Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (11): 1853-1864.doi: 10.3724/SP.J.1042.2020.01853
• Regular Articles • Previous Articles Next Articles
YIN Huazhan1,2,3, CUI Xiaobing1,2, BAI Youling1,2, CAO Gege1,2,3, DENG Jinxin1,2,3, LI Dan1,2()
Received:
2020-02-24
Online:
2020-11-15
Published:
2020-09-23
Contact:
LI Dan
E-mail:Lidantina@163.com
CLC Number:
YIN Huazhan, CUI Xiaobing, BAI Youling, CAO Gege, DENG Jinxin, LI Dan. The important time parameters and related evidences from dual perspectives of temporal information processing and temporal processing of information[J]. Advances in Psychological Science, 2020, 28(11): 1853-1864.
[1] | 陈有国 . ( 2010). 时间知觉自动与受控加工的神经机制 (博士学位论文), 西南大学, 重庆. |
[2] | 陈有国, 彭春花, 张志杰, 黄希庭 . ( 2008). 自动与控制计时系统脑机制研究. 西南大学学报(社会科学版), 34( 4), 9-14. |
[3] | 陈有国, 张志杰, 黄希庭, 郭秀艳, 袁宏, 张甜 . ( 2007). 时间知觉的注意调节: 一项ERP研究. 心理学报, 39( 6), 1002-1011. |
[4] | 王余娟, 张志杰, 邹增丽 . ( 2008). 时距估计长度效应的研究述评. 现代生物医学进展, 22( 12), 2560-2562+2531. |
[5] | 尹华站 . ( 2013). 时间加工分段性研究述评. 心理科学, 36( 3), 743-747. |
[6] | 尹华站, 李丹, 陈盈羽, 黄希庭 . ( 2016). 1~6秒时距认知分段性特征. 心理学报, 48( 9), 1119-1129. |
[7] | 尹华站, 李丹, 陈盈羽, 黄希庭 . ( 2017). 1s范围视听时距认知的分段性研究. 心理科学, 40( 2), 321-328. |
[8] | 尹华站, 李祚山, 李丹, 黄希庭 . ( 2010). 时距加工“长度效应”研究述评. 心理科学进展, 18( 6), 887-891. |
[9] | 张志杰, 刘强, 黄希庭 . ( 2007). 时间知觉的神经机制——EEG时频分析的探索. 西南大学学报(自然科学版), 29( 10), 152-155. |
[10] | 张志杰, 袁宏, 黄希庭 . ( 2007). 不同时距加工机制的比较:来自ERP的证据(Ⅰ). 心理科学, 29( 1), 87-90. |
[11] | Baath, R. ( 2015). Subjective rhythmic: A replication and an assessment of two theoretical explanations. Music Perception: An Interdisciplinary Journal, 33( 2), 244-254. |
[12] |
Bao, Y., Sander, T., Trahms, L., Koppel, E., Lei, Q., & Zhou, B . ( 2011). The eccentricity effect of inhibition of return is resistant to practice. Neuroscience Letters, 500( 1), 47-51.
doi: 10.1016/j.neulet.2011.06.003 URL pmid: 21683762 |
[13] | Bao, Y., Szymaszek, A., Wang, X., Oron, A., Koppel, E., & Szelag, E . ( 2013). Temporal order perception of auditory stimuli is selectively modified by tonal and non-tonal language environments. Cognition, 129( 3), 579-585. |
[14] | Broersen, R., Onuki, Y., Abdelgabar, A. R., Owens, C. B., Picard, S., Willems, J., … Zeeuw, C. I. D . ( 2016). Impaired spatio-temporal predictive motor timing associated with spinocerebellar ataxia type 6. PLoS ONE, 11( 8), e0162042. |
[15] | Buonomano, D. V., Bramen, J., & Khodadadifar, M . ( 2009). Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model. Philosophical Transactions of the Royal Society B: Biological Sciences, 364( 1525), 1865-1873. |
[16] |
Berle, B., & Bonnet, M. ( 1999). What’s an internal clock for?: From temporal information processing to temporal processing of information. Behavioural Processes, 45( 1-3), 59-72.
