Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (4): 635-651.doi: 10.3724/SP.J.1042.2021.00635
• ·Regular Articles· • Previous Articles Next Articles
ZHANG Zhao1,2, ZHANG Liwei1(), GONG Ran1,3
Received:
2020-04-29
Online:
2021-04-15
Published:
2021-02-22
Supported by:
CLC Number:
ZHANG Zhao, ZHANG Liwei, GONG Ran. The filtering efficiency in visual working memory[J]. Advances in Psychological Science, 2021, 29(4): 635-651.
[1] | 高在峰, 郁雯珺, 徐晓甜, 尹军, 水仁德, 沈模卫. (2012). 对侧延迟活动: 视觉工作记忆信息存储的ERP指标. 科学通报, 57(30),2806-2814. doi: https://doi.org/10.1360/972012-728. |
[2] | 郭恒, 何莉, 周仁来. (2016). 经颅直流电刺激提高记忆功能. 心理科学进展, 24(3),356-366. doi: https://doi.org/10.3724/sp.j.1042.2016.00356. |
[3] | 何旭, 郭春彦. (2013). 视觉工作记忆的容量与资源分配. 心理科学进展, 21(10),1741-1748. doi: https://doi.org/10.3724/sp.j.1042.2013.01741. |
[4] | 库逸轩. (2019). 工作记忆的认知神经机制. 生理学报, 71(1),173-185. doi: https://doi.org/10.13294/j.aps.2019.0004. |
[5] | 梁怡雯. (2016). 工作记忆加工中抑制干扰的神经机制研究. (硕士学位论文). 华东师范大学, 上海. |
[6] | 刘志英, 库逸轩. (2017). 知觉表征精度对工作记忆中抑制干扰能力的影响. 心理学报, 49(10),1247-1255. |
[7] | 龙芳芳. (2018). 负性情绪状态对视觉工作记忆资源分配及过滤效率的影响. (硕士学位论文). 辽宁师范大学, 沈阳. |
[8] | 冉雪梅. (2017). 精神分裂症患者的视觉工作记忆损伤:来自行为和脑电的证据. (硕士学位论文). 华东师范大学, 上海. |
[9] | 世界卫生组织. (2018). 道路交通伤害. 2018-12-07取自 https://www.who.int/zh/news-room/fact-sheets/detail/road-traffic-injuries. |
[10] | 王思思. (2019). 视觉工作记忆的存储和干扰抑制的神经机制. (博士学位论文). 华东师范大学, 上海. |
[11] | 王思思, 库逸轩. (2018). 右侧背外侧前额叶在视觉工作记忆中的因果性作用. 心理学报, 50(7),727-738. doi: https://doi.org/10.3724/sp.j.1041.2018.00727. |
[12] | 魏萍, 康冠兰. (2012). 奖赏性线索启动和调控视觉搜索额顶网络的神经机制. 心理科学进展, 20(6),798-804. |
[13] | 张宁宁. (2012). 基于神经人因学的人—车交互系统若干问题的研究. (博士学位论文). 东北大学, 沈阳. |
[14] | Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2014). Evidence for two attentional components in visual working memory. Journal of Experimental Psychology: Learning Memory and Cognition, 40(6),1499-1509. doi: https://doi.org/10.1037/xlm0000002. |
[15] |
Allon, A. S., & Luria, R. (2017). Compensation mechanisms that improve distractor filtering are shortlived. Cognition, 164,74-86.
URL pmid: 28391134 |
[16] |
Allon, A. S., & Luria, R. (2019). Filtering performance in visual working memory is improved by reducing early spatial attention to the distractors. Psychophysiology, 56(5), Article e13323. doi: https://doi.org/10.1111/psyp.13323.
doi: 10.1111/psyp.13323 URL pmid: 30609072 |
[17] |
Allon, A. S., Vixman, G., & Luria, R. (2019). Gestalt grouping cues can improve filtering performance in visual working memory. Psychological Research, 83(8),1656-1672. doi: https://doi.org/10.1007/s00426-018-1032-5.
URL pmid: 29845437 |
[18] |
Arciniega, H., Gözenman, F., Jones, K. T., Stephens, J. A., & Berryhill, M. E. (2018). Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Frontiers in Aging Neuroscience, 10, Article e00057. doi: https://doi.org/10.3389/fnagi.2018.00057.
