[1] |
方杰, 温忠麟. (2023). 中介效应和调节效应模型进阶. 北京: 教育科学出版社.
|
[2] |
何娟, 范雄智, 郝春. (2018). 成对数据的主客体互依模型在MPLUS中的实现. 现代预防医学, 45(3), 390-393.
|
[3] |
李育辉, 黄飞. (2010). 成对数据分析之行动者-对象互依性模型(APIM). 心理科学进展, 18(8), 1321-1328.
|
[4] |
刘畅, 伍新春. (2017). 主客体互倚性的成对模式及其检验. 心理发展与教育, 33(1), 105-112.
|
[5] |
刘源, 都弘彦, 方杰, 温忠麟. (2022). 国内追踪数据分析方法研究与模型发展. 心理科学进展, 30(8), 1734-1746.
doi: 10.3724/SP.J.1042.2022.01734
|
[6] |
罗晓慧, 刘红云. (2024). 密集追踪研究中测验信度的估计: 多层结构和动态特性的视角. 心理科学进展, 32(4), 700-714.
doi: 10.3724/SP.J.1042.2024.00700
|
[7] |
吴凡, 胡月琴. (2023). 人格动态性: 过程与特质整合视角. 心理科学进展, 31(7), 1269-1287.
doi: 10.3724/SP.J.1042.2023.01269
|
[8] |
郑舒方, 张沥今, 乔欣宇, 潘俊豪. (2021). 密集追踪数据分析: 模型及其应用. 心理科学进展, 29(11), 1948-1969.
doi: 10.3724/SP.J.1042.2021.01948
|
[9] |
朱旭, 江光荣. (2011). 当事人眼里的工作同盟: 质的分析. 心理学报, 43(4), 420-431.
|
[10] |
Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359-388.
|
[11] |
Asparouhov, T., & Muthén, B. O. (2016). General random effect latent variable modeling:Random subjects, items, contexts, and parameters. In J. R. Harring, L. M. Stapleton & S. N. Beretvas (Eds.), Advances in multilevel modeling for educational research (pp. 163-192). Information Age Publishing.
|
[12] |
Asparouhov, T., & Muthén, B. (2020). Comparison of models for the analysis of intensive longitudinal data. Structural Equation Modeling: A Multidisciplinary Journal, 27(2), 275-297.
|
[13] |
Bolger, N., & Laurenceau, J. P. (2013). Intensive longitudinal methods: An introduction to diary and experience sampling research. Guilford Press.
|
[14] |
Brinberg, M., Ram, N., Conroy, D. E., Pincus, A. L., & Gerstorf, D. (2022). Dyadic analysis and the reciprocal one-with-many model: Extending the study of interpersonal processes with intensive longitudinal data. Psychological Methods, 27(1), 65-81.
|
[15] |
Cook, W. L. (2001). Interpersonal influence in family systems: A social relations model analysis. Child Development, 72(4), 1179-1197.
doi: 10.1111/1467-8624.00341
pmid: 11480941
|
[16] |
Cook, W. L., & Kenny, D. A. (2005). The actor-partner interdependence model: A model of bidirectional effects in developmental studies. International Journal of Behavioral Development, 29(2), 101-109.
|
[17] |
De Clercq, B., Pfoertner, T. K., Elgar, F. J., Hublet, A., & Maes, L. (2014). Social capital and adolescent smoking in schools and communities: A cross-classified multilevel analysis. Social Science & Medicine, 119, 81-87.
|
[18] |
Dunn, E. C., Richmond, T. K., Milliren, C. E., & Subramanian, S. V. (2015). Using cross-classified multilevel models to disentangle school and neighborhood effects: An example focusing on smoking behaviors among adolescents in the United States. Health & Place, 31, 224-232.
|
[19] |
Gill, P. S., & Swartz, T. B. (2007). Bayesian analysis of dyadic data. American Journal of Mathematical and Management Sciences, 27(1-2), 73-92.
