Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (4): 574-587.doi: 10.3724/SP.J.1042.2025.0574
• Neuropsychological Mechanisms of Autism from a Multidisciplinary Perspective: A Special Column • Previous Articles Next Articles
WENG Yuyue, WENG Xuchu, GENG Hongyan()
Received:
2023-06-03
Online:
2025-04-15
Published:
2025-03-05
Contact:
GENG Hongyan
E-mail:snail.yanzi@163.com
CLC Number:
WENG Yuyue, WENG Xuchu, GENG Hongyan. Altered gene expression associated with different brain activities in autism spectrum disorder[J]. Advances in Psychological Science, 2025, 33(4): 574-587.
[1] | 梁夏, 王金辉, 贺永. (2010). 人脑连接组研究: 脑结构网络和脑功能网络. 科学通报, 55(16), 1565-1583. |
[2] | 姚滔涛, 陈卓铭, 张书晨. (2020). 孤独症患儿神经连接异常的影像特征. 中国康理论与实践, 26(4), 472-478. |
[3] | 张小飞. (2020). 孤独症相关基因Shank3在神经病理性痛中的机制研究 [硕士学位论文]. 湖北医药学院, 十堰. |
[4] |
Abrams, D. A., Lynch, C. J., Cheng, K. M., Phillips, J., Supekar, K., Ryali, S., Uddin, L. Q., & Menon, V. (2013). Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 12060-12065. https://doi.org/10.1073/pnas.1302982110
doi: 10.1073/pnas.1302982110 URL pmid: 23776244 |
[5] | Al-Ward, H., Liu, C. Y., Liu, N., Shaher, F., Al-Nusaif, M., Mao, J., & Xu, H. (2020). Voltage-Gated Sodium Channel β1 Gene: An Overview. Human Heredity, 85(3-6), 101-109. https://doi.org/10.1159/000516388 |
[6] | Ameis, S. H., & Szatmari, P. (2012). Imaging-genetics in autism spectrum disorder: advances, translational impact, and future directions. Frontiers in Psychiatry, 3, 46. https://doi.org/10.3389/fpsyt.2012.00046 |
[7] | Anderson, K. M., Krienen, F. M., Choi, E. Y., Reinen, J. M., Yeo, B. T. T., & Holmes, A. J. (2018). Gene expression links functional networks across cortex and striatum. Nature Communications, 9(1), 1428. https://doi.org/10.1038/s41467-018-03811-x |
[8] |
Andreae, L. C., & Basson, M. A. (2018). Sex bias in autism: New insights from Chd8 mutant mice. Nature Neuroscience, 21(9), 1144-1146. https://doi.org/10.1038/s41593-018-0217-y
doi: 10.1038/s41593-018-0217-y URL pmid: 30127425 |
[9] | Antshel, K. M., & Russo, N. (2019). Autism spectrum disorders and ADHD: Overlapping phenomenology, diagnostic issues, and treatment considerations. Current Psychiatry Reports, 21(5), 34. https://doi.org/10.1007/s11920-019-1020-5 |
[10] | Arin, D., Bauman, M., & Kemper, T. (1991). The distribution of Purkinje cell loss in the cerebellum in autism. Neurology, 41(suppl 1), 307. |
[11] | Arking, D. E., Cutler, D. J., Brune, C. W., Teslovich, T. M., West, K., Ikeda, M., ... Cook Jr, E. H. (2008). A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. The American Journal of Human Genetics, 82(1), 160-164. |
[12] |
Aylward, E. H., Minshew, N. J., Field, K., Sparks, B., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59(2), 175-183.
pmid: 12136053 |
[13] |
Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829-839.
doi: 10.1038/nrn1201 pmid: 14523382 |
[14] | Bai, L. L., Zhang, L. Q., Ma, J., Li, J., Tian, M., Cao, R. J., ... Zhu, X. J. (2021). DIP2A is involved in SOD-mediated antioxidative reactions in murine brain. Free Radical Biology Medicine, 168, 6-15. https://doi.org/10.1016/j.freeradbiomed.2021.03.027 |
[15] | Balaan, C., Corley, M. J., Eulalio, T., Leite-Ahyo, K., Pang, A. P. S., Fang, R., ... Ward, M. A. (2019). Juvenile Shank3b deficient mice present with behavioral phenotype relevant to autism spectrum disorder. Behavvioural Brain Research, 356, 137-147. https://doi.org/10.1016/j.bbr.2018.08.005 |
[16] | Berto, S., Treacher, A. H., Caglayan, E., Luo, D., Haney, J. R., Gandal, M. J., ... Konopka, G. (2022). Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nature Communications, 13(1), 3328. https://doi.org/10.1038/s41467-022-31053-5 |
[17] | Bethlehem, R. A. I., Lombardo, M. V., Lai, M. C., Auyeung, B., Crockford, S. K., Deakin, J., ... Baron-Cohen, S. (2017). Intranasal oxytocin enhances intrinsic corticostriatal functional connectivity in women. Translational Psychiatry, 7(4), e1099. https://doi.org/10.1038/tp.2017.72 |
[18] | Bey, A. L., Wang, X., Yan, H., Kim, N., Passman, R. L., Yang, Y., ... Jiang, Y. H. (2018). Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Translational Psychiatry, 8(1), 94. https://doi.org/10.1038/s41398-018-0142-6 |
[19] | Bochukova, E. G., Huang, N., Keogh, J., Henning, E., Purmann, C., Blaszczyk, K., ... Farooqi, I. S. (2010). Large, rare chromosomal deletions associated with severe early-onset obesity. Nature, 463(7281), 666-670. https://doi.org/10.1038/nature08689 |
[20] | Bouazoune, K., & Kingston, R. E. (2012). Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19238-19243. https://doi.org/10.1073/pnas.1213825109 |
[21] |
Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57(2), 126-133.
doi: 10.1016/j.biopsych.2004.11.005 pmid: 15652870 |
[22] |
Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. Neuroimage, 16(4), 1038-1051.
doi: 10.1006/nimg.2002.1099 pmid: 12202091 |
[23] |
Catarino, A., Luke, L., Waldman, S., Andrade, A., Fletcher, P. C., & Ring, H. (2011). An fMRI investