Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (5): 845-858.doi: 10.3724/SP.J.1042.2024.00845
• Regular Articles • Previous Articles Next Articles
HOU Hanchao, NI Shiguang(), LIN Shuya, WANG Pusheng
Received:
2023-03-29
Online:
2024-05-15
Published:
2024-03-05
Contact:
NI Shiguang
E-mail:ni.shiguang@sz.tsinghua.edu.cn
CLC Number:
HOU Hanchao, NI Shiguang, LIN Shuya, WANG Pusheng. When AI learns to empathize: Topics, scenarios, and optimization of empathy computing from a psychological perspective[J]. Advances in Psychological Science, 2024, 32(5): 845-858.
[1] | 彭凯平, 刘世群, 倪士光. (2018). 移动互联网时代的社会科学研究工具: 众包的争议与发展. 西北师大学报 (社会科学版) 55(3), 113-123. https://doi.org/10.16783/j.cnki.nwnus.2018.03.015 |
[2] | 苏悦, 刘明明, 赵楠, 刘晓倩, 朱廷劭. (2022). 基于社交媒体数据的心理指标识别建模: 机器学习的方法. 心理科学进展 29(4), 571-585. https://doi.org/10.3724/sp.J.1042.2021.00571 |
[3] |
王燕青, 龚少英, 姜甜甜, 吴亚男. (2022). 情感代理能否提高多媒体学习的效果? 心理科学进展, 30(7), 1524-1535. https://doi.org/10.3724/SP.J.1042.2022.01524
doi: 10.3724/SP.J.1042.2022.01524 URL |
[4] |
岳童, 黄希庭. (2016). 共情特质的神经生物学基础. 心理科学进展 24(9), 1368-1376. https://doi.org/10.3724/SP.J.1042.2016.01368
doi: 10.3724/SP.J.1042.2016.01368 URL |
[5] | Abdul-Mageed, M., Buffone, A., Peng, H., Giorgi, S., Eichstaedt, J., & Ungar, L. (2017). Recognizing pathogenic empathy in social media. Proceedings of the International AAAI Conference on Web and Social Media, 11(1), 448-451. https://doi.org/10.1609/icwsm.v11i1.14942 |
[6] | Alves-Oliveira, P., Sequeira, P., Melo, F. S., Castellano, G., & Paiva, A. (2019). Empathic robot for group learning. ACM Transactions on Interactive Intelligent Systems, 8(1), 1-34. https://doi.org/10.1145/3300188 |
[7] |
Asada, M. (2015). Towards artificial empathy. International Journal of Social Robotics, 7(1), 19-33. https://doi.org/10.1007/s12369-014-0253-z
doi: 10.1007/s12369-014-0253-z URL |
[8] |
Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59-64. https://doi.org/10.1038/s41586-018-0637-6
doi: 10.1038/s41586-018-0637-6 URL |
[9] | Barriere, V., Tafreshi, S., Sedoc, J., & Alqahtani, S. (2022). WASSA 2022 shared task: Predicting empathy, emotion and personality in reaction to news stories. In Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (pp. 214-227). Association for Computational Linguistics. |
[10] |
Bošnjaković, J., & Radionov, T. (2018). Empathy: Concepts, theories and neuroscientific basis. Alcoholism and Psychiatry Research, 54(2), 123-150. https://doi.org/10.20471/dec.2018.54.02.04
doi: 10.20471/apr URL |
[11] |
Brett, J. D., Becerra, R., Maybery, M. T., & Preece, D. A. (2023). The psychometric assessment of empathy: Development and validation of the Perth Empathy Scale. Assessment, 30(4), 1140-1156. https://doi.org/10.1177/10731911221086987
doi: 10.1177/10731911221086987 URL |
[12] | Buechel, S., Buffone, A., Slaff, B., Ungar, L., & Sedoc, J. (2018). Modeling empathy and distress in reaction to news stories. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 4758-4765). Association for Computational Linguistics. https://doi.org/10.18653/v1/D18-1507 |
[13] | Cai, Y. (2006). Empathic computing. In Y.Cai, & J.Abascal (Eds.), Ambient intelligence in everyday life (pp. 67-85). Springer Berlin Heidelberg. https://doi.org/10.1007/11825890_3 |
[14] |
Camacho-Morles, J., Slemp, G. R., Pekrun, R., Loderer, K., Hou, H., & Oades, L. G. (2021). Activity achievement emotions and academic performance: A meta-analysis. Educational Psychology Review, 33(3), 1051-1095. https://doi.org/10.1007/s10648-020-09585-3
