Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (4): 851-862.doi: 10.3724/SP.J.1042.2022.00851
• Regular Articles • Previous Articles Next Articles
LIU Xiaohan, CHEN Minglong, GUO Jing()
Received:
2021-05-06
Online:
2022-04-15
Published:
2022-02-22
Contact:
GUO Jing
E-mail:jing624218@163.com
CLC Number:
LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children[J]. Advances in Psychological Science, 2022, 30(4): 851-862.
时间 | 国家 | 文献 | 样本量 | 年龄 | 主要变量 | 变量数量 | 因变量测量 | 分类器 | 训练方法 | 评价指标 |
---|---|---|---|---|---|---|---|---|---|---|
2017 | 美国 | Saxe et al., | 165 | 7~18 | 儿童发展、人口统计学信息、父母症状、压力、基因、神经内分泌和心理生理反应、受伤程度、儿童症状和功能 | 105个 | 加州大学洛杉矶分校创伤后应激障碍反应指数 | SVM;RF; Lasso回归 | 5折交 叉验证 | AUC = 0.75 |
2020 | 中国 | Ge et al., | 2099 | 8~19 | 人口统计学信息、地震经历、睡眠、心情、躯体症状和日常功能 | 5个方面 | 修订版儿童事件影响量表 | CART | 5折交 叉验证 | AUC = 0.66 ~ 0.80 |
2020 | 中国 | Li et al., | 46 | 11~16 | 静息态功能磁共振成像:海马亚区——CA1、CA2、CA3、CA4、齿状回、下托及海马伞等 | 1个方面 | 创伤后应激障碍评估表 | RF | 5折交 叉验证 | AUC = 0.65 |
2020 | 土耳其 | Ucuz et al., | 170 | 5~17 | 年龄等人口统计学信息、虐待类型、虐待次数等虐待相关信息、事件报告者 | 10个 | 精神障碍诊断和统计手册 | ANNs | 3折交 叉验证 | 准确度:99.2% |
2020 | 土耳其 | Gokten & Uyulan, | 372 | 均数13.77 | 性别年龄等人口统计学信息、吸烟饮酒等生活习惯信息、被虐待的经历程度信息、精神状态 | 20个 | 精神障碍诊断和统计手册 | RF | 10折交叉验证 | AUC = 0.76 |
时间 | 国家 | 文献 | 样本量 | 年龄 | 主要变量 | 变量数量 | 因变量测量 | 分类器 | 训练方法 | 评价指标 |
---|---|---|---|---|---|---|---|---|---|---|
2017 | 美国 | Saxe et al., | 165 | 7~18 | 儿童发展、人口统计学信息、父母症状、压力、基因、神经内分泌和心理生理反应、受伤程度、儿童症状和功能 | 105个 | 加州大学洛杉矶分校创伤后应激障碍反应指数 | SVM;RF; Lasso回归 | 5折交 叉验证 | AUC = 0.75 |
2020 | 中国 | Ge et al., | 2099 | 8~19 | 人口统计学信息、地震经历、睡眠、心情、躯体症状和日常功能 | 5个方面 | 修订版儿童事件影响量表 | CART | 5折交 叉验证 | AUC = 0.66 ~ 0.80 |
2020 | 中国 | Li et al., | 46 | 11~16 | 静息态功能磁共振成像:海马亚区——CA1、CA2、CA3、CA4、齿状回、下托及海马伞等 | 1个方面 | 创伤后应激障碍评估表 | RF | 5折交 叉验证 | AUC = 0.65 |
2020 | 土耳其 | Ucuz et al., | 170 | 5~17 | 年龄等人口统计学信息、虐待类型、虐待次数等虐待相关信息、事件报告者 | 10个 | 精神障碍诊断和统计手册 | ANNs | 3折交 叉验证 | 准确度:99.2% |
2020 | 土耳其 | Gokten & Uyulan, | 372 | 均数13.77 | 性别年龄等人口统计学信息、吸烟饮酒等生活习惯信息、被虐待的经历程度信息、精神状态 | 20个 | 精神障碍诊断和统计手册 | RF | 10折交叉验证 | AUC = 0.76 |
[1] | 周志华. (2018). 机器学习. 清华大学出版社. |
[2] |
Alisic, E., Zalta, A. K., van Wesel, F., Larsen, S. E., Hafstad, G. S., Hassanpour, K., & Smid, G. E. (2014). Rates of post-traumatic stress disorder in trauma-exposed children and adolescents: Meta-analysis. British Journal of Psychiatry, 204(5), 335-340. https://doi.org/10.1192/bjp.bp.113.131227
doi: 10.1192/bjp.bp.113.131227 URL |
[3] |
Al-Sahaf, H., Bi, Y., Chen, Q., Lensen, A., Mei, Y., Sun, Y., Tran, B., Xue, B., & Zhang, M. (2019). A survey on evolutionary machine learning. Journal of the Royal Society of New Zealand, 49(2), 205-228. https://doi.org/10.1080/03036758.2019.1609052
doi: 10.1080/03036758.2019.1609052 URL |
[4] |
Altman, D. G., Vergouwe, Y., Royston, P., & Moons, K. G. M. (2009). Prognosis and prognostic research: Validating a prognostic model. British Medical Journal, 338, b605. https://doi.org/10.1136/bmj.b605
doi: 10.1136/bmj.b605 URL |