URL pmid: 30620773 |
[19] |
Astle, D. E., Harvey, H., Stokes, M., Mohseni, H., Nobre, A. C., & Scerif, G. (2014). Distinct neural mechanisms of individual and developmental differences in VSTM capacity. Developmental Psychobiology, 56(4),601-610. doi: https://doi.org/10.1002/dev.21126.
URL pmid: 23775219 |
[20] |
Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11(1),5-6. doi: https://doi.org/10.1038/nn0108-5.
URL pmid: 18160954 |
[21] |
Baier, B., Müller, N. G., & Dieterich, M. (2014). What part of the cerebellum contributes to a visuospatial working memory task? Annals of Neurology, 76(5),754-757. doi: https://doi.org/10.1002/ana.24272.
URL pmid: 25220347 |
[22] |
Bodner, K. E., Cowan, N., & Christ, S. E. (2019). Contributions of filtering and attentional allocation to working memory performance in individuals with autism spectrum disorder. Journal of Abnormal Psychology, 128(8),881-891. doi: https://doi.org/10.1037/abn0000471.
URL pmid: 31599633 |
[23] | Buelow, M. T., Okdie, B. M., Brunell, A. B., & Trost, Z. (2015). Stuck in a moment and you cannot get out of it: The lingering effects of ostracism on cognition and satisfaction of basic needs. Personality and Individual Differences, 76,39-43. |
[24] |
Christ, S. E., Kester, L. E., Bodner, K. E., & Miles, J. H. (2011). Evidence for selective inhibitory impairment in individuals with autism spectrum disorder. Neuropsychology, 25(6),690-701. doi: https://doi.org/dx.doi.org/10.1037/a0024256.
URL pmid: 21728431 |
[25] |
Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in anxiety disorders: An integrative review. Clinical Psychology Review, 30(2),203-216. doi: https://doi.org/10.1016/j.cpr.2009.11.003.
URL pmid: 20005616 |
[26] |
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3),201-215. doi: https://doi.org/10.1038/nrn755.
URL pmid: 11994752 |
[27] |
Cowan, N., Fristoe, N. M., Elliott, E. M., Brunner, R. P., & Saults, J. S. (2006). Scope of attention, control of attention, and intelligence in children and adults. Memory & Cognition, 34(8),1754-1768.
doi: 10.3758/bf03195936 URL pmid: 17489300 |
[28] | Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1),114-185. |
[29] | D'Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66(1),115-142. doi: https://doi.org/10.1146/annurev-psych-010814-015031. |
[30] |
di Rosa, E., Brigadoi, S., Cutini, S., Tarantino, V., Dell'Acqua, R., Mapelli, D., … Vallesi, A. (2019). Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. NeuroImage, 202, Article e116062. doi: https://doi.org/10.1016/j.neuroimage.2019.116062.
URL pmid: 31473355 |
[31] |
Doehnert, M., Brandeis, D., Imhof, K., Drechsler, R., & Steinhausen, H. C. (2010). Mapping attention-deficit/ hyperactivity disorder from childhood to adolescence—No neurophysiologic evidence for a developmental lag of attention but some for inhibition. Biological Psychiatry, 67(7),608-616. doi: https://doi.org/10.1016/j.biopsych.2009.07.038.
URL pmid: 19811774 |
[32] |
Drummond, S.P. A., Anderson, D. E., Straus, L. D., Vogel, E. K., & Perez, V. B. (2012). The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency. Plos One, 7(4), Article e0035653. doi: https://doi.org/10.1371/journal.pone.0035653.
doi: 10.1371/journal.pone.0036036 URL pmid: 22563436 |
[33] | Dube, B., Emrich, S. M., & Al-Aidroos, N. (2017). More than a filter: Feature-based attention regulates the distribution of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(10),1843-1854. doi: https://doi.org/10.1037/xhp0000428. |
[34] |
Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11),820.
URL pmid: 11715058 |
[35] |
Emrich, S. M., & Busseri, M. A. (2015). Re-evaluating the relationships among filtering activity, unnecessary storage, and visual working memory capacity. Cognitive, Affective and Behavioral Neuroscience, 15(3),589-597. doi: https://doi.org/10.3758/s13415-015-0341-z.
doi: 10.3758/s13415-015-0341-z URL pmid: 25690338 |
[36] |
Engel, A. K. (2012). Rules got rhythm. Neuron, 76(4),673-676. doi: https://doi.org/10.1016/j.neuron.2012.11.003.
doi: 10.1016/j.neuron.2012.11.003 URL pmid: 23177954 |
[37] | Feldmann-Wüstefeld, T.,& Edward K. Vogel. (2018). Neural evidence for the contribution of active suppression during working memory filtering. Cerebral Cortex, 29(2),529-543. |
[38] | Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of visual working memory. Nature Communications, 3(1),1228-1246. doi: https://doi.org/10.1038/ncomms2237. |
[39] |
Fuster, J. M. (2001). The prefrontal cortex—an update: Time is of the essence. Neuron, 30(2),319-333.
doi: 10.1016/s0896-6273(01)00285-9 URL pmid: 11394996 |
[40] | Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & McDonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113(13),3693-3698. |
[41] | Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D'Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35),13122-13126. |
[42] |
Ge, Y., Sheng, B. Y., Qu, W. N., Xiong, Y. X., Sun, X., & Zhang, K. (2020). Differences in visual-spatial working memory and driving behavior between morning-type and evening-type drivers. Accident Analysis and Prevention, 136, Article e105402. doi: https://doi.org/10.1016/j.aap.2019. 105402.
URL pmid: 31874332 |
[43] |
Gold, J. M., Fuller, R. L., Robinson, B. M., McMahon, R. P., Braun, E. L., & Luck, S. J. (2006). Intact attentional control of working memory encoding in schizophrenia. Journal of Abnormal Psychology, 115(4),658-673. doi: https://doi.org/10.1037/0021-843X.115.4.658.
URL pmid: 17100524 |
[44] |
Hadar, B., Luria, R., & Liberman, N. (2019a). Induced social power improves visual working memory. Personality and Social Psychology Bulletin, 46(2),285-297. doi: https://doi.org/10.1177/0146167219855045.
URL pmid: 31189437 |
[45] |
Hadar, B., Luria, R., & Liberman, N. (2019b). Concrete mindset impairs filtering in visual working memory. Psychonomic Bulletin & Review, 26(6),1917-1924. doi: https://doi.org/10.3758/s13423-019-01625-6.
doi: 10.3758/s13423-019-01625-6 URL pmid: 31429059 |
[46] | Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. The Psychology of Learning and Motivation, 22,193-225. |
[47] | Hawes, D. J., Zadro, L., Fink, E., Richardson, R., O'Moore, K., Griffiths, B., & Williams, K. D. (2012). The effects of peer ostracism on children's cognitive processes. European Journal of Developmental Psychology, 9(5),599-613. |
[48] | Hazy, T. E., Frank, M. J., & O'Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485),1601-1613. doi: https://doi.org/10.1098/rstb.2007.2055. |
[49] |
Heimrath, K., Sandmann, P., Becke, A., Müller, N. G., & Zaehle, T. (2012). Behavioral and electrophysiological effects of transcranial direct current stimulation of the parietal cortex in a visuo-spatial working memory task. Frontiers in Psychiatry, 3, Article e00056. doi: https://doi.org/10.3389/fpsyt.2012.00056.
URL pmid: 23162480 |
[50] |
Hsu, T.-Y., Tseng, P., Liang, W.-K., Cheng, S. -K., & Juan, C.-H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. NeuroImage, 98,306-313. doi: https://doi.org/10.1016/j.neuroimage.2014.04.069.
URL pmid: 24807400 |
[51] |
Jia, S., Zhang, Q., & Li, S. (2014). Field dependence- independence modulates the efficiency of filtering out irrelevant information in a visual working memory task. Neuroscience, 278,136-143. doi: https://doi.org/10.1016/j.neuroscience.2014.07.075.
doi: 10.1016/j.neuroscience.2014.07.075 URL pmid: 25135352 |
[52] |
Johnson, M. K., McMahon, R. P., Robinson, B. M., Harvey, A. N., Hahn, B., Leonard, C. J.… Gold, J. M. (2013). The relationship between working memory capacity and broad measures of cognitive ability in healthy adults and people with schizophrenia. Neuropsychology, 27(2),220-229. doi: https://doi.org/10.1037/a0032060.
URL pmid: 23527650 |
[53] |
Jones, K. T., & Berryhill, M. E. (2012). Parietal contributions to visual working memory depend on task difficulty. Frontiers in Psychiatry, 3, Article e00081. doi: https://doi.org/10.3389/fpsyt.2012.00081.
URL pmid: 23162480 |
[54] |
Jones, K. T., Gözenman, F., & Berryhill, M. E. (2015). The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study. NeuroImage, 105,238-247. doi: https://doi.org/10.1016/j.neuroimage.2014.11.012.
URL pmid: 25462798 |
[55] |
Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5),1147-1154. doi: https://doi.org/10.1093/cercor/bhq185.
URL pmid: 20884722 |
[56] |
Jost, K., & Mayr, U. (2016). Switching between filter settings reduces the efficient utilization of visual working memory. Cognitive, Affective and Behavioral Neuroscience, 16(2),207-218. doi: https://doi.org/10.3758/s13415-015-0380-5.
URL pmid: 26450507 |
[57] |
Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2007). fMRI investigation of working memory for faces in autism : Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2),289-300. doi: https://doi.org/10.1093/cercor/bhm054.
URL pmid: 17517680 |
[58] |
Lee, E.-Y., Cowan, N., Vogel, E. K., Rolan, T., Valle-Inclán, F., & Hackley, S. A. (2010). Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain, 133(9),2677-2689. doi: https://doi.org/10.1093/brain/awq197.
URL pmid: 20688815 |
[59] |
Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C., & Xue, G. (2017). Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. NeuroImage, 149,210-219. doi: https://doi.org/10.1016/j.neuroimage.2017.01.061.
URL pmid: 28131893 |
[60] |
Liberman, N., & Trope, Y. (2008). The psychology of transcending the here and now. Science, 322(5905),1201-1205.
URL pmid: 19023074 |
[61] |
Liberman, N., & Trope, Y. (2014). Traversing psychological distance. Trends in Cognitive Sciences, 18(7),364-369.
URL pmid: 24726527 |
[62] |
Liesefeld, A. M., Liesefeld, H. R., & Zimmer, H. D. (2014). Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference. Psychological Science, 25(2),325-333. doi: https://doi.org/10.1177/0956797613501170.
doi: 10.1177/0956797613501170 URL pmid: 24379152 |
[63] |
Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8),391-400. doi: https://doi.org/10.1016/j.tics.2013.06.006.
doi: 10.1016/j.tics.2013.06.006 URL pmid: 23850263 |
[64] |
Luria, R., Balaban, H., Awh, E., & Vogel, E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62,100-108. doi: https://doi.org/10.1016/j.neubiorev.2016.01.003.
URL pmid: 26802451 |
[65] |
Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3),347-356. doi: https://doi.org/10.1038/nn.3655.
URL pmid: 24569831 |
[66] | Mall, J. T., Morey, C. C., Wolff, M. J., & Lehnert, F. (2014). Visual selective attention is equally functional for individuals with low and high working memory capacity: Evidence from accuracy and eye movements. Attention, Perception, and Psychophysics, 76(7),1998-2014. doi: https://doi.org/10.3758/s13414-013-0610-2. |
[67] |
Manza, P., Hau, C.L. V., & Leung, H.-C. (2014). Alpha power gates relevant information during working memory updating. Journal of Neuroscience, 34(17),5998-6002. doi: https://doi.org/10.1523/JNEUROSCI.4641-13.2014.
URL pmid: 24760858 |
[68] |
McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1),103-107. doi: https://doi.org/10.1038/ nn2024.
URL pmid: 18066057 |
[69] |
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2),81-97.
URL pmid: 13310704 |
[70] |
Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. Psychological Bulletin, 142(8),831-864. doi: https://doi.org/10.1037/bul0000051.
URL pmid: 26963369 |
[71] | Moriya, J., & Sugiura, Y. (2012). High visual working memory capacity in trait social anxiety. Plos One, 7(4), Article e0034244. doi: https://doi.org/10.1371/journal.pone.0034244. |
[72] | Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3),633-639. doi: https://doi.org/10.1111/j.1469-7793.2000.t01-1- 00633.x. |
[73] |
O'luanaigh, C., O'connell, H., Chin, A.-V., Hamilton, F., Coen, R., Walsh, C., & Lawlor, B. A.(2012). Loneliness and cognition in older people: The dublin healthy ageing study. Aging Ment Health, 16(3),347-352.
URL pmid: 22129350 |
[74] |
Owens, M., Koster, E. H. W., & Derakshan, N. (2012). Impaired filtering of irrelevant information in dysphoria: An ERP study. Social Cognitive and Affective Neuroscience, 7(7),752-763. doi: https://doi.org/10.1093/scan/nsr050.
URL pmid: 21896495 |
[75] |
Owens, M., Koster, E.H. W., & Derakshan, N. (2013). Improving attention control in dysphoria through cognitive training: Transfer effects on working memory capacity and filtering efficiency. Psychophysiology, 50(3),297-307. doi: https://doi.org/10.1111/psyp.12010.
doi: 10.1111/psyp.12010 URL pmid: 23350956 |
[76] | Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4),369-378. |
[77] | Payer, D., Marshuetz, C., Sutton, B., Hebrank, A., Welsh, R. C., & Park, D. C. (2006). Decreased neural specialization in old adults on a working memory task. Neuro Report, 17,478-491. |
[78] |
Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: From modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10),3990-3998. doi: https://doi.org/10.1523/jneurosci.23-10-03990.2003.
URL pmid: 12764083 |
[79] |
Peverill, M., McLaughlin, K. A., Finn, A. S., & Sheridan, M. A. (2016). Working memory filtering continues to develop into late adolescence. Developmental Cognitive Neuroscience, 18,78-88. doi: https://doi.org/10.1016/j.dcn.2016.02.004.
doi: 10.1016/j.dcn.2016.02.004 URL pmid: 27026657 |
[80] |
Plebanek, D. J., & Sloutsky, V. M. (2019). Selective attention, filtering, and the development of working memory. Developmental Science, 22(1), Article e12727. doi: https://doi.org/10.1111/desc.12727.
doi: 10.1111/desc.12717 URL pmid: 30105854 |
[81] | Pope, P. A., Brenton, J. W., & Miall, R. C. (2015). Task- specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex. Cerebral Cortex, 25(11),4551-4558. |
[82] |
Pratte, M. S., Park, Y. E., Rademaker, R. L., & Tong, F. (2017). Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 43(1),6-17. doi: https://doi.org/10.1037/xhp0000302.
doi: 10.1037/xhp0000302 URL pmid: 28004957 |
[83] |
Qi, S. Q., Ding, C., & Li, H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective and Behavioral Neuroscience, 14(1),253-265. doi: https://doi.org/10.3758/s13415-013-0203-5.
doi: 10.3758/s13415-013-0203-5 URL pmid: 23963822 |
[84] | Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393(6685),577-579. |
[85] |
Ress, D., Backus, B. T., & Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3(9),940-945.
URL pmid: 10966626 |
[86] |
Robison, M. K., McGuirk, W. P., & Unsworth, N. (2017). No evidence for enhancements to visual working memory with transcranial direct current stimulation to prefrontal or posterior parietal cortices. Behavioral Neuroscience, 131(4),277-288. doi: https://doi.org/10.1037/bne0000202.
URL pmid: 28714714 |
[87] |
Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2),324-330.
URL pmid: 21331668 |
[88] | Ruff, C. C. (2013). Sensory processing: Who's in top-down control? Annals of the New York Academy of Sciences, 1296,88-107. |
[89] |
Sandrini, M., Rossini, P. M., & Miniussi, C. (2008). Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Neuropsychologia, 46(7),2056-2063. doi: https://doi.org/10.1016/j.neuropsychologia.2008.02.003.
doi: 10.1016/j.neuropsychologia.2008.02.003 URL pmid: 18336847 |
[90] | Schmicker, M., Schwefel, M., Vellage, A. -K., & Müller, N. G. (2016). Training of attentional filtering, but not of memory storage, enhances working memory efficiency by strengthening the neuronal gatekeeper network. Journal of Cognitive Neuroscience, 28(4),636-642. doi: https://doi.org/10.1162/jocn. |
[91] | Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50(3),245-276. |
[92] |
Spronk, M., Vogel, E. K., & Jonkman, L. M. (2012). Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents. Plos One, 7(8), Article e0042262. doi: https://doi.org/10.1371/journal.pone.0042262.
