|
(*标识纳入元分析的文献)
|
[1] |
* 陈晨. (2021). 人工智能技术强度感知对员工离职意向的影响: 一个有调节的中介模型. 巢湖学院学报, 23(6), 31-41.
|
[2] |
* 高萍. (2021). 人工智能对金融业员工离职意愿的影响研究——基于感知组织支持和竞争心理氛围的调节作用. 企业改革与管理, (12), 81-83.
|
[3] |
* 韩明燕, 张毛龙, 胡恩华, 单红梅. (2023). 因参与而支持: 员工参与AI实施过程对其AI支持行为的影响. 经济管理, 45(5), 151-169.
|
[4] |
* 黄丽满, 宋晨鹏, 李军. (2020). 旅游企业员工人工智能焦虑对知识共享的作用机制——基于技术接受模型. 资源开发与市场, 36(11), 1192-1196+1258.
|
[5] |
* 刘智强, 王子婧, 程欢, 许玉平, 倪佳豪. (2024). 迎难而上: 知觉资源稀缺对员工突破性创造力的影响机制研究. 管理工程学报, 38(1), 88-100.
|
[6] |
麦劲壮, 李河, 方积乾, 刘小清, 饶栩栩. (2006). Meta分析中失安全系数的估计. 循证医学, (5), 297-300+303.
|
[7] |
苗蕊, 吕成戍, 鲁颜. (2024). 企业社交媒体使用与员工行为及心理结果间关系的元分析. 南开管理评论, 27(1), 200-212.
|
[8] |
* 裴嘉良, 刘善仕, 钟楚燕, 谌一璠. (2021). AI算法决策能提高员工的程序公平感知吗? 外国经济与管理, 43(11), 41-55.
|
[9] |
* 盛晓娟, 郭辉, 何勤. (2022). 人工智能技术运用何以提高员工任务绩效? 北京联合大学学报(人文社会科学版), 20(4), 85-94.
|
[10] |
卫旭华. (主编). (2021). 组织与管理研究中的元分析方法. 北京: 科学出版社.
|
[11] |
* 吴慈恩, 皮平凡, 关新华. (2023). 机器人性能特征如何影响员工工作幸福感——基于创新抵制理论与资源保存理论的双重视角. 旅游导刊, 7(2), 55-78.
doi: 10.12054/lydk.bisu.220
|
[12] |
* 徐广路, 王皓天. (2022). 技术冲击意识对员工变革支持意愿的影响研究——以人工智能发展为背景. 华东经济管理, 36(6), 119-128.
|
[13] |
* 徐广路, 王皓天. (2023). 人工智能冲击意识对员工职业满意度的影响: 工作压力和目标导向的作用. 中国人力资源开发, 40(7), 15-33.
|
[14] |
* 张恒, 高中华, 徐燕. (2024). AI技术替代感对工作场所人与AI合作意愿的影响机制. 软科学, 38(3), 107-114.
|
[15] |
* 祝楚琳, 王亚男, 何伶俐. (2022). 人工智能发展对员工工作幸福感的影响研究. 经营与管理, https://doi.org/10.16517/j.cnki.cn12-1034/f.20221227.004
|
[16] |
* 朱晓妹, 任晶晶, 何勤. (2020). 人工智能技术应用会引发员工的消极情绪吗?——基于资源保存理论的视角. 中国临床心理学杂志, 28(6), 1285-1288.
|
[17] |
* 朱晓妹, 王森, 何勤. (2021). 人工智能嵌入视域下岗位技能要求对员工工作旺盛感的影响研究. 外国经济与管理, 43(11), 15-25.
|
[18] |
* Abbas, S. M., Liu, Z., & Khushnood, M. (2023). When human meets technology: Unlocking hybrid intelligence role in breakthrough innovation engagement via self- extension and social intelligence. Journal of Computer Information Systems, 63(5), 1183-1200.
|
[19] |
Aghaei, S., Nematbakhsh, M. A., & Farsani, H. K. (2012). Evolution of the world wide web: From web 1.0 to web 4.0. International Journal of Web & Semantic Technology, 3(1), 1-10.
|
[20] |
Aleksander, I. (2017). Partners of humans: A realistic assessment of the role of robots in the foreseeable future. Journal of Information Technology, 32, 1-9.