doi: 10.1007/s10648-020-09585-3 URL |
[15] | Cao, S., Fu, D., Yang, X., Wermter, S., Liu, X., & Wu, H. (2021). Can AI detect pain and express pain empathy? Can AI detect pain and express pain empathy? A review from emotion recognition and a human-centered AI perspective. arXiv. https://doi.org/10.48550/arXiv.2110.04249 |
[16] | Chakravarthula, S. N., Xiao, B., Imel, Z. E., Atkins, D. C., & Georgiou, P. (2015). Assessing empathy using static and dynamic behavior models based on therapist’s language in addiction counseling. In Interspeech-2015 (pp. 668-672). https://doi.org/10.21437/Interspeech.2015-237 |
[17] | Chen, G.-D., Lee, J.-H., Wang, C.-Y., Chao, P.-Y., Li, L.-Y., & Li, T.-Y. (2012). An empathic avatar in a computer- aided learning program to encourage and persuade learners. Journal of Educational Technology & Society, 15(2), 62-72. http://www.jstor.org/stable/jeductechsoci.15.2.62 |
[18] | Chen, M. Y., Li, S., & Yang, Y. (2022). EmpHi: Generating empathetic responses with human-like intents. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 1063-1074). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.naacl-main.78 |
[19] |
Cornelius-White, J. (2007). Learner-centered teacher-student relationships are effective: A meta-analysis. Review of Educational Research, 77(1), 113-143. https://doi.org/10.3102/003465430298563
doi: 10.3102/003465430298563 URL |
[20] |
Cuff, B. M. P., Brown, S. J., Taylor, L., & Howat, D. J. (2014). Empathy: A Review of the concept. Emotion Review, 8(2), 144-153. https://doi.org/10.1177/1754073914558466
doi: 10.1177/1754073914558466 URL |
[21] |
Davis, M. H. (1983). Measuring individual differences in empathy: Evidence for a multidimensional approach. Journal of Personality and Social Psychology, 44(1), 113-126. https://doi.org/10.1037/0022-3514.44.1.113
doi: 10.1037/0022-3514.44.1.113 URL |
[22] |
de Waal, F. B. (2008). Putting the altruism back into altruism: The evolution of empathy. Annual Review of Psychology, 59, 279-300. https://doi.org/10.1146/annurev.psych.59.103006.093625
URL pmid: 17550343 |
[23] |
de Waal, F. B. M. (2012). The antiquity of empathy. Science, 336(6083), 874-876. https://doi.org/10.1126/science.1220999
doi: 10.1126/science.1220999 URL pmid: 22605767 |
[24] | D'mello, S., & Graesser, A.(2013). AutoTutor and affective autotutor: Learning by talking with cognitively and emotionally intelligent computers that talk back. ACM Transactions on Interactive Intelligent Systems, 2(4), Article 23. https://doi.org/10.1145/2395123.2395128 |
[25] |
Elliott, R., Bohart, A. C., Watson, J. C., & Greenberg, L. S. (2011). Empathy. Psychotherapy, 48(1), 43-49. https://doi. org/10.1037/a0022187
doi: 10.1037/a0022187 pmid: 21401273 |
[26] |
Gaume, J., Hallgren, K. A., Clair, C., Schmid Mast, M., Carrard, V., & Atkins, D. C. (2019). Modeling empathy as synchrony in clinician and patient vocally encoded emotional arousal: A failure to replicate. Journal of Counseling Psychology, 66(3), 341-350. https://doi.org/10.1037/cou0000322
doi: 10.1037/cou0000322 URL pmid: 30702323 |
[27] | Ge, Y., Li, W., Chen, F., Kayani, S., & Qin, G. (2021). The theories of the development of students: A factor to shape teacher empathy from the perspective of motivation. Frontiers in Psychology, 12, Article 736656. https://doi.org/10.3389/fpsyg.2021.736656 |
