] |
Schreiner, T., Petzka, M., Staudigl, T., & Staresina, B. P. (2021). Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nature Communications, 12(1), 3112. https://doi.org/10.1038/s41467-021-23520-2
doi: 10.1038/s41467-021-23520-2 URL pmid: 34035303 |
| [75] | Schuck, N. W., & Niv, Y. (2019). Sequential replay of nonspatial task states in the human hippocampus. Science, 364(6447), eaaw5181. https://doi.org/10.1126/science.aaw5181 |
| [76] |
Seibt, J., Richard, C. J., Sigl-Glöckner, J., Takahashi, N., Kaplan, D. I., Doron, G.,... Larkum, M. E. (2017). Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nature Communications, 8(1), 684. https://doi.org/10.1038/s41467-017-00735-w
doi: 10.1038/s41467-017-00735-w URL pmid: 28947770 |
| [77] |
Shtoots, L., Nadler, A., Partouche, R., Sharir, D., Rothstein, A., Shati, L., & Levy, D. A. (2024). Frontal midline theta transcranial alternating current stimulation enhances early consolidation of episodic memory. NPJ Science of Learning, 9(1), 8. https://doi.org/10.1038/s41539-024-00222-0
doi: 10.1038/s41539-024-00222-0 URL pmid: 38365886 |
| [78] | Sirota, A., Csicsvari, J., Buhl, D., & Buzsáki, G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proceedings of the National Academy of Sciences, 100(4), 2065-2069. https://doi.org/10.1073/pnas.0437938100 |
| [79] | Spanò, G., Gómez, R. L., Demara, B. I., Alt, M., Cowen, S. L., & Edgin, J. O. (2018). REM sleep in naps differentially relates to memory consolidation in typical preschoolers and children with Down syndrome. Proceedings of the National Academy of Sciences, 115(46), 11844-11849. https://doi.org/10.1073/pnas.1811488115 |
| [80] | Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7(8), a021766. https://doi.org/10.1101/cshperspect.a021766 |
| [81] |
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137(4), 1087-1106. https://doi.org/10.1016/j.neuroscience.2005.10.029
doi: 10.1016/j.neuroscience.2005.10.029 URL pmid: 16343791 |
| [82] |
Tambini, A., & Davachi, L. (2019). Awake reactivation of prior experiences consolidates memories and biases cognition. Trends in Cognitive Sciences, 23(10), 876-890. https://doi.org/10.1016/j.tics.2019.07.008
doi: S1364-6613(19)30183-4 URL pmid: 31445780 |
| [83] |
Tambini, A., & D'Esposito, M. (2020). Causal contribution of awake post-encoding processes to episodic memory consolidation. Current Biology, 30(18), 3533-3543.e7. https://doi.org/10.1016/j.cub.2020.06.063
doi: S0960-9822(20)30915-5 URL pmid: 32735812 |
| [84] |
Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280-290. https://doi.org/10.1016/j.neuron.2010.01.001
doi: 10.1016/j.neuron.2010.01.001 URL pmid: 20152133 |
| [85] | Tang, W., Shin, J. D., Frank, L. M., & Jadhav, S. P. (2017). Hippocampal-prefrontal reactivation during learning is stronger in awake compared with sleep states. The Journal of Neuroscience, 37(49), 11789-11805. https://doi.org/10.1523/jneurosci.2291-17.2017 |
| [86] |
Timofeev, I. (2011). Neuronal plasticity and thalamocortical sleep and waking oscillations. Progress in Brain Research, 193, 121-144. https://doi.org/10.1016/b978-0-444-53839-0.00009-0
doi: 10.1016/B978-0-444-53839-0.00009-0 URL pmid: 21854960 |
| [87] |
Vaz, A. P., Wittig, J. H., Jr., Inati, S. K., & Zaghloul, K. A. (2020). Replay of cortical spiking sequences during human memory retrieval. Science, 367(6482), 1131-1134. https://doi.org/10.1126/science.aba0672
doi: 10.1126/science.aba0672 URL pmid: 32139543 |
| [88] |
Violante, I. R., Alania, K., Cassarà, A. M., Neufeld, E., Acerbo, E., Carron, R.,... Grossman, N. (2023). Non- invasive temporal interference electrical stimulation of the human hippocampus. Nature Neuroscience, 26(11), 1994-2004. https://doi.org/10.1038/s41593-023-01456-8
doi: 10.1038/s41593-023-01456-8 URL pmid: 37857775 |
| [89] | Wamsley, E. J. (2022). Offline memory consolidation during waking rest. Nature Reviews Psychology, 1(8), 441-453. https://doi.org/10.1038/s44159-022-00072-w |