URL pmid: 24897527 |
[17] |
Burr, D. C., &Santoro, L. ( 2001). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research, 41( 15), 1891-1899.
doi: 10.1016/s0042-6989(01)00072-4 URL pmid: 11412882 |
[18] | Cester, I., Mioni, G., & Cornoldi, C . ( 2017). Time processing in children with mathematical difficulties. Learning and Individual Differences, 58, 22-30. |
[19] |
Chen, Y. G., Chen, X., Kuang, C. W., & Huang, X. T . ( 2015). Neural oscillatory correlates of duration maintenance in working memory. Neuroscience, 290, 389-397.
doi: 10.1016/j.neuroscience.2015.01.036 URL pmid: 25637487 |
[20] | Dodd, M. D., & Pratt, J. ( 2007). The effect of previous trial type on inhibition of return. Psychological Research, 71( 4), 411-417. |
[21] | Dodd, M. D., van der Stigchel, S., & Hollingworth, A . ( 2009). Novelty is not always the best policy: Inhibition of return and facilitation of return as a function of visual task. Psychological Science, 20( 3), 333-339. |
[22] | Adroit-Volet, S., & Hale, Q. ( 2019). Differences in modal distortion in time perception due to working memory capacity: a response with a developmental study in children and adults. Psychological Research, 83( 7), 1496-1505. |
[23] |
Elbert, T., Ulrich, R., Rockstroh, B., & Lutzenberger, W . ( 1991). The processing of temporal intervals reflected by CNV-like brain potentials. Psychophysiology, 28( 6), 648-655.
doi: 10.1111/j.1469-8986.1991.tb01009.x URL pmid: 1816592 |
[24] | Elhorst, J. P., Heijnen, P., Samarina, A Jacobs, J. P. A. M. ( 2017). Transitions at different moments in time: a spatial probit approach. Journal of Applied Econometrics, 32( 2), 422-439. |
[25] |
Fairhall, S. L., Albi, A., & Melcher, D . ( 2014). Temporal integration windows for naturalistic visual sequences. PLoS ONE, 9( 7), e102248.
URL pmid: 25010517 |
[26] | Frailness, P. ( 1984). Perception and estimation of time. Annual Review of Psychology, 35( 1), 1-37. |
[27] | Gerstner, G. E., & Cianfarani, T. ( 1998). Temporal dynamics of human masticatory sequences. Physiology & Behavior, 64( 4), 457-461. |
[28] |
Gomez, C., Argandona, E. D., Solier, R. G., Angulo, J. C., & Vazquez, M . ( 1995). Timing and competition in networks representing ambiguous figures. Brain and Cognition, 29( 2), 103-114.
doi: 10.1006/brcg.1995.1270 URL pmid: 8573326 |
[29] |
Hasson, U., Chen, J., & Honey, C. J . ( 2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19( 6), 304-313.
doi: 10.1016/j.tics.2015.04.006 URL pmid: 25980649 |
[30] |
Kagerer, F. A., Wittmann, M., Szelag, E., & Steinbüchel, N. V . ( 2002). Cortical involvement in temporal reproduction: evidence for differential roles of the hemispheres. Neuropsychologia, 40( 3), 357-366.
URL pmid: 11684169 |
[31] |
Koch, G., Oliveri, M., Torriero, S., Salerno, S., Gerfo, E. L., & Caltagirone, C . ( 2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Experimental Brain Research, 179( 2), 291-299.
doi: 10.1007/s00221-006-0791-1 URL pmid: 17146647 |
[32] | Kogo, N., Hermans, L., Stuer, D., van Ee, R., & Wagemans, J . ( 2015). Temporal dynamics of different cases of bi-stable figure-ground perception. Vision Research, 106, 7-19. |
[33] |
Lewis, P. A., & Mall, R. C ( 2003a). Distinct systems for automatic and cognitively controlled time measurement: Evidence from neuroimaging. Current Opinion in Neurobiology, 13( 2), 250-255.