|
[21] |
* Arias-Pérez, J., & Vélez-Jaramillo, J. (2022). Understanding knowledge hiding under technological turbulence caused by artificial intelligence and robotics. Journal of Knowledge Management, 26(6), 1476-1491.
|
[22] |
Aylett-Bullock, J., Luccioni, A. S., Pham, K. H., Lam, C. S. N., & Luengo-Oroz, M. A. (2020). Mapping the landscape of artificial intelligence applications against COVID-19. Journal of Artificial Intelligence Research, 69, 807-845.
|
[23] |
Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technological Forecasting and Social Change, 163, 120420.
|
[24] |
Bai, B., Dai, H., Zhang, D. J., Zhang, F., & Hu, H. (2022). The impacts of algorithmic work assignment on fairness perceptions and productivity: Evidence from field experiments. Manufacturing & Service Operations Management, 24(6), 3060-3078.
|
[25] |
Bakker, A. B., Demerouti, E., & Sanz-Vergel, A. I. (2014). Burnout and work engagement: The JD-R approach. Annual Review of Organizational Psychology and Organizational Behavior, 1(1), 389-411.
|
[26] |
Bakker, A. B., Demerouti, E., Taris, T. W., Schaufeli, W. B., & Schreurs, P. J. (2003). A multigroup analysis of the job demands-resources model in four home care organizations. International Journal of stress management, 10(1), 16-38.
|
[27] |
Balakrishnan, J., & Dwivedi, Y. K. (2024). Conversational commerce: Entering the next stage of AI-powered digital assistants. Annals of Operations Research, 333(2), 653-687.
|
[28] |
Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 1088-1101.
pmid: 7786990
|
[29] |
Bhargava, A., Bester, M. S., & Bolton, L. E. (2020). Employees’ perceptions of the implementation of robotics, artificial intelligence, and automation (RAIA) on job satisfaction, job security, and employability. Journal of Technology in Behavioral Science, 6(1), 106-113.
|
[30] |
Bock, D. E., Wolter, J. S., & Ferrell, O. C. (2020). Artificial intelligence: Disrupting what we know about services. Journal of Services Marketing, 34(3), 317-334.
|
[31] |
* Brachten, F., Brünker, F., Frick, N. R. J., Ross, B., & Stieglitz, S. (2020). On the ability of virtual agents to decrease cognitive load: An experimental study. Information Systems and e-Business Management, 18(2), 187-207.
|
[32] |
* Braganza, A., Chen, W., Canhoto, A., & Sap, S. (2021). Productive employment and decent work: The impact of AI adoption on psychological contracts, job engagement and employee trust. Journal of business research, 131, 485-494.
|
[33] |
* Brougham, D., & Haar, J. (2018). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239-257.
|
[34] |
* Brougham, D., & Haar, J. (2020). Technological disruption and employment: The influence on job insecurity and turnover intentions: A multi-country study. Technological Forecasting and Social Change, 161, 120276.
|
[35] |
Budhwar, P., Malik, A., De Silva, M. T., & Thevisuthan, P. (2022). Artificial intelligence-challenges and opportunities for international HRM: A review and research agenda. The International Journal of Human Resource Management, 33(6), 1065-1097.
|
[36] |
Cao, Y. (2021). Portrait-based academic performance evaluation of college students from the perspective of big data. International Journal of Emerging Technologies in Learning, 16(4), 95-106.
|
[37] |
Challen, R., Denny, J. C., Pitt, M. A., Gompels, L., Edwards, T., & Tsaneva-Atanasova, K. (2019). Artificial intelligence, bias and clinical safety. BMJ Quality & Safety, 28(3), 231-237.
|
[38] |
* Cheng, B., Lin, H., & Kong, Y. (2023). Challenge or hindrance? How and when organizational artificial intelligence adoption influences employee job crafting. Journal of Business Research, 164, 113987.
|
[39] |
Chuang, S. (2021). An empirical study of displaceable job skills in the age of robots. European Journal of Training and Development, 45(6/7), 617-632.
|
[40] |
Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds). (2009). The handbook of research synthesis and meta-analysis. Russell Sage Foundation.
|
[41] |
Corea, F. (2019). AI knowledge map:How to classify AI technologies. In F. Corea (Ed.), An introduction to data (Vol. 50, pp. 25-29). Springer.
|
[42] |
Cudré-Mauroux, A. (2011). Staff and challenging behaviours of people with developmental disabilities: Influence of individual and contextual factors on the transactional stress process. The British Journal of Development Disabilities, 57(112), 21-40.