[5] | Bedi, G., Carrillo, F., Cecchi, G. A., Slezak, D. F., Sigman, M., Mota, N. B., ... Corcoran, C. M. (2015). Automated analysis of free speech predicts psychosis onset in high-risk youths. Nature Partner Journals Schizophrenia, 15030, 1-7. |
[6] |
Bonanno, G. A. (2004). Loss, trauma, and human resilience: Have we underestimated the human capacity to thrive after extremely aversive events? American Psychologist, 59(1), 20-28. https://doi.org/10.1037/0003-066X.59.1.20
doi: 10.1037/0003-066X.59.1.20 URL pmid: 14736317 |
[7] | Bonanno, G. A., & Diminich, E. D. (2013). Annual research review: Positive adjustment to adversity-Trajectories of minimal-impact resilience and emergent resilience. Journal of Child Psychology and Psychiatry and Allied Disciplines, 54(4), 378-401. https://doi.org/10.1111/jcpp.12021 |
[8] |
Bonanno, G. A., Westphal, M., & Mancini, A. D. (2011). Resilience to loss and potential trauma. Annual Review of Clinical Psychology, 7, 511-535. https://doi.org/10.1146/annurev-clinpsy-032210-104526
doi: 10.1146/annurev-clinpsy-032210-104526 URL pmid: 21091190 |
[9] |
Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199-231. https://doi.org/10.1214/ss/1009213726
doi: 10.1214/ss/1009213725 URL |
[10] | Brownlee, J. (2016). Master machine learning algorithms: Discover how they work and implement them from scratch. https://max.book118.com/html/2018/0818/8042001075001120.shtm |
[11] |
Bryant, R. A., Nickerson, A., Creamer, M., O’Donnell, M., Forbes, D., Galatzer-Levy, I., McFarlane, A. C., & Silove, D. (2015). Trajectory of post-traumatic stress following traumatic injury: 6-year follow-up. British Journal of Psychiatry, 206(5), 417-423. https://doi.org/10.1192/bjp.bp.114.145516
doi: 10.1192/bjp.bp.114.145516 URL |
[12] | Cancilliere, M. K., Kavanaugh, B., Bodzy, M., & Holler, K. (2021). Psychiatric outcomes of childhood maltreatment: A retrospective chart review from a children’s psychiatric inpatient program. Child Psychiatry & Human Development, https://doi.org/10.1007/s10578-021-01209-3 |
[13] |
Chekroud, A. M., Bondar, J., Delgadillo, J., Doherty, G., Wasil, A., Fokkema, M., ... Choi, K. (2021). The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 20(2), 154-170. https://doi.org/10.1002/wps.20882
doi: 10.1002/wps.v20.2 URL |
[14] |
Cheng, J., Liang, Y. M., Zhou, Y. Y., Eli, B., & Liu, Z. K. (2019). Trajectories of PTSD symptoms among children who survived the Lushan earthquake: A four-year longitudinal study. Journal of Affective Disorders, 252(1), 421-427. https://doi.org/10.1016/j.jad.2019.04.047
doi: 10.1016/j.jad.2019.04.047 URL |
[15] |
de Young, A. C., & Landolt, M. A. (2018). PTSD in children below the age of 6 years. Current Psychiatry Reports, 20(11), 97. https://doi.org/10.1007/s11920-018-0966-z
doi: 10.1007/s11920-018-0966-z URL |
[16] |
Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636, 120 ways to have posttraumatic stress disorder. Perspectives on Psychological Science, 8(6), 651-662. https://doi.org/10.1177/1745691613504115
doi: 10.1177/1745691613504115 URL pmid: 26173229 |
[17] |