[28] | Gibson, J., Can, D., Xiao, B., Imel, Z. E., Atkins, D. C., Georgiou, P., & Narayanan, S. (2016). A deep learning approach to modeling empathy in addiction counseling. In Interspeech-2016 (pp. 1447-1451). https://doi.org/10.21437/Interspeech.2016-554 |
[29] | Gibson, J., Malandrakis, N., Romero, F., Atkins, D. C., & Narayanan, S. S. (2015). Predicting therapist empathy in motivational interviews using language features inspired by psycholinguistic norms. In Interspeech-2015 (pp. 1947-1951). https://doi.org/10.21437/interspeech.2016-554 |
[30] | Groh, M., Ferguson, C., Lewis, R., & Picard, R. W. (2022). Computational empathy counteracts the negative effects of anger on creative problem solving. In 2022 10th International Conference on Affective Computing and Intelligent Interaction (ACII) (pp. 1-8). IEEE. https://doi.org/10.1109/ACII55700.2022.9953869 |
[31] |
Grühn, D., Rebucal, K., Diehl, M., Lumley, M., & Labouvie- Vief, G. (2008). Empathy across the adult lifespan: Longitudinal and experience-sampling findings. Emotion, 8(6), 753-765. https://doi.org/10.1037/a0014123
doi: 10.1037/a0014123 URL pmid: 19102586 |
[32] |
Guo, Y. R., & Goh, D. H.-L. (2016). Evaluation of affective embodied agents in an information literacy game. Computers & Education, 103, 59-75. https://doi.org/10.1016/j.compedu.2016.09.013
doi: 10.1016/j.compedu.2016.09.013 URL |
[33] |
Hall, J. A., & Schwartz, R. (2019). Empathy present and future. The Journal of Social Psychology, 159(3), 225-243. https://doi.org/10.1080/00224545.2018.1477442
doi: 10.1080/00224545.2018.1477442 URL |
[34] | Hangartner, D., Gennaro, G., Alasiri, S., Bahrich, N., Bornhoft, A., Boucher, J., ... Donnay, K. (2021). Empathy-based counterspeech can reduce racist hate speech in a social media field experiment. Proceedings of the National Academy of Sciences, 118(50), Article e2116310118. https://doi.org/10.1073/pnas.2116310118 |
[35] | Hill, C. E. (2009). Helping skills: Facilitating, exploration, insight, and action. American Psychological Association. |
[36] |
Imel, Z. E., Barco, J. S., Brown, H. J., Baucom, B. R., Baer, J. S., Kircher, J. C., & Atkins, D. C. (2014). The association of therapist empathy and synchrony in vocally encoded arousal. Journal of Counseling Psychology, 61(1), 146-153. https://doi.org/10.1037/a0034943
doi: 10.1037/a0034943 URL pmid: 24274679 |
[37] | Ishii, R., Otsuka, K., Kumano, S., Higashinaka, R., & Tomita, J. (2018). Analyzing gaze behavior and dialogue act during turn-taking for estimating empathy skill level. In Proceedings of the 20th ACM International Conference on Multimodal Interaction (pp. 31-39). Association for Computing Machinery. https://doi.org/10.1145/3242969.3242978 |
[38] | Jing, A., Gupta, K., McDade, J., Lee, G. A., & Billinghurst, M. (2022). Comparing gaze-supported modalities with empathic mixed reality interfaces in remote collaboration. In 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 837-846). IEEE. https://doi.org/10.1109/ismar55827.2022.00102 |
[39] |
Jolliffe, D., & Farrington, D. P. (2006). Development and validation of the Basic Empathy Scale. Journal of Adolescence, 29(4), 589-611. https://doi.org/10.1016/j. adolescence.2005.08.010
doi: 10.1016/j.adolescence.2005.08.010 URL pmid: 16198409 |
[40] | Khanpour, H., Caragea, C., & Biyani, P. (2017). Identifying empathetic messages in online health communities. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2:Short Papers) (pp. 246-251). Asian Federation of Natural Language Processing. |
[41] | Kosinski, M. (2023). Theory of mind may have spontaneously emerged in large language models. arXiv. https://doi.org/10.48550/arXiv.2302.02083 |
[42] | Kumano, S., Otsuka, K., Mikami, D., & Yamato, J. (2011). Analyzing empathetic interactions based on the probabilistic modeling of the co-occurrence patterns of facial expressions in group meetings. In 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG) (pp. 43-50). IEEE. https://doi.org/10. 1109/FG.2011.5771440 |
[43] |
Leite, I., Pereira, A., Mascarenhas, S., Martinho, C., Prada, R., & Paiva, A. (2013). The influence of empathy in human-robot relations. International Journal of Human- Computer Studies, 71(3), 250-260. https://doi.org/10.1016/j.ijhcs.2012.09.005
doi: 10.1016/j.ijhcs.2012.09.005 URL |
[44] | Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., & Xie, X. (2023). Large language models understand and can be enhanced by emotional stimuli. arXiv. https://doi.org/10.48550/arXiv.2307.11760 |
[45] | Li, S., Lu, S., Ni, S., & Peng, K. (2019). Identifying psychological resilience in Chinese migrant youth through multidisciplinary language pattern decoding. Children and Youth Services Review, 107, Article 104506. https://doi.org/10.1016/j.childyouth.2019.104506 |
[46] | Lin, S., Lin, L., Hou, C., Chen, B., Li, J., & Ni, S. (2023). Empathy-based communication framework for chatbots: A mental health chatbot application and evaluation. 11th International Conference on Human-Agent Interaction, Gothenburg, Sweden. |
[47] | Lin, Z., Madotto, A., Shin, J., Xu, P., & Fung, P. (2019). MoEL: Mixture of empathetic listeners. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP- IJCNLP) (pp. 121-132). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1012 |
[48] | Litvak, M., Otterbacher, J., Ang, C. S., & Atkins, D. (2016). Social and linguistic behavior and its correlation to trait empathy. In Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES) (pp. 128-137). The COLING 2016 Organizing Committee. https://aclanthology.org/W16-4314 |
[49] | Liu, S., Zheng, C., Demasi, O., Sabour, S., Li, Y., Yu, Z., Jiang, Y., & Huang, M. (2021). Towards emotional support dialog systems. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (pp. 3469-3483). Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.acl-long.269 |
[50] |
Lomas, T. (2023). Stranger than we can imagine: The possibility and potential significance of non-human forms of consciousness and wellbeing. The Journal of Positive Psychology, 18(6), 807-826. https://doi.org/10.1080/17439760.2022.2131608
doi: 10.1080/17439760.2022.2131608 URL |
[51] | Loveys, K., Sagar, M., Billinghurst, M., Saffaryazdi, N., & Broadbent, E. (2022). Exploring empathy with digital humans. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 233-237). IEEE. https://doi.org/10.1109/VRW55335.2022.00055 |
[52] | Lv, X., Yang, Y., Qin, D., Cao, X., & Xu, H. (2022). Artificial intelligence service recovery: The role of empathic response in hospitality customers’ continuous usage intention. Computers in Human Behavior, 126. https://doi.org/10.1016/j.chb.2021.106993 |
[53] | Ma, F., Li, Y., Ni, S., Huang, S.-L., & Zhang, L. (2022). Data augmentation for audio-visual emotion recognition with an efficient multimodal conditional GAN. Applied Sciences, 12(1), Article 527. https://doi.org/10.3390/app12010527 |
[54] | Majumder, N., Hong, P., Peng, S., Lu, J., Ghosal, D., Gelbukh, A., Mihalcea, R., & Poria, S. (2020). MIME: MIMicking emotions for empathetic response generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 8968-8979). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-main.721 |
[55] | Mathur, L., Spitale, M., Xi, H., Li, J., & Matarić, M. J. (2021). Modeling user empathy elicited by a robot storyteller. In 2021 9th International Conference on Affective Computing and Intelligent Interaction (ACII) (pp. 1-8). IEEE. https://doi.org/10.1109/ACII52823.2021.9597416 |
[56] |
Meyers, S., Rowell, K., Wells, M., & Smith, B. C. (2019). Teacher empathy: A model of empathy for teaching for student success. College Teaching, 67(3), 160-168. https://doi.org/10.1080/87567555.2019.1579699
doi: 10.1080/87567555.2019.1579699 URL |
[57] |
Mooradian, T. A., Davis, M., & Matzler, K. (2011). Dispositional empathy and the hierarchical structure of personality. The American Journal of Psychology, 124(1), 99-109. https://doi.org/10.5406/amerjpsyc.124.1.0099
doi: 10.5406/amerjpsyc.124.1.0099 URL |
[58] |
Morelli, S. A., Ong, D. C., Makati, R., Jackson, M. O., & Zaki, J. (2017). Empathy and well-being correlate with centrality in different social networks. Proceedings of the National Academy of Sciences, 114(37), 9843-9847. https://doi.org/10.1073/pnas.1702155114
doi: 10.1073/pnas.1702155114 URL |
[59] |
Moyers, T. B., & Miller, W. R. (2013). Is low therapist empathy toxic? Psychology of Addictive Behaviors, 27(3), 878-884. https://doi.org/10.1037/a0030274
doi: 10.1037/a0030274 URL pmid: 23025709 |
[60] |
Oker, A., Pecune, F., & Declercq, C. (2020). Virtual tutor and pupil interaction: A study of empathic feedback as extrinsic motivation for learning. Education and Information Technologies, 25(5), 3643-3658. https://doi.org/10.1007/s10639-020-10123-5
doi: 10.1007/s10639-020-10123-5 URL |
[61] | Omitaomu, D., Tafreshi, S., Liu, T., Buechel, S., Callison-Burch, C., Eichstaedt, J., Ungar, L., & Sedoc, J. (2022). Empathic conversations: A multi-level dataset of contextualized conversations. arXiv. https://doi.org/10.48550/arXiv.2205.12698 |
[62] | OpenAI, J. A., Steven, A., Sandhini, A., Lama, A., Ilge, A., Florencia, L. A., ... Barret, Z. (2023). GPT-4 technical report. Retrieved March 01, 2023, from https://ui.adsabs.harvard.edu/abs/2023arXiv230308774O |
[63] | Pelau, C., Dabija, D.-C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, Article 106855. https://doi.org/10.1016/j.chb.2021.106855 |
[64] |
Preston, S. D., & de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25(1), 1-20. https://doi.org/10.1017/S0140525X02000018
doi: 10.1017/s0140525x02000018 URL pmid: 12625087 |
[65] | Qian, Y., Wang, B., Ma, S., Bin, W., Zhang, S., Zhao, D., Huang, K., & Hou, Y. (2023). Think twice: A human-like two-stage conversational agent for emotional response generation. arXiv. https://doi.org/10.48550/arXiv.2301.04907 |
[66] | Rashkin, H., Smith, E. M., Li, M., & Boureau, Y.-L. (2019). Towards empathetic open-domain conversation models:A new benchmark and dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 5370-5381). Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1534 |
[67] |
Reniers, R. L. E. P., Corcoran, R., Drake, R., Shryane, N. M., & Völlm, B. A. (2011). The QCAE: A questionnaire of cognitive and affective empathy. Journal of Personality Assessment, 93(1), 84-95. https://doi.org/10.1080/00223891.2010.528484
doi: 10.1080/00223891.2010.528484 URL pmid: 21184334 |
[68] |
Roorda, D. L., Koomen, H. M. Y., Spilt, J. L., & Oort, F. J. (2011). The influence of affective teacher-student relationships on students’ school engagement and achievement: A meta-analytic approach. Review of Educational Research, 81(4), 493-529. https://doi.org/10.3102/0034654311421793
doi: 10.3102/0034654311421793 URL |
[69] | Roshdy, A., Kork, S. A., Karar, A., Sabi, A. A., Barakeh, Z. A., ElSayed, F., Beyrouthy, T., & NAIT-ALI, A. (2021). Machine empathy: Digitizing human emotions. In 2021 International Symposium on Electrical, Electronics and Information Engineering (pp. 307-311). Association for Computing Machinery. https://doi.org/10.1145/3459104.3459154 |
[70] | Sabour, S., Zheng, C., & Huang, M. (2022). CEM:Commonsense-aware empathetic response generation. Proceedings of the AAAI Conference on Artificial Intelligence, 36(10), 11229-11237. https://doi.org/10.1609/aaai.v36i10.21373 |
[71] |
Schurz, M., Radua, J., Tholen, M. G., Maliske, L., Margulies, D. S., Mars, R. B., Sallet, J., & Kanske, P. (2021). Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychological Bulletin, 147(3), 293-327. https://doi.org/10.1037/bul0000303
doi: 10.1037/bul0000303 URL pmid: 33151703 |
[72] | Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C., & Althoff, T. (2021). Towards facilitating empathic conversations in online mental health support: A reinforcement learning approach. In Proceedings of the Web Conference 2021 (pp. 194-205). Association for Computing Machinery. https://doi.org/10.1145/3442381.3450097 |
[73] |
Sharma, A., Lin, I. W., Miner, A. S., Atkins, D. C., & Althoff, T. (2023). Human-AI collaboration enables more empathic conversations in text-based peer-to-peer mental health support. Nature Machine Intelligence, 5(1), 46-57. https://doi.org/10.1038/s42256-022-00593-2
doi: 10.1038/s42256-022-00593-2 URL |
[74] | Sharma, A., Miner, A. S., Atkins, D. C., & Althoff, T. (2020). A computational approach to understanding empathy expressed in text-based mental health support. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 5263-5276). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-main.425 |
[75] |
Stosic, M. D., Fultz, A. A., Brown, J. A., & Bernieri, F. J. (2022). What is your empathy scale not measuring? The convergent, discriminant, and predictive validity of five empathy scales. The Journal of Social Psychology, 162(1), 7-25. https://doi.org/10.1080/00224545.2021.1985417
doi: 10.1080/00224545.2021.1985417 URL |
[76] | Sun, H., Lin, Z., Zheng, C., Liu, S., & Huang, M. (2021). PsyQA: A Chinese dataset for generating long counseling text for mental health support. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 1489-1503). Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.findings-acl.130 |
[77] |
Terzis, V., Moridis, C. N., & Economides, A. A. (2012). The effect of emotional feedback on behavioral intention to use computer based assessment. Computers & Education, 59(2), 710-721. https://doi.org/10.1016/j.compedu.2012.03.003
doi: 10.1016/j.compedu.2012.03.003 URL |
[78] |
Tojib, D., Abdi, E., Tian, L., Rigby, L., Meads, J., & Prasad, T. (2023). What’s best for customers: Empathetic versus solution-oriented service robots. International Journal of Social Robotics, 15, 731-741. https://doi.org/10.1007/s12369-023-00970-w
doi: 10.1007/s12369-023-00970-w URL |