|
[43] |
* Dabbous, A., Aoun Barakat, K., & Merhej Sayegh, M. (2022). Enabling organizational use of artificial intelligence: An employee perspective. Journal of Asia Business Studies, 16(2), 245-266.
|
[44] |
Dai, N. T., Kuang, X., & Tang, G. (2018). Differential weighting of objective versus subjective measures in performance evaluation: Experimental evidence. European Accounting Review, 27(1), 129-148.
|
[45] |
DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). The cognitive underpinnings of effective teamwork: A meta-analysis. Journal of Applied Psychology, 95(1), 32-53.
doi: 10.1037/a0017328
pmid: 20085405
|
[46] |
* Ding, L. (2021). Employees’ challenge-hindrance appraisals toward STARA awareness and competitive productivity: A micro-level case. International Journal of Contemporary Hospitality Management, 33(9), 2950-2969.
|
[47] |
* Ding, L. (2022). Employees’ STARA awareness and innovative work behavioural intentions:Evidence from US casual dining restaurants. In S. Tabari & W. Chen (Eds.), Global strategic management in the service industry: A perspective of the new era (pp. 17-56). Emerald Publishing Limited.
|
[48] |
Dunlap, R. D., & Lacity, M. C. (2017). Resolving tussles in service automation deployments: Service automation at Blue Cross Blue Shield North Carolina (BCBSNC). Journal of Information Technology Teaching Cases, 7(1), 29-34.
|
[49] |
* Dutta, D., & Mishra, S. K. (2021). Chatting with the CEO’s virtual assistant: Impact on climate for trust, fairness, employee satisfaction, and engagement. AIS Transactions on Human-Computer Interaction, 13(4), 431-452.
|
[50] |
* Dutta, D., Mishra, S. K., & Tyagi, D. (2022). Augmented employee voice and employee engagement using artificial intelligence-enabled chatbots: A field study. The International Journal of Human Resource Management, 34(12), 2451-2480.
|
[51] |
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C. R., Crick, T., … Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.
|
[52] |
Egger, M., & Smith, G. D. (1997). Meta-analysis: Potentials and promise. BMJ, 315(7119), 1371-1374.
doi: 10.1136/bmj.315.7119.1371
pmid: 9432250
|
[53] |
Fossen, F. M., & Sorgner, A. (2022). New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual- level data. Technological Forecasting and Social Change, 175, 121381.
|
[54] |
Gentilini, U., Almenfi, M. B. A., Orton, I., & Dale, P. (2020). Social protection and jobs responses to COVID-19: A real-time review of country measures. Retrieved July 10, 2020, from https://hdl.handle.net/10986/33635
|
[55] |
Grønsund, T., & Aanestad, M. (2020). Augmenting the algorithm: Emerging human-in-the-loop work configurations. The Journal of Strategic Information Systems, 29(2), 101614.
|
[56] |
Guo, H., & Polák, P. (2021). Artificial intelligence and financial technology FinTech:How AI is being used under the pandemic in 2020. In A. Hamdan, A. Ella Hassanien, A. Razzaque, & B. Alareeni (Eds.), The fourth industrial revolution: Implementation of artificial intelligence for growing business success (Vol. 935, pp. 169-186). Springer Cham.
|
[57] |
Haenlein, M., & Kaplan, A. M. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 14-15.
|
[58] |
Hakanen, J. J., Schaufeli, W. B., & Ahola, K. (2008). The job demands-resources model: A three-year cross-lagged study of burnout, depression, commitment, and work engagement. Work & stress, 22(3), 224-241.
|
[59] |
* Henkel, A. P., Bromuri, S., Iren, D., & Urovi, V. (2020). Half human, half machine-augmenting service employees with AI for interpersonal emotion regulation. Journal of Service Management, 31(2), 247-265.
|
[60] |
Hobfoll, S. E. (1990). Loss as the active ingredient in stress: Response to Arnold Lazarus. American Psychologist, 45(11), 1275-1276.
|
[61] |
Hobfoll, S. E. (2011). Conservation of resources theory: Its implication for stress, health, and resilience. In S. Folkman (Ed.), The Oxford handbook of stress, health, and coping (pp. 127-147). Oxford University Press.