URL pmid: 12744981 |
[34] |
Lewis, P. A., & Mall, R. C . ( 2003b). Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41( 12), 1583-1592.
doi: 10.1016/s0028-3932(03)00118-0 URL pmid: 12887983 |
[35] | Liang, W., Zhang, J., & Bao, Y . ( 2015) Gender-specific effects of emotional modulation on visual temporal order thresholds. Cognitive Processing, 16( 1), 143-148. |
[36] |
Matsuda, S., Matsumoto, H., Furubayashi, T., Hanajima, R., Tsuji, S., Ugawa, Y., & Terao, Y . ( 2015). The 3-second rule in hereditary pure cerebellar ataxia: A synchronized tapping study. PLOS One, 10( 2), e0118592.
URL pmid: 25706752 |
[37] |
Michalczyk, L., & Bielas, J. ( 2019). The gap effect reduces both manual and saccadic inhibition of return (IOR). Experimental Brain Research, 237( 7), 1643-1653.
doi: 10.1007/s00221-019-05537-8 URL pmid: 30953082 |
[38] | Mic, hon, J., A . ( 1985). The compleat time experiencer. In J. A. Mic hon & J. L. Jackson (Eds.), Time, mind, and behavior(pp.20-52). Berlin Heidelberg: Springer-Verlag. |
[39] |
Mitani, K., & Kashino, M. ( 2018). Auditory feedback assists post hoc error correction of temporal reproduction, and perception of self-produced time intervals in subsecond range. Frontiers in Psychology, 8, 1-8.
doi: 10.3389/fpsyg.2017.00001 URL pmid: 28197108 |
[40] |
Mohan, K. M., & Rajashekhar, B. ( 2019). Temporal processing and speech perception through multi-channel and channel- free hearing aids in hearing impaired. International Journal of Audiology, 58( 12), 923-932.
URL pmid: 31495290 |
[41] | Montemayor, C., & Wittmann, M. ( 2014). The varieties of presence: Hierarchical levels of temporal integration. Timing & Time Perception, 2( 3), 325-338. |
[42] |
Morillon, B., Kell, C. A., & Giraud, A.-L . ( 2009). Three stages and four neural systems in time estimation. Journal of Neuroscience, 29( 47), 14803-14811.
doi: 10.1523/JNEUROSCI.3222-09.2009 URL pmid: 19940175 |
[43] | Münsterberg, H. ( 1889). Beiträge zur experimentellen Psychologie: Heft 2 [Contributions to Experimental Psychology, Issue 2]. Freiburg, Germany: Akademische Verlagsbuchhandlung von J.C. B. Mohr. |
[44] | Murai, Y., & Yotsumoto, Y. ( 2016). Timescale- and sensory modality-dependency of the central tendency of time perception. PLoS One, 11( 7), e0158921. |
[45] |
Nani, A., Manuello, J., Liloia, D., Duca, S., Costa, T., & Cauda, F . ( 2019). The neural correlates of time: A meta- analysis of neuroimaging studies. Journal of Cognitive Neuroscience, 31( 12), 1796-1826.
doi: 10.1162/jocn_a_01459 URL pmid: 31418337 |
[46] |
Notter, M. P., Hanke, M., Murray, M. M., & Geiser, E . ( 2019). Encoding of auditory temporal gestalt in the human brain. Cerebral Cortex, 29( 2), 475-484.
doi: 10.1093/cercor/bhx328 URL pmid: 29365070 |
[47] | Noulhiane, M., Pouthas, V., & Samson, S . ( 2009). Is time reproduction sensitive to sensory modalities? European Journal of Cognitive Psychology, 21( 1), 18-34. |
[48] | Pfeuty, M., Monfort, V., Klein, M., Krieg, J., Collé, S., Colnat- Coulbois, S., Maillard, L . ( 2019). Role of the supplementary motor area during reproduction of supra-second time intervals: An intracerebral EEG study. NeuroImage, 191, 403-420. |
[49] |
Phillmore, L. S., & Klein, R. M . ( 2019). The puzzle of spontaneous alternation and inhibition of return: How they might fit together. Hippocampus, 29( 8), 762-770.