Galatzer-Levy, I. R., Huang, S. H., & Bonanno, G. A. (2018). Trajectories of resilience and dysfunction following potential trauma: A review and statistical evaluation. Clinical Psychology Review, 63, 41-55. https://doi.org/10.1016/j.cpr.2018.05.008
doi: S0272-7358(18)30053-9 URL pmid: 29902711 |
[18] |
Galatzer-Levy, I. R., Karstoft, K.-I., Statnikov, A., & Shalev, A. Y. (2014). Quantitative forecasting of PTSD from early trauma responses: A machine learning application. Journal of Psychiatric Research, 59, 68-76. https://doi.org/10.1016/j.jpsychires.2014.08.017
doi: 10.1016/j.jpsychires.2014.08.017 URL pmid: 25260752 |
[19] |
Galatzer-Levy, I. R., Ma, S., Statnikov, A., Yehuda, R., & Shalev, A. Y. (2017). Utilization of machine learning for prediction of post-traumatic stress: A re-examination of cortisol in the prediction and pathways to non-remitting PTSD. Translational Psychiatry, 7(3), e1070. https://doi. org/10.1038/tp.2017.38
doi: 10.1038/tp.2017.38 URL |
[20] |
Ge, F., Li, Y., Yuan, M., Zhang, J., & Zhang, W. (2020). Identifying predictors of probable posttraumatic stress disorder in children and adolescents with earthquake exposure: A longitudinal study using a machine learning approach. Journal of Affective Disorders, 264, 483-493. https://doi.org/10.1016/j.jad.2019.11.079
doi: 10.1016/j.jad.2019.11.079 URL |
[21] |
Gokten, E. S., & Uyulan, C. (2021). Prediction of the development of depression and post-traumatic stress disorder in sexually abused children using a random forest classifier. Journal of Affective Disorders, 279, 256-265. https://doi.org/10.1016/j.jad.2020.10.006
doi: 10.1016/j.jad.2020.10.006 URL pmid: 33074145 |
[22] |
Hagan, M. J., Gentry, M., Ippen, C. G., & Lieberman, A. F. (2018). PTSD with and without dissociation in young children exposed to interpersonal trauma. Journal of Affective Disorders, 227, 536-541. https://doi.org/10.1016/j.jad.2017.11.070
doi: 10.1016/j.jad.2017.11.070 URL |
[23] | Hiller, R. M., Meiser-Stedman, R., Fearon, P., Lobo, S., McKinnon, A., Fraser, A., & Halligan, S. L. (2016). Research Review: Changes in the prevalence and symptom severity of child post-traumatic stress disorder in the year following trauma - A meta-analytic study. Journal of Child Psychology and Psychiatry and Allied Disciplines, 57(8), 884-898. https://doi.org/10.1111/jcpp.12566 |
[24] | Hinrichs, R., van Rooij, S. J. H., Michopoulos, V., Schultebraucks, K., Winters, S., Maples-Keller, J., ... Jovanovic, T. (2019). Increased skin conductance response in the immediate aftermath of trauma predicts PTSD risk. Chronic Stress, 3. https://doi.org/10.1177/2470547019844441 |
[25] |
Jensen, T. K., Skar, A. M. S., Andersson, E. S., & Birkeland, M. S. (2019). Long-term mental health in unaccompanied refugee minors: Pre- and post-flight predictors. European Child and Adolescent Psychiatry, 28(12), 1671-1682. https://doi.org/10.1007/s00787-019-01340-6
doi: 10.1007/s00787-019-01340-6 URL pmid: 31004294 |
[26] |
Jensen, T. K., Skårdalsmo, E. B. M., & Fjermestad, K. W. (2014). Development of mental health problems-A follow-up study of unaccompanied refugee minors. Child and Adolescent Psychiatry and Mental Health, 8(1), 29-39. https://doi.org/10.1186/1753-2000-8-29