|
[62] |
Hobfoll, S. E., Halbesleben, J. R. B., Neveu, J. P., & Westman, M. (2018). Conservation of resources in the organizational context: The reality of resources and their consequences. Annual Review of Organizational Psychology and Organizational Behavior, 5(1), 103-128.
|
[63] |
Howard, A., & Borenstein, J. (2020). AI, robots, and ethics in the age of COVID-19. Retrieved May 18, 2020, from https://sloanreview.mit.edu/article/ai-robots-and-ethics-in-the-age-of-covid-19/
|
[64] |
Huang, J., Saleh, S., & Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies, 10(3), 206-206.
|
[65] |
Huang, J., Wang, Y., & You, X. (2016). The job demands- resources model and job burnout: The mediating role of personal resources. Current Psychology, 35(4), 562-569.
|
[66] |
Hunter, J. E., Schmidt, F. L., & Judiesch, M. K. (1990). Individual differences in output variability as a function of job complexity. Journal of Applied Psychology, 75(1), 28-42.
|
[67] |
Ivanov, S., Webster, C., & Berezina, K. (2017). Adoption of robots and service automation by tourism and hospitality companies. Revista Turismo & Desenvolvimento, 27(28), 1501-1517.
|
[68] |
Jia, N., Luo, X., Fang, Z., & Liao, C. (2024). When and how artificial intelligence augments employee creativity. Academy of Management Journal, 67(1), 5-32.
|
[69] |
Jiang, L., & Lavaysse, L. M. (2018). Cognitive and affective job insecurity: A meta-analysis and a primary study. Journal of Management, 44(6), 2307-2342.
|
[70] |
Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at work: The new contested terrain of control. Academy of Management Annals, 14(1), 366-410.
|
[71] |
* Kensbock, J. M., & Stöckmann, C. (2021). “Big brother is watching you”: Surveillance via technology undermines employees’ learning and voice behavior during digital transformation. Journal of Business Economics, 91(4), 565-594.
|
[72] |
* Khaliq, A., Waqas, A., Nisar, Q. A., Haider, S., & Asghar, Z. (2022). Application of AI and robotics in hospitality sector: A resource gain and resource loss perspective. Technology in Society, 68, 101807.
|
[73] |
* Kim, Y. (2023). Examining the impact of frontline service robots service competence on hotel frontline employees from a collaboration perspective. Sustainability, 15(9), 7563.
|
[74] |
* Kong, H., Yuan, Y., Baruch, Y., Bu, N., Jiang, X., & Wang, K. (2021). Influences of artificial intelligence (AI) awareness on career competency and job burnout. International Journal of Contemporary Hospitality Management, 33(2), 717-734.
|
[75] |
Lane, M., & Williams, M. (2023). "Defining and classifying AI in the workplace". OECD Social, Employment and Migration Working Papers. OECD Publishing, Paris. https://doi.org/10.1787/59e89d7f-en
|
[76] |
Langer, M., & Landers, R. N. (2021). The future of artificial intelligence at work: A review on effects of decision automation and augmentation on workers targeted by algorithms and third-party observers. Computers in Human Behavior, 123, 106878.
|
[77] |
Lesener, T., Gusy, B., & Wolter, C. (2019). The job demands-resources model: A meta-analytic review of longitudinal studies. Work & stress, 33(1), 76-103.
|
[78] |
Lewig, K. A., Xanthopoulou, D., Bakker, A. B., Dollard, M. F., & Metzer, J. C. (2007). Burnout and connectedness among Australian volunteers: A test of the job demands- resources model. Journal of vocational behavior, 71(3), 429-445.
|
[79] |
Li, D., & Du, Y. (Eds). (2017). Artificial intelligence with uncertainty. CRC press.
|
[80] |
* Li, J., Bonn, M. A., & Ye, B. H. (2019). Hotel employee's artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tourism Management, 73, 172-181.
|
[81] |
Li, P., Sun, J.-M., Taris, T. W., Xing, L., & Peeters, M. C. W. (2021). Country differences in the relationship between leadership and employee engagement: A meta-analysis. Leadership Quarterly, 32(1), 101458.
|
[82] |
* Liang, X., Guo, G., Shu, L., Gong, Q., & Luo, P. (2022). Investigating the double-edged sword effect of AI awareness on employee's service innovative behavior. Tourism Management, 92, 104564.