|
[20] |
Gistelinck, F., & Loeys, T. (2019). The actor-partner interdependence model for longitudinal dyadic data: An implementation in the SEM framework. Structural Equation Modeling: A Multidisciplinary Journal, 26(3), 329-347.
|
[21] |
Gistelinck, F., & Loeys, T. (2020). Multilevel autoregressive models for longitudinal dyadic data. TPM: Testing, Psychometrics Methodology in Applied Psychology, 27(3), 433-452.
|
[22] |
Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Multivariate Behavioral Research, 53(6), 820-841.
doi: 10.1080/00273171.2018.1446819
pmid: 29624092
|
[23] |
Hatcher, R. L., & Gillaspy, J. A. (2006). Development and validation of a revised short version of the Working Alliance Inventory. Psychotherapy Research, 16(1), 12-25.
|
[24] |
Iida, M., Savord, A., & Ledermann, T. (2023). Dyadic longitudinal models: A critical review. Personal Relationships, 30(2), 356-378.
|
[25] |
Kenny, D. A. (1994). Interpersonal perception: A social relations analysis. Guilford Press.
|
[26] |
Kenny, D. A. (1996). Models of non-independence in dyadic research. Journal of Social and Personal Relationships, 13(2), 279-294.
|
[27] |
Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic data analysis. Guilford Press.
|
[28] |
Kenny, D. A., & Winquist, L. (2001). The measurement of interpersonal sensitivity:Consideration of design, components, and unit of analysis. In J. A. Hall & F. J. Bernieri (Eds.), Interpersonal sensitivity: Theory and measurement (pp. 265-302). Lawrence Erlbaum Associates.
|
[29] |
Laurenceau, J. P., & Bolger, N. (2012). Analyzing diary and intensive longitudinal data from dyads. In M. Mehl & T. S. Conner (Eds.), Handbook of research methods for studying daily life (pp. 407-422). Guilford Press.
|
[30] |
Ledermann, T., & Kenny, D. A. (2017). Analyzing dyadic data with multilevel modeling versus structural equation modeling: A tale of two methods. Journal of Family Psychology, 31(4), 442-452.
doi: 10.1037/fam0000290
pmid: 28165269
|
[31] |
LeDoux, J. A., Gorman, C. A., & Woehr, D. J. (2012). The impact of interpersonal perceptions on team processes: A social relations analysis. Small Group Research, 43(3), 356-382.
|
[32] |
McNeish, D., & Hamaker, E. L. (2020). A primer on two- level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-635.
|
[33] |
Nestler, S., Geukes, K., Hutteman, R., & Back, M. D. (2017). Tackling longitudinal round-robin data: A social relations growth model. Psychometrika, 82(4), 1162-1181.
doi: 10.1007/s11336-016-9546-5
pmid: 27924408
|
[34] |
Nestler, S., Lüdtke, O., & Robitzsch, A. (2020). Maximum likelihood estimation of a social relations structural equation model. Psychometrika, 85, 870-889.
doi: 10.1007/s11336-020-09728-z
pmid: 33094388
|
[35] |
Nestler, S., Lüdtke, O., & Robitzsch, A. (2022). Analyzing longitudinal social relations model data using the social relations structural equation model. Journal of Educational and Behavioral Statistics, 47(2), 231-260.
|
[36] |
Planalp, E. M., Du, H., Braungart-Rieker, J. M., & Wang, L. (2017). Growth curve modeling to studying change: A comparison of approaches using longitudinal dyadic data with distinguishable dyads. Structural Equation Modeling: A Multidisciplinary Journal, 24(1), 129-147.
|
[37] |
Savord, A., McNeish, D., Iida, M., Quiroz, S., & Ha, T. (2023). Fitting the longitudinal actor-partner interdependence model as a dynamic structural equation model in Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 30(2), 296-314.
|
[38] |
van Zalk, M. H., & Denissen, J. (2015). Idiosyncratic versus social consensus approaches to personality: Self-view, perceived, and peer-review similarity. Journal of Personality and Social Psychology, 109(1), 121-141.
|
[39] |
Warner, R. M., Kenny, D. A., & Stoto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 1742-1757.
|