doi: 10.1002/hipo.23102 URL pmid: 31157942 |
[50] | Po, J. M. C., Kieser, J. A., Gallo, L. M., Tésenyi, A. J., Herbison, P., & Farella, M . ( 2011). Time-frequency analysis of chewing activity in the natural environment. Journal of Dental Research, 90( 10), 1206-1210. |
[51] |
Koppel, E. ( 1994). Temporal mechanisms in perception. International Review of Neurobiology, 37, 185-202.
doi: 10.1016/s0074-7742(08)60246-9 URL pmid: 7883478 |
[52] | Koppel, E. ( 1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1( 2), 56-61. |
[53] | Koppel, E. ( 2009). Pre-semantically defined temporal windows for cognitive processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 364( 1525), 1887-1896. |
[54] | Koppel, E., & Bao, Y. . (2014). Temporal windows as a bridge from objective to subjective time. In: D. Lloyd & V. Arstila (Eds.), Subjective Time (pp. 241-261), MIT Press. |
[55] | Koppel, E., 包燕, 周斌 . ( 2011). “temporal windows” as logistical basis for cognitive processing. 心理科学进展, 19( 6), 775-793. |
[56] | Rammsayer, T. H . ( 2009). Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. Neuroquantology, 7( 1), 103-113. |
[57] |
Rammsayer, T. H., Borter, N., & Troche, S. J . ( 2015). Visual-auditory differences in duration discrimination of intervals in the subsecond and second range. Frontiers in Psychology, 6, 1-7.
doi: 10.3389/fpsyg.2015.00001 URL pmid: 25688217 |
[58] |
Rammsayer, T. H., & Lima, S. D . ( 1991). Duration discrimination of filled and empty auditory intervals: Cognitive and perceptual factors. Perception & Psychophysics, 50( 6), 565-574.
doi: 10.3758/bf03207541 URL pmid: 1780204 |
[59] |
Rammsayer, T. H., & Troche, S. J . ( 2014). In search of the internal structure of the processes underlying interval timing in the sub-second and the second range: A confirmatory factor analysis approach. Acta Psychologica, 147, 68-74.
doi: 10.1016/j.actpsy.2013.05.004 URL pmid: 23795690 |
[60] | Rammsayer, T., & Manichean, S. ( 2018). Visual-auditory differences in duration discrimination depend on modality- specific, sensory-automatic temporal processing: Converging evidence for the validity of the Sensory-Automatic Timing Hypothesis. Quarterly Journal of Experimental Psychology, 71( 11), 2364-2377. |
[61] |
Rammsayer, T., & Ulrich, R. ( 2005). No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychologica, 120( 2), 141-171.
doi: 10.1016/j.actpsy.2005.03.005 URL pmid: 15907778 |
[62] |
Rammsayer, T., & Ulrich, R. ( 2011). Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds. Acta Psychologica, 137( 1), 127-133.
doi: 10.1016/j.actpsy.2011.03.010 URL pmid: 21474111 |
[63] | Repp, B. H., & Doggett, R. ( 2007). Tapping to a very slow beat: A comparison of musicians and nonmusicians. Music Perception: An Interdisciplinary Journal, 24( 4), 367-376. |
[64] |
Röhricht, J., Jo, H.-G., Wittmann, M., & Schmidt, S . ( 2018). Exploring the maximum duration of the contingent negative variation. International Journal of Psychophysiology, 128, 52-61.
doi: 10.1016/j.ijpsycho.2018.03.020 URL pmid: 29604306 |
[65] | Roll, M., Gosselke, S., Lindgren, M., & Horne, M . ( 2013). Time-driven effects on processing grammatical agreement. Frontiers in Psychology, 4, 1-8. |
[66] |
Roll, M., Lindgren, M., Alter, K., & Horne, M . ( 2012). Time-driven effects on parsing during reading. Brain and Language, 121( 3), 267-272.
URL pmid: 22480626 |
[67] |
Samuel, A. G., & Kat, D. ( 2003). Inhibition of return: A graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychonomic Bulletin & Review, 10( 4), 897-906.
doi: 10.3758/bf03196550 URL pmid: 15000537 |
[68] | Souto, D., Born, S., & Kerzel, D . ( 2018). The contribution of forward masking to saccadic inhibition of return. Attention Perception & Psychophysics, 80( 5), 1182-1192. |
[69] |
Stauffer, C. C., Haldemann, J., Troche, S. J., & Rammsayer, T. H . ( 2012). Auditory and visual temporal sensitivity: evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychological Research, 76( 1), 20-31.
URL pmid: 21461936 |
[70] |
Szelag, E., Kowalska, J., Rymarczyk, K., & Koppel, E . ( 2002). Duration processing in children as determined by time reproduction: Implications for a few seconds temporal window. Acta Psychologica, 110( 1), 1-19.
doi: 10.1016/s0001-6918(01)00067-1 URL pmid: 12005225 |
[71] |
Szelag, E., Steinbuchel, N., Reiser, M., de Langen, E. G., & Poppel, E . ( 1996). Temporal constraints in processing of nonverbal rhythmic patterns. Acta Neurobiologiae Experimentalis, 56( 1), 215-225.
URL pmid: 8787177 |
[72] |
Szelag, E., von Steinbüchel, N., & Koppel, E . ( 1997). Temporal processing disorders in patients with Broca’s aphasia. Neuroscience Letters, 235( 1-2), 33-36.
doi: 10.1016/s0304-3940(97)00703-9 URL pmid: 9389589 |
[73] | Tokushige, S.-I., Terao, Y., Matsuda, S., Furubayashi, T., Sasaki, T., Inomata-Terada, S., … Ugawa, Y . ( 2018). Does the clock tick slower or faster in Parkinson’s disease? - Insights gained from the synchronized tapping task. Frontiers in Psychology, 9, 1178-1186. |
[74] | Ulbrich, P., Churan, J., Fink, M., & Wittmann, M . ( 2007). Temporal reproduction: Further evidence for two processes. Acta Psychologica, 125( 1), 51-65. |
[75] |
van der Wel, R. P. R. D., Sternad, D., & Rosenbaum, D. A . ( 2009). Moving the arm at different rates: Slow movements are avoided. Journal of Motor Behavior, 42( 1), 29-36.
doi: 10.1080/00222890903267116 URL pmid: 19906636 |
[76] | Wang, L., Bao, Y., Zhang, J., Lin, X., Yang, L., Koppel, E., & Zhou, B . ( 2016). Scanning the world in three seconds: Mismatch negativity as an indicator of temporal segmentation. PsyCh Journal, 5( 3), 170-176. |
[77] | Wang, L., Lin, X., Zhou, B., Koppel, E., & Bao, Y . ( 2015). Subjective present: a window of temporal integration indexed by mismatch negativity. Cognitive Processing, 16, 131-135. |
[78] | Wang, L., Lin, X., Zhou, B., Koppel, E., & Bao, Y . ( 2016). Rubberband effect in temporal control of mismatch negativity. Frontiers in Psychology, 7, e84536. |
[79] | Wang, Y., Kirubarajan, T., Tharmarasa, R., Jassemi-Zargani, R., & Kashyap, N . ( 2018). Multiperiod coverage path planning and scheduling for airborne surveillance. IEEE Transactions on Aerospace & Electronic Systems, 54( 5), 2257-2273. |
[80] | Wernery, J., Atmanspacher, H., Kornmeier, J., Candia, V., Folkers, G., & Wittmann, M . ( 2015). Temporal processing in bistable perception of the necker cube. Perception, 44( 2), 157-168. |
[81] |
White, P. A . ( 2017). The three-second “subjective present”: A critical review and a new proposal. Psychological Bulletin, 143( 7), 735-756.