doi: 10.1186/1753-2000-8-29 URL |
[27] |
Jones, D. T. (2019). Setting the standards for machine learning in biology. Nature Reviews Molecular Cell Biology, 20, 659-660. https://doi.org/10.1038/s41580-019-0176-5
doi: 10.1038/s41580-019-0176-5 URL |
[28] |
Karstoft, K.-I., Galatzer-Levy, I. R., Statnikov, A., Li, Z., & Shalev, A. Y. (2015). Bridging a translational gap: Using machine learning to improve the prediction of PTSD. BioMed Central Psychiatry, 15, 30. https://doi.org/10.1186/s12888-015-0399-8
doi: 10.1186/s12888-015-0399-8 URL |
[29] |
Kelly, J., Gooding, P., Pratt, D., Ainsworth, J., Welford, M., & Tarrier, N. (2012). Intelligent real-time therapy: Harnessing the power of machine learning to optimise the delivery of momentary cognitive-behavioural interventions. Journal of Mental Health, 21(4), 404-414. https://doi.org/10.3109/09638237.2011.638001
doi: 10.3109/09638237.2011.638001 URL |
[30] | Koprowski, R., & Foster, K. R. (2018). Machine learning and medicine: Book review and commentary. Biomedical Engineering Online, 17(1), 17. https://doi.org/10.1186/s12938-018-0449-9 |
[31] |
Lai, B. S., Lewis, R., Livings, M. S., La Greca, A. M., & Esnard, A.-M. (2017). Posttraumatic stress symptom trajectories among children after disaster exposure: A review. Journal of Traumatic Stress, 30(6), 571-582. https://doi.org/10.1002/jts.22242
doi: 10.1002/jts.2017.30.issue-6 URL |
[32] |
Li, L., Pan, N., Zhang, L., Lui, S., Huang, X., Xu, X., Wang, S., Lei, D., Li, L., Kemp, G. J., & Gong, Q. (2020). Hippocampal subfield alterations in pediatric patients with post-traumatic stress disorder. Social Cognitive and Affective Neuroscience, 16(3), 334-344. https://doi.org/10.1093/scan/nsaa162
doi: 10.1093/scan/nsaa162 URL pmid: 33315100 |
[33] |
Love, J., & Zatzick, D. (2014). Screening and intervention for comorbid substance disorders, PTSD, depression, and suicide: A trauma center survey. Psychiatric Services, 65(7), 918-923. https://doi.org/10.1176/appi.ps.201300399
doi: 10.1176/appi.ps.201300399 URL |
[34] |
Masten, A. S., & Narayan, A. J. (2012). Child development in the context of disaster, war, and terrorism: Pathways of risk and resilience. Annual Review of Psychology, 63, 227-257. https://doi.org/10.1146/annurev-psych-120710-100356
doi: 10.1146/annurev-psych-120710-100356 URL pmid: 21943168 |
[35] |
Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J., & Jovanovic, T. (2017). Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 42(1), 254-270. https://doi. org/10.1038/npp.2016.146
doi: 10.1038/npp.2016.146 pmid: 27510423 |
[36] |
Mueller, A., Candrian, G., Kropotov, J. D., Ponomarev, V. A., & Baschera, G.-M. (2010). Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomedical Physics, 4(S1), 1-12. https://doi.org/10.1186/1753-4631-4-s1-s1
doi: 10.1186/1753-4631-4-1 URL |
[37] |
Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. The New England Journal of Medicine, 380(14), 1347-1358.