| [90] | Wamsley, E. J., & Collins, M. (2024). Effect of cognitive load on time spent offline during wakefulness. Cereb Cortex, 34(2), bhae022. https://doi.org/10.1093/cercor/bhae022 |
| [91] | Wang, S. Y., Baker, K. C., Culbreth, J. L., Tracy, O., Arora, M., Liu, T.,... Wamsley, E. J. (2021). 'Sleep-dependent' memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. Learning & Memory, 28(6), 195-203. https://doi.org/10.1101/lm.053330.120 |
| [92] |
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676-679. https://doi.org/10.1126/science.8036517
doi: 10.1126/science.8036517 URL pmid: 8036517 |
| [93] |
Wittkuhn, L., & Schuck, N. W. (2021). Dynamics of fMRI patterns reflect sub-second activation sequences and reveal replay in human visual cortex. Nature Communications, 12(1), 1795. https://doi.org/10.1038/s41467-021-21970-2
doi: 10.1038/s41467-021-21970-2 URL pmid: 33741933 |
| [94] | Zhou, Z., Kahana, M. J., & Schapiro, A. C. (2024). A unifying account of replay as context-driven memory reactivation. eLife, 13. https://doi.org/10.7554/eLife.99931.1 |
| [1] | LIU Wei, CHEN Ruixin, GUO JinPeng. The neural replay mechanisms of episodic memory consolidation under stress in humans [J]. Advances in Psychological Science, 2024, 32(7): 1031-1047. |
| [2] | PENG Zhilin, ZHENG Ruoying, HU Xiaoqing, ZHANG Dandan. The role of sleep in consolidating memory of learning in infants and toddlers [J]. Advances in Psychological Science, 2024, 32(2): 287-299. |
| [3] | ZHOU Fan, TIAN Haoyue, JIANG Yingjie. Rapid memory consolidation: Schema-based learning and repeated reactivation [J]. Advances in Psychological Science, 2024, 32(11): 1854-1871. |
| [4] | Chengyong Jiang, Xinrong Tan, Qingshuo Meng, Er Chen, Liyuan Cui, Yanyu Xiong, Zixuan Yan, Biao Yan, Jiayi Zhang. Controlling Eye Movements and REM Sleep by Distinct Cholinergic Neurons in Oculomotor Nucleus [J]. Advances in Psychological Science, 2023, 31(suppl.): 143-143. |
| [5] | HE Meiheng, RU Taotao, LI Le, LI Siyu, ZHANG Chenze, ZHOU Guofu. The optimization effects of daytime light exposure on sleep and its mechanisms [J]. Advances in Psychological Science, 2023, 31(9): 1698-1713. |
| [6] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
| [7] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
| [8] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
| [9] | WANG Zhengyu, HU Jinsheng. How does sleep affect creative problem-solving: An interpretation based on memory reorganization [J]. Advances in Psychological Science, 2021, 29(7): 1251-1263. |
| [10] | QIAN Liu, Ru Taotao, LUO Xue, Niu Jiaxing, Ma Yongjun, ZHOU Guofu. Effect of sleep restriction on cognitive function and its underlying mechanism [J]. Advances in Psychological Science, 2020, 28(9): 1493-1507. |
| [11] | PENG Jiaxi, ZHAO Lumimg, FANG Peng, CAO Yunfei, MIAO Danmin, XIAO Wei. The effect mechanism of sleep deprivation on risky decision making [J]. Advances in Psychological Science, 2020, 28(11): 1789-1799. |
| [12] | LONG Fangfang, LI Yuchen, CHEN Xiaoyu, LI Ziyuan, LIANG Tengfei, LIU Qiang. Consolidation processing of visual working memory: Time course, pattern and mechanism [J]. Advances in Psychological Science, 2019, 27(8): 1404-1416. |
| [13] | LIU Xiaoting, ZHANG Lijin, ZHANG Ning. The effects of sleep quality on risk-taking behavior: Evidence and explanation [J]. Advances in Psychological Science, 2019, 27(11): 1875-1886. |
| [14] | CHEN Qingwei, RU Taotao, LUO Xue, DONG Qiaoling, ZHAI Diguo, XIONG Xiao, ZHOU Guofu. The effects of digital media usage on sleep: Mechanisms and interventions [J]. Advances in Psychological Science, 2019, 27(1): 70-82. |
| [15] | LIN Mengdi, YE Maolin, PENG Jian, YIN Kui, WANG Zhen. The employees’ sleep quality: A perspective of organizational behavior [J]. Advances in Psychological Science, 2018, 26(6): 1096-1110. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||