|
[83] |
* Lingmont, D. N., & Alexiou, A. (2020). The contingent effect of job automating technology awareness on perceived job insecurity: Exploring the moderating role of organizational culture. Technological Forecasting and Social Change, 161, 120302.
|
[84] |
Lipsey, M. W., & Wilson, D. B. (Eds). (2001). Practical meta-analysis. SAGE publications, Inc.
|
[85] |
* Loureiro, S. M. C., Bilro, R. G., & Neto, D. (2022). Working with AI: Can stress bring happiness? Service Business, 17(1), 233-255.
|
[86] |
* Ma, C., & Ye, J. (2022). Linking artificial intelligence to service sabotage. The Service Industries Journal, 42(13-14), 1054-1074.
|
[87] |
Malik, A., Budhwar, P., & Kazmi, B. A. (2023). Artificial intelligence (AI)-assisted HRM: Towards an extended strategic framework. Human Resource Management Review, 33(1), 100940.
|
[88] |
Malik, A., Thevisuthan, P., & De Sliva, T. (2022). Artificial intelligence, employee engagement, experience, and HRM. In A. Malik (Ed.), Strategic human resource management and employment relations: An international perspective (pp. 171-184). Springer International Publishing.
|
[89] |
Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2021). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43(2), 334-354.
|
[90] |
* Man Tang, P., Koopman, J., McClean, S. T., Zhang, J. H., Li, C. H., De Cremer, D., … Ng, C. T. S. (2022). When conscientious employees meet intelligent machines: An integrative approach inspired by complementarity theory and role theory. Academy of Management Journal, 65(3), 1019-1054.
|
[91] |
* Marikyan, D., Papagiannidis, S., Rana, O. F., Ranjan, R., & Morgan, G. (2022). “Alexa, let’s talk about my productivity”: The impact of digital assistants on work productivity. Journal of Business Research, 142, 572-584.
|
[92] |
* Matsunaga, M. (2021). Uncertainty management, transformational leadership, and job performance in an AI-powered organizational context. Communication Monographs, 89(1), 118-139.
|
[93] |
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434.
|
[94] |
* Mirbabaie, M., Brünker, F., Möllmann Frick, N. R. J., & Stieglitz, S. (2021). The rise of artificial intelligence- understanding the AI identity threat at the workplace. Electronic Markets, 32(1), 73-99.
|
[95] |
* Mirbabaie, M., Stieglitz, S., Brünker, F., Hofeditz, L., Ross, B., & Frick, N. R. (2021). Understanding collaboration with virtual assistants-the role of social identity and the extended self. Business & Information Systems Engineering, 63, 21-37.
|
[96] |
* Nguyen, T. M., & Malik, A. (2022a). A two-wave cross-lagged study on AI service quality: The moderating effects of the job level and job role. British Journal of Management, 33(3), 1221-1237.
|
[97] |
* Nguyen, T. M., & Malik, A. (2022b). Impact of knowledge sharing on employees' service quality: The moderating role of artificial intelligence. International Marketing Review, 39(3), 482-508.
|
[98] |
Nauman, S., Zheng, C., & Naseer, S. (2020). Job insecurity and work-family conflict: A moderated mediation model of perceived organizational justice, emotional exhaustion and work withdrawal. International Journal of Conflict Management, 31(5), 729-751.
|
[99] |
* Odugbesan, J. A., Aghazadeh, S., Al Qaralleh, R. E., & Sogeke, O. S. (2023). Green talent management and employees’ innovative work behavior: The roles of artificial intelligence and transformational leadership. Journal of knowledge management, 27(3), 696-716.
|
[100] |
O'Neill, T. A., Allen, N. J., & Hastings, S. E. (2013). Examining the "pros" and "cons" of team conflict: A team-level meta-analysis of task, relationship, and process conflict. Human Performance, 26(3), 236-260.
|
[101] |
Oosthuizen, R. M. (2019). Smart technology, artificial intelligence, robotics and algorithms (STARA):Employees’ perceptions and wellbeing in future workplaces. In Potgieter, I., Ferreira, N., & Coetzee, M. (Eds.), Theory, research and dynamics of career wellbeing (pp. 17-40). Springer.
|
[102] |
Peterson, R. A., & Brown, S. P. (2005). On the use of beta coefficients in meta-analysis. Journal of Applied Psychology, 90(1), 175-181.