doi: 10.1056/NEJMra1814259 pmid: 30943338 |
[38] |
Ramos-Lima, L. F., Waikamp, V., Antonelli-Salgado, T., Passos, I. C., & Freitas, L. H. M. (2020). The use of machine learning techniques in trauma-related disorders: A systematic review. Journal of Psychiatric Research, 121, 159-172. https://doi.org/10.1016/j.jpsychires.2019.12.001
doi: S0022-3956(19)31102-1 URL pmid: 31830722 |
[39] |
Rangaprakash, D., Dretsch, M. N., Venkataraman, A., Katz, J. S., Denney, T. S. J., & Deshpande, G. (2018). Identifying disease foci from static and dynamic effective connectivity networks: Illustration in soldiers with trauma. Human Brain Mapping, 39(1), 264-287. https://doi.org/10.1002/hbm.23841
doi: 10.1002/hbm.23841 URL pmid: 29058357 |
[40] |
Saxe, G. N., Ma, S., Ren, J., & Aliferis, C. (2017). Machine learning methods to predict child posttraumatic stress: A proof of concept study. BioMed Central Psychiatry, 17(1), 223. https://doi.org/10.1186/s12888-017-1384-1
doi: 10.1186/s12888-017-1384-1 URL |
[41] |
Scheeringa, M. S., Wright, M. J., Hunt, J. P., & Zeanah, C. H. (2006). Factors affecting the diagnosis and prediction of PTSD symptomatology in children and adolescents. American Journal of Psychiatry, 163(4), 644-651. https://doi.org/10.1176/ajp.2006.163.4.644
URL pmid: 16585439 |
[42] |
Schultebrauck, K., & Galatzer-Levy, I. R. (2019). Machine learning for prediction of posttraumatic stress and resilience following trauma: An overview of basic concepts and recent advances. Journal of Traumatic Stress, 32(2), 215-225. https://doi.org/10.1002/jts.22384
doi: 10.1002/jts.2019.32.issue-2 URL |
[43] |
Schultebraucks, K., Rombold-Bruehl, F., Wingenfeld, K., Hellmann-Regen, J., Otte, C., & Roepke, S. (2019). Heightened biological stress response during exposure to a trauma film predicts an increase in intrusive memories. Journal of Abnormal Psychology, 128(7), 645-657. https://doi.org/10.1037/abn0000440
doi: 10.1037/abn0000440 URL pmid: 31282686 |
[44] |
Schultebraucks, K., Shalev, A. Y., Michopoulos, V., Grudzen, C. R., Shin, S.-M., Stevens, J. S., ... Galatzer-Levy, I. R. (2020). A validated predictive algorithm of post- traumatic stress course following emergency department admission after a traumatic stressor. Nature Medicine, 26(7), 1084-1088. https://doi.org/10.1038/s41591-020-0951-z
doi: 10.1038/s41591-020-0951-z URL pmid: 32632194 |
[45] | Schultebraucks, K., Yadav, V., Shalev, A. Y., Bonanno, G. A., & Galatzer-Levy, I. R. (2020). Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychological Medicine, 1-11. https://doi.org/10.1017/S0033291720002718 |
[46] |
Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-traumatic stress disorder. New England Journal of Medicine, 376(25), 2459-2469. https://doi.org/10.1056/NEJMra1612499
doi: 10.1056/NEJMra1612499 URL |
[47] | Sumathi, M., & Poorna, D. B. (2016). Prediction of mental health problems among children using machine learning techniques. International Journal of Advanced Computer Science and Applications, 7(1), 552-557. https://doi.org/10.14569/ijacsa.2016.070176 |
[48] |
Takahashi, Y., Yoshizoe, K., Ueki, M., Tamiya, G., Zhiqian, Y., Utsumi, Y., ... Tomita, H. (2020). Machine learning to reveal hidden risk combinations for the trajectory of posttraumatic stress disorder symptoms. Scientific Reports, 10(1), 21726. https://doi.org/10.1038/s41598-020-78966-z
doi: 10.1038/s41598-020-78966-z URL pmid: 33303893 |
[49] |
Trickey, D., Siddaway, A. P., Meiser-Stedman, R., Serpell, L., & Field, A. P. (2012). A meta-analysis of risk factors for post-traumatic stress disorder in children and adolescents. Clinical Psychology Review, 32(2), 122-138. https://doi.org/10.1016/j.cpr.2011.12.001
doi: 10.1016/j.cpr.2011.12.001 URL pmid: 22245560 |
[50] | Ucuz, I., Ari, A., Ozcan, O. O., Topaktas, O., Sarraf, M., & Dogan, O. (2020). Estimation of the development of depression and PTSD in children exposed to sexual abuse and development of decision support systems by using artificial intelligence. Journal of Child Sexual Abuse, 1-13. https://doi.org/10.1080/10538712.2020.1841350 |
[51] | Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., & Schnurr, P. P. (2013). The PTSD Checklist for DSM-5 (PCL-5). National Center for PTSD, 5(August), 2002. https://www.ptsd.va.gov/professional/assessment/documents/PCL-5_LEC_criterionA. |