[79] | Tong, F., Lederman, R., D'Alfonso, S., Berry, K., & Bucci, S. (2022). Digital therapeutic alliance with fully automated mental health smartphone apps: A narrative review. Frontiers in Psychiatry, 13, Article 819623. https://doi.org/10.3389/fpsyt.2022.819623 |
[80] | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 6000-6010). Curran Associates Inc. https://dl.acm.org/doi/10.5555/3295222.3295349 |
[81] | Wambsganss, T., Soellner, M., Koedinger, K. R., & Leimeister, J. M. (2022). Adaptive empathy learning support in peer review scenarios. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (pp. 1-17). https://doi.org/10.1145/3491102.3517740 |
[82] | Wang, H. L., Wu, Z. Z., & Lang, J. Y. (2020). Emotional first aid dataset [Data set]. https://github.com/chatopera/efaqa-corpus-zh |
[83] | Wang, X., Li, X., Yin, Z., Wu, Y., & Liu, Jia. (2023). Emotional intelligence of large language models. arXiv. https://doi.org/10.48550/arXiv.2307.09042 |
[84] | Xiao, B., Bone, D., Van Segbroeck, M., Imel, Z. E., Atkins, D. C., Georgiou, P. G., & Narayanan, S. S. (2014). Modeling therapist empathy through prosody in drug addiction counseling. In Interspeech-2014 (pp. 213-217). https://doi.org/10.21437/Interspeech.2014-55 |
[85] | Xiao, B., Can, D., Georgiou, P. G., Atkins, D., & Narayanan, S. S. (2012). Analyzing the language of therapist empathy in motivational interview based psychotherapy. In Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (pp. 1-4). IEEE. |
[86] | Xiao, B., Imel, Z. E., Atkins, D. C., Georgiou, P. G., & Narayanan, S. S. (2015). Analyzing speech rate entrainment and its relation to therapist empathy in drug addiction counseling. In Interspeech-2015 (pp. 2489-2493). https://doi.org/10.21437/Interspeech.2015-537 |
[87] |
Xiao, B., Imel, Z. E., Georgiou, P., Atkins, D. C., & Narayanan, S. S. (2016). Computational analysis and simulation of empathic behaviors: A survey of empathy modeling with behavioral signal processing framework. Current Psychiatry Reports, 18(5), 1-11. https://doi.org/10.1007/s11920-016-0682-5
doi: 10.1007/s11920-015-0646-1 URL |
[88] | Xiao, B., Imel, Z. E., Georgiou, P. G., Atkins, D. C., & Narayanan, S. S. (2015). "Rate my therapist": Automated detection of empathy in drug and alcohol counseling via speech and language processing. PLoS One, 10(12), Article e0143055. https://doi.org/10.1371/journal.pone.0143055 |
[89] | Xu, A., Liu, Z., Guo, Y., Sinha, V., & Akkiraju, R. (2017). A new chatbot for customer service on social media. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 3506-3510). Association for Computing Machinery. https://doi.org/10.1145/3025453.3025496 |
[90] |
Yalçın, Ö. N., & DiPaola, S. (2020). Modeling empathy: Building a link between affective and cognitive processes. Artificial Intelligence Review, 53(4), 2983-3006. https://doi.org/10.1007/s10462-019-09753-0
doi: 10.1007/s10462-019-09753-0 URL |
[91] |
Zaki, J. (2014). Empathy: A motivated account. Psychological Bulletin, 140(6), 1608-1647. https://doi.org/10.1037/a0037679
doi: 10.1037/a0037679 URL pmid: 25347133 |
[92] |
Zhang, J., & Centola, D. (2019). Social networks and health: New developments in diffusion, online and offline. Annual Review of Sociology, 45(1), 91-109. https://doi.org/10.1146/annurev-soc-073117-041421
doi: 10.1146/soc.2019.45.issue-1 URL |