doi: 10.1037/0021-9010.90.1.175
pmid: 15641898
|
[103] |
Prasad Agrawal, K. (2023). Towards adoption of generative AI in organizational settings. Journal of Computer Information Systems, https://doi.org/10.1080/08874417.2023.2240744
|
[104] |
* Prentice, C., Wong, I. A., & Lin, Z. (2023). Artificial intelligence as a boundary-crossing object for employee engagement and performance. Journal of Retailing and Consumer Services, 73, 103376.
|
[105] |
* Presbitero, A., & Teng-Calleja, M. (2023). Job attitudes and career behaviors relating to employees' perceived incorporation of artificial intelligence in the workplace: A career self-management perspective. Personnel Review, 52(4), 1169-1187.
|
[106] |
* Qiu, H., Li, M., Bai, B., Wang, N., & Li, Y. (2022). The impact of AI-enabled service attributes on service hospitableness: The role of employee physical and psychological workload. International Journal of Contemporary Hospitality Management, 34(4), 1374-1398.
|
[107] |
Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation-augmentation paradox. Academy of Management Review, 46(1), 192-210.
|
[108] |
Raj, M., & Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organization Design, 8(1), 1-14.
|
[109] |
Rampersad, G. (2020). Robot will take your job: Innovation for an era of artificial intelligence. Journal of Business Research, 116, 68-74.
|
[110] |
Ren, J. (2021). Research on financial investment decision based on artificial intelligence algorithm. IEEE Sensors Journal, 21(22), 25190-25197.
|
[111] |
Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638-641.
|
[112] |
Rothstein, H. R., Sutton, A. J., & Borenstein, M. (2005). Publication bias in meta-analysis. In Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.), Publication bias in meta-analysis: Prevention, assessment and adjustments (pp. 1-7). John Wiley & Sons, Ltd.
|
[113] |
* Rožman, M., Oreški, D., & Tominc, P. (2023). Artificial- intelligence-supported reduction of employees’ workload to increase the company’s performance in today’s VUCA environment. Sustainability, 15(6), 5019.
|
[114] |
* Shaikh, F., Afshan, G., Anwar, R. S., Abbas, Z., & Chana, K. A. (2023). Analyzing the impact of artificial intelligence on employee productivity: The mediating effect of knowledge sharing and well-being. Asia Pacific Journal of Human Resources, 61(4), 794-820.
|
[115] |
* Singh, R., & Tarkar, P. (2022). Future of work:How artificial intelligence will change the dynamics of work culture and influence employees work satisfaction post-covid-19. In V. Goyal, M. Gupta, S. Mirjalili, & A. Trivedi (Eds.), Proceedings of International Conference on Communication and Artificial Intelligence: ICCAI 2021 (pp.239-260). Springer Nature Singapore, Singapore.
|
[116] |
Smith, A., & Anderson, J. (2014). AI, robotics, and the future of jobs. Pew Research Center, 6, 51.
|
[117] |
* Song, Y., Zhang, M., Hu, J., & Cao, X. (2022). Dancing with service robots: The impacts of employee-robot collaboration on hotel employees’ job crafting. International Journal of Hospitality Management, 103, 103220.
|
[118] |
* Tahir, K. H. K., Iqbal, A., & Khudai, M. S. (2021). Articulating manager’s skills and employee performance management through artificial intelligence. Multicultural Education, 7(10), Article e5646563. http://doi.org/10.5281/zenodo.5646563
|
[119] |
* Tang, P. M., Koopman, J., Elfenbein, H. A., Zhang, J. H., De Cremer, D., Li, C. H., & Chan, E. T. (2022). Using robots at work during the COVID-19 crisis evokes passion decay: Evidence from field and experimental studies. Applied Psychology, 71(3), 881-911.
|
[120] |
Terminio, R., & Rimbau Gilabert, E. (2018). The digitalization of the working environment:The advent of robotics, automation, and artificial intelligence (RAAI) from the employees perspective-a scoping review. In M. Coeckelbergh, J. Loh, M. Funk, J. Seibt, & M. Nørskov (Eds.), Envisioning robots in society-power, politics and public space (pp. 166-177). IOS Press, Amsterdam.
|
[121] |
* Tong, S., Jia, N., Luo, X., & Fang, Z. (2021). The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance. Strategic Management Journal, 42(9), 1600-1631.
|
[122] |
Torre, D. L., Colapinto, C., Durosini, I., & Triberti, S. (2021). Team formation for human-artificial intelligence collaboration in the workplace: A goal programming model to foster organizational change. IEEE Transactions on Engineering Management, 70(5), 1966-1976.
|
[123] |
Tversky, A., & Kahneman, D. (1996). On the reality of cognitive illusions. Psychological Review, 103(3), 582-591.
pmid: 8759048
|
[124] |
Vaish, A., Grossmann, T., & Woodward, A. (2008). Not all emotions are created equal: The negativity bias in social-emotional development. Psychological Bulletin, 134(3), 383-403.
doi: 10.1037/0033-2909.134.3.383
pmid: 18444702
|
[125] |
* Verma, S., & Singh, V. (2022). Impact of artificial intelligence-enabled job characteristics and perceived substitution crisis on innovative work behavior of employees from high-tech firms. Computers in Human Behavior, 131, 107215.
|
[126] |
Walsh, G., Yang, Z., Dose, D., & Hille, P. (2015). The effect of job-related demands and resources on service employees’ willingness to report complaints: Germany versus China. Journal of Service Research, 18(2), 193-209.
|
[127] |
* Wang, H., Zhang, H., Chen, Z., Zhu, J., & Zhang, Y. (2022). Influence of artificial intelligence and robotics awareness on employee creativity in the hotel industry. Frontiers in Psychology, 13, 834160.
|
[128] |
* Wang, W., Chen, L., Xiong, M., & Wang, Y. (2023). Accelerating AI adoption with responsible AI signals and employee engagement mechanisms in health care. Information Systems Frontiers, 25(6), 2239-2256.
|
[129] |
Wang, X., Lin, X., & Shao, B. (2022). How does artificial intelligence create business agility? Evidence from chatbots. International Journal of Information Management, 66, 102535.
|
[130] |
* Wijayati, D. T., Rahman, Z., Rahman, M. F. W., Arifah, I. D. C., & Kautsar, A. (2022). A study of artificial intelligence on employee performance and work engagement: The moderating role of change leadership. International Journal of Manpower, 43(2), 486-512.
|
[131] |
* Xu, G., Xue, M., & Zhao, J. (2023a). The association between artificial intelligence awareness and employee depression: The mediating role of emotional exhaustion and the moderating role of perceived organizational support. International Journal of Environmental Research and Public Health, 20(6), 5147.
|
[132] |
* Xu, G., Xue, M., & Zhao, J. (2023b). The relationship of artificial intelligence opportunity perception and employee workplace well-being: A moderated mediation model. International Journal of Environmental Research and Public Health, 20(3), 1974.
|
[133] |
* Yam, K. C., Goh, E. Y., Fehr, R., Lee, R., Soh, H., & Gray, K. (2022). When your boss is a robot: Workers are more spiteful to robot supervisors that seem more human. Journal of Experimental Social Psychology, 102, 104360.
|
[134] |
* Yu, H., Shum, C., Alcorn, M., Sun, J., & He, Z. (2022). Robots can’t take my job: Antecedents and outcomes of Gen Z employees’ service robot risk awareness. International Journal of Contemporary Hospitality Management, 34(8), 2971-2988.
|
[135] |
Zel, S., & Kongar, E. (2020, September). Transforming digital employee experience with artificial intelligence. In 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G) (pp. 176-179). IEEE.
|
[136] |
* Zeng, X., Li, S., & Yousaf, Z. (2022). Artificial intelligence adoption and digital innovation: How does digital resilience act as a mediator and training protocols as a moderator? Sustainability, 14(14), 8286.
|
[137] |
Zhang, H., Cui, N., Chen, D., Zou, P., Shao, J., Wang, X., … Zheng, D. (2021). Social support, anxiety symptoms, and depression symptoms among residents in standardized residency training programs: The mediating effects of emotional exhaustion. BMC Psychiatry, 21, 1-8.
|
[138] |
Zhang, M., Geng, R., Hong, Z., Song, W., & Wang, W. (2020). The double-edged sword effect of service recovery awareness of frontline employees: From a job demands- resources perspective. International Journal of Hospitality Management, 88, 102536.
|
[139] |
* Zhu, Y. Q., & Kanjanamekanant, K. (2022). Human-bot co-working: Job outcomes and employee responses. Industrial Management & Data Systems, 123(2), 515-533.
|
[140] |
Zirar, A., Ali, S. I., & Islam, N. (2023). Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda. Technovation, 124, 102747.
|