[52] |
Worthington, M. A., Mandavia, A., & Richardson-Vejlgaard, R. (2020). Prospective prediction of PTSD diagnosis in a nationally representative sample using machine learning. BioMed Central Psychiatry, 20(1), 532. https://doi.org/10.1186/s12888-020-02933-1
doi: 10.1186/s12888-020-02933-1 URL |
[53] |
Yehuda, R., Halligan, S. L., & Grossman, R. (2001). Childhood trauma and risk for PTSD: Relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Development and Psychopathology, 13(3), 733-753. https://doi.org/10.1017/S0954579401003170
URL pmid: 11523857 |
[54] |
Zandvakili, A., Philip, N. S., Jones, S. R., Tyrka, A. R., Greenberg, B. D., & Carpenter, L. L. (2019). Use of machine learning in predicting clinical response to transcranial magnetic stimulation in comorbid posttraumatic stress disorder and major depression: A resting state electroencephalography study. Journal of Affective Disorders, 252(1), 47-54. https://doi.org/10.1016/j.jad.2019.03.077
doi: 10.1016/j.jad.2019.03.077 URL |
[55] | Zhang, Q., Wu, Q., Zhu, H., He, L., Huang, H., Zhang, J., & Zhang, W. (2016). Multimodal MRI-based classification of trauma survivors with and without post-traumatic stress disorder. Frontiers in Neuroscience, 10(JUN),1-9. https://doi.org/10.3389/fnins.2016.00292 |
[1] | ZHANG Libin, ZHANG Qiwen, WANG Chenxu, ZHANG Yunyun. The co-varying relationship between children and adolescents’ peer networks and bullying-related behaviors from the perspective of social networks [J]. Advances in Psychological Science, 2023, 31(3): 416-427. |
[2] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[3] | JIANG Danying, YANG Yunmei, LI Jing. Children's distributive justice in group context [J]. Advances in Psychological Science, 2022, 30(9): 2004-2019. |
[4] | JIANG Han. Developing an online model of educational rehabilitation for children with ADHD [J]. Advances in Psychological Science, 2022, 30(8): 1747-1758. |
[5] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
[6] | CHEN Jing, RAN Guangming, ZHANG Qi, NIU Xiang. The association between peer victimization and aggressive behavior in children and adolescents: A three-level meta-analysis [J]. Advances in Psychological Science, 2022, 30(2): 275-290. |
[7] | GUO Jing, LIU Xiaohan, HUANG Ning. Mechanism of prognosis and intervention strategy for child posttraumatic stress disorder: Based on the long tail effect theory [J]. Advances in Psychological Science, 2022, 30(10): 2154-2163. |
[8] | HOU Tingting, CHEN Xiao, KONG Depeng, SHAO Xiujun, LIN Fengxun, LI Kaiyun. Application of machine learning in early identification and diagnosis of autistic children [J]. Advances in Psychological Science, 2022, 30(10): 2321-2337. |
[9] | ZHANG Yingqian, ZHAO Guangyi, HAN Yuwei, ZHANG Jingyi, CAO Chengqi, WANG Li, ZHANG Kunlin. The mechanisms of histone modification in post-traumatic stress disorder [J]. Advances in Psychological Science, 2022, 30(1): 98-114. |
[10] | WANG Hui, LI Guangzheng. Children’s gestures and the relationship with learning [J]. Advances in Psychological Science, 2021, 29(9): 1617-1627. |
[11] | WANG Lin, WANG Zhidan, WANG Hongjing. The neural mechanisms of developmental motor disorders in children with autism spectrum disorder [J]. Advances in Psychological Science, 2021, 29(7): 1239-1250. |
[12] | SU Yue, LIU Mingming, ZHAO Nan, LIU Xiaoqian, ZHU Tingshao. Identifying psychological indexes based on social media data: A machine learning method [J]. Advances in Psychological Science, 2021, 29(4): 571-585. |
[13] | WANG Zhen. Children’s gender stereotype threat and its interventions [J]. Advances in Psychological Science, 2021, 29(2): 276-285. |
[14] | HE Qinghua, LI Dandan. Brain maturation and improvement in intertemporal choice in Chinese children and adolescents [J]. Advances in Psychological Science, 2020, 28(3): 381-389. |
[15] | ZHENG Hong, PU Cheng-cheng, WANG Yi, Raymond C. K. CHAN. The classification of schizophrenia based on brain structural features: A machine learning approach [J]. Advances in Psychological Science, 2020, 28(2): 252-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||