[93] | Zhou, K., Aiello, L. M., Scepanovic, S., Quercia, D., & Konrath, S. (2021). The language of situational empathy. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1-19. https://doi.org/10.1145/3449087 |
[94] | Zhu, S., Yu, T., Xu, T., Chen, H., Dustdar, S., Gigan, S., ... Pan, Y. (2023). Intelligent computing: The latest advances, challenges, and future. Intelligent Computing, 2, Article 0006. https://doi.org/10.34133/icomputing.0006 |
[1] | LI Junpeng, ZHOU Linshu, JIANG Jun, WANG Danni, JIANG Cunmei. The influence of music on prosocial behaviors and its mechanisms [J]. Advances in Psychological Science, 2024, 32(7): 1179-1194. |
[2] | WU Bo, ZHANG Aojie, CAO Fei. Professional design, user design, or AI design? The psychological mechanism of the source of design effect [J]. Advances in Psychological Science, 2024, 32(6): 995-1009. |
[3] | SHU Lifang, WANG Kui, WU Yueyan, CHEN Siyun. Multi-stage impacts of artificial intelligence coaches on consumers’ long-term goal pursuit and its mechanism [J]. Advances in Psychological Science, 2024, 32(3): 451-464. |
[4] | YIN Meng, NIU Xiongying. Dancing with AI: AI-employee collaboration in the systemic view [J]. Advances in Psychological Science, 2024, 32(1): 162-176. |
[5] | Wei Huang, Hengjiang Li, Diwei Wu, Huafu Chen, Hongmei Yan. Language Decoding for Visual Perception Based on Transformer [J]. Advances in Psychological Science, 2023, 31(suppl.): 11-11. |
[6] | TU Yan, HAO Po, LONG Lirong. Job replacement or job transformation? Definition, consequences, and sources of technology-driven job insecurity [J]. Advances in Psychological Science, 2023, 31(8): 1359-1373. |
[7] | DONG Wanghao, WANG Weijun, WANG Xingchao, LI Wenqing. The occurrence mechanism of short video indulgence from the perspective of human-computer interaction [J]. Advances in Psychological Science, 2023, 31(12): 2337-2349. |
[8] | TONG Yuguang, LI Ying, CHEN Jie. Warm reading: Clarifying the mechanisms of empathy in text reading [J]. Advances in Psychological Science, 2023, 31(11): 2025-2039. |
[9] | JIANG Luyuan, CAO Limei, QIN Xin, TAN Ling, CHEN Chen, PENG Xiaofei. Fairness perceptions of artificial intelligence decision-making [J]. Advances in Psychological Science, 2022, 30(5): 1078-1092. |
[10] | DENG Shichang, XU Qi, ZHANG Jingjing, LI Xiangqian. User acceptance mechanism and usage promotion strategy of AI services based on mind perception theory [J]. Advances in Psychological Science, 2022, 30(4): 723-737. |
[11] | YANG Qun, ZHU Bing, YU Yiming, ZHANG Jingmin, XUE Mengmeng. Prosociality increases under stress: Evidence from different types of prosocial preferences [J]. Advances in Psychological Science, 2022, 30(12): 2809-2824. |
[12] | YUAN Yuzhuo, LUO Fang. Early screening and diagnosis of autism spectrum disorder assisted by artificial intelligence [J]. Advances in Psychological Science, 2022, 30(10): 2303-2320. |
[13] | JIANG Liming, TIAN Xuetao, REN Ping, LUO Fang. A new type of mental health assessment using artificial intelligence technique [J]. Advances in Psychological Science, 2022, 30(1): 157-167. |
[14] | CHENG Cheng, GUO Peiyang, YANG Li, WANG Mengya. A cognition-affective processing framework of psychopathy based on the TriPM model [J]. Advances in Psychological Science, 2021, 29(9): 1628-1646. |
[15] | CAO Si-Qi, LIU Xun, WU Hai-Yan. Controllable empathy? The adjustability of empathy from a top-down view [J]. Advances in Psychological Science, 2021, 29(8): 1420-1429. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||