doi: 10.1037/bul0000104 URL pmid: 28368147 |
[82] | White, P. A . ( 2018). Is conscious perception a series of discrete temporal frames? Consciousness and Cognition, 60, 98-126. |
[83] | Wittmann, M. ( 2011). Moments in Time. Frontiers in Integrative Neuroscience, 5( 2), 41. |
[84] | Yin, H. Z., Cheng, M., & Li, D . ( 2019). The right dorsolateral prefrontal cortex is essential in seconds range timing, but not in milliseconds range timing: An investigation with trans cranial direct current stimulation. Brain and cognition. 135, e103568. |
[85] |
Yu, X., Chen, Y., Qiu, J., Li, X., & Huang, X . ( 2017). Neural oscillations associated with auditory duration maintenance in working memory. Scientific Reports, 7( 1), 5695.
doi: 10.1038/s41598-017-06078-2 URL pmid: 28720790 |
[86] | Zhao, C., Zhang, D., & Bao, Y . ( 2018). A time window of 3 s in the aesthetic appreciation of poems. PsyCh Journal, 7( 31), 51-52. |
[1] | YE Shuqi, YIN Junting, LI Zhaoxian, LUO Junlong. The influence mechanism of emotion on intuitive and analytical processing [J]. Advances in Psychological Science, 2023, 31(5): 736-746. |
[2] | LI Yadan, DU Ying, XIE Cong, LIU Chunyu, YANG Yilong, LI Yangping, QIU Jiang. A meta-analysis of the relationship between semantic distance and creative thinking [J]. Advances in Psychological Science, 2023, 31(4): 519-534. |
[3] | YU Jie, CHEN Youguo. Spatiotemporal interference effect: An explanation based on Bayesian models [J]. Advances in Psychological Science, 2023, 31(4): 597-607. |
[4] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[5] | YANG Qing, LI Yaqin. Is uncertainty bad? Mixed findings and explanatory model of error processing under uncertainty [J]. Advances in Psychological Science, 2023, 31(3): 338-349. |
[6] | WANG Xudong, HE Yaji, FAN Huiyong, LUO Yangmei, CHEN Xuhai. The advantages and disadvantages of interpersonal anger: Evidence from meta-analysis [J]. Advances in Psychological Science, 2023, 31(3): 386-401. |
[7] | LI Qingyang, YIN Junting, LUO Junlong. Legs move, thoughts flow: Physical exercise influences creative thinking [J]. Advances in Psychological Science, 2023, 31(3): 455-466. |
[8] | CHEN Zi-Wei, FU Di, LIU Xun. Better to misidentify than to miss: A review of occurrence mechanisms and applications of face pareidolia [J]. Advances in Psychological Science, 2023, 31(2): 240-255. |
[9] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[10] | XIE Caifeng, WU Jiahua, XU Liying, YU Feng, ZHAND Yuyan, XIE Yingying. The process motivation model of algorithmic decision-making approach and avoidance [J]. Advances in Psychological Science, 2023, 31(1): 60-77. |
[11] | YE Weihao, YU Meiqi, ZHANG Lihui, GAO Qi, FU Mingzhu, LU Jiamei. Negative emotion granularity: Its mechanisms and related interventions [J]. Advances in Psychological Science, 0, (): 0-0. |
[12] | ZHU Chuanlin, LIU Dianzhi, LUO Wenbo. The cognitive and brain mechanisms of how emotional experience affecting individuals’ utilization of estimation strategies [J]. Advances in Psychological Science, 2022, 30(12): 2639-2649. |
[13] | SHI Hanwen, LI Yutong, SUI Xue. Effects of emotional word types: behavioral and neural evidence for discrimination between emotion-label and emotion-laden words [J]. Advances in Psychological Science, 2022, 30(12): 2696-2707. |
[14] | CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory [J]. Advances in Psychological Science, 2022, 30(12): 2708-2717. |
[15] | SHI Huiying, TANG Jie, LIU Pingping. Instability of the watching eyes effect and perceived norms: A new perspective [J]. Advances in Psychological Science, 2022, 30(12): 2718-2734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||