URL pmid: 22957000 |
[93] |
Spronk, M., Vogel, E. K., & Jonkman, L. M. (2013). No behavioral or ERP evidence for a developmental lag in visual working memory capacity or filtering in adolescents and adults with ADHD. Plos One, 8(5), Article e0062673. doi: https://doi.org/10.1371/journal.pone.0062673.
URL pmid: 23741516 |
[94] |
Sternberg, N., Luria, R., & Sheppes, G. (2018). For whom is social-network usage associated with anxiety? The moderating role of neural working-memory filtering of Facebook information. Cognitive, Affective and Behavioral Neuroscience, 18(6),1145-1158. doi: https://doi.org/10.3758/ s13415-018-0627-z.
doi: 10.3758/s13415-018-0627-z URL pmid: 30094562 |
[95] | Stout, D. M., & Rokke, P. D. (2010). Components of working memory predict symptoms of distress. Cognition and Emotion, 24(8),1293-1303. doi: https://doi.org/10.1080/02699930903309334. |
[96] |
Stout, D. M., Shackman, A. J., Johnson, J. S., & Larson, C. L. (2015). Worry is associated with impaired gating of threat from working memory. Emotion, 15(1),6-11. doi: https://doi.org/10.1037/emo0000015.
URL pmid: 25151519 |
[97] |
Stout, D. M., Shackman, A. J., & Larson, C. L. (2013). Failure to filter: Anxious individuals show inefficient gating of threat from working memory. Frontiers in Human Neuroscience, 7, Article e00058. doi: https://doi.org/10.3389/fnhum.2013.00058.
URL pmid: 24431994 |
[98] |
Thiruchselvam, R., Hajcak, G., & Gross, J. J. (2012). Looking inward: Shifting attention within working memory representations alters emotional responses. Psychological Science, 23(12),1461-1466. doi: https://doi.org/10.1177/0956797612449838.
URL pmid: 23137969 |
[99] |
Tseng, P., Hsu, T.-Y., Chang, C.-F., Tzeng, O.J. L., Hung, D. L., Muggleton, N. G.… Juan, C.-H. (2012). Unleashing potential: Transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31),10554-10561. doi: https://doi.org/10.1523/JNEUROSCI.0362-12.2012.
URL pmid: 22855805 |
[100] |
van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of working memory models. Psychological Review, 121(1),124-149. doi: https://doi.org/10.1037/a0035234.
URL pmid: 24490791 |
[101] |
van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences of the United States of America, 109(22),8780-8785. doi: https://doi.org/10.1073/ pnas.1117465109.
doi: 10.1073/pnas.1117465109 URL pmid: 22582168 |
[102] |
Vellage, A.-K., Becke, A., Strumpf, H., Baier, B., Schönfeld, M. A., Hopf, J. M., & Müller, N. G. (2016). Filtering and storage working memory networks in younger and older age. Brain and Behavior, 6(11), Article e00544. doi: https://doi.org/10.1002/brb3.544.
URL pmid: 27843692 |
[103] |
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984),748.
URL pmid: 15085132 |
[104] |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067),500-503. doi: https://doi.org/10.1038/nature04171.
URL pmid: 16306992 |
[105] |
Wang, S. S., Itthipuripat, S., & Ku, Y. X. (2019). Electrical stimulation over human posterior parietal cortex selectively enhances the capacity of visual short-term memory. Journal of Neuroscience, 39(3),528-536. doi: https://doi.org/10.1523/JNEUROSCI.1959-18.2018.
URL pmid: 30459222 |
[106] |
Ward, R. T., Miskovich, T. A., Stout, D. M., Bennett, K. P., Lotfi, S., & Larson, C. L. (2019). Reward-related distracters and working memory filtering. Psychophysiology, 55(10), Article e13402. doi: https://doi.org/10.1111/psyp.13402.
URL pmid: 29732574 |
[107] |
Wu, Y.-J., Tseng, P., Chang, C. -F., Pai, M., -C., Hsu, K. -S., Lin, C., -C., & Juan, C.-H. (2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91,87-94.
doi: 10.1016/j.bandc.2014.09.002 URL pmid: 25265321 |
[108] |
Xu, M. S., Qiao, L., Qi, S. Q., Li, Z. A., Diao, L. T., Fan, L. X., … Yang, D. (2018). Social exclusion weakens storage capacity and attentional filtering ability in visual working memory. Social Cognitive and Affective Neuroscience, 13(1),92-101. doi: https://doi.org/10.1093/scan/nsx139.
URL pmid: 29149349 |
[109] |
Ye, C. X., Hu, Z., Li, H., Ristaniemi, T., Liu, Q., & Liu, T. (2017). A two-phase model of resource allocation in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(10),1557-1566. doi: https://doi.org/10.1016/j.physbeh.2017.03.040.
doi: 10.1037/xlm0000376 URL pmid: 28252988 |
[110] |
Ye, C. X., Sun, H. J., Xu, Q. R., Liang, T. F., Zhang, Y., & Liu, Q. (2019). Working memory capacity affects trade-off between quality and quantity only when stimulus exposure duration is sufficient: Evidence for the two-phase model. Scientific Reports, 9(1),1-14. doi: https://doi.org/10.1038/ s41598-019-44998-3.
doi: 10.1038/s41598-018-37186-2 URL pmid: 30626917 |
[111] |
Ye, C. X., Xu, Q. R., Liu, Q., Cong, F. Y., Saariluoma, P., Ristaniemi, T., & Astikainen, P. (2018). The impact of visual working memory capacity on the filtering efficiency of emotional face distractors. Biological Psychology, 138,63-72. doi: https://doi.org/10.1016/j.biopsycho.2018.08.009.
URL pmid: 30125615 |
[112] |
Zhang, W. W., & Luck, S. J. (2008). Discrete fixed- resolution representations in visual working memory. Nature, 453(7192),233-235. doi: https://doi.org/10.1038/ nature06860.
URL pmid: 18385672 |
[113] |
Zhou, J. F., Yin, J., Chen, T., Ding, X. W., Gao, Z. F., & Shen, M. W., (2011). Visual working memory capacity does not modulate the feature-based information filtering in visual working memory. Plos One, 6(9), Article e0023873. doi: https://doi.org/10.1371/journal.pone.0023873.
URL pmid: 21984938 |
[1] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[2] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[3] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[4] | DENG Xun, CHEN Ning, WANG Dandan, ZHAO Huanhuan, HE Wen. Neural mechanism of NSSI and comparative study with comorbidities [J]. Advances in Psychological Science, 2022, 30(7): 1561-1573. |
[5] | DENG Yao, WANG Mengmeng, RAO Hengyi. Risk-taking research based on the Balloon Analog Risk Task [J]. Advances in Psychological Science, 2022, 30(6): 1377-1392. |
[6] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[7] | ZHANG Lina, XUAN Bin. Neural mechanisms and time course of the age-related word frequency effect in language production [J]. Advances in Psychological Science, 2022, 30(2): 333-342. |
[8] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[9] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[10] | HUANG Jianping, XU Jingxian, WAN Xiaoang. Influence of associative learning on consumer behavior: From the perspective of product search experience [J]. Advances in Psychological Science, 2022, 30(11): 2414-2423. |
[11] | CHEN Qunlin, DING Ke. Serial order effect during divergent thinking: A new perspective on the dynamic mechanism of creative thought processes [J]. Advances in Psychological Science, 2022, 30(11): 2507-2517. |
[12] | WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search [J]. Advances in Psychological Science, 2022, 30(10): 2206-2218. |
[13] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[14] | HU Xiaoyong, DU Tangyan, LI Lanyu, WANG Tiantian. Neural mechanisms underlying the effect of low socioeconomic status on self-regulation [J]. Advances in Psychological Science, 2022, 30(10): 2278-2290. |
[15] | GAN Jiaqun, WANG Enguo. Attentional disengagement in autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(1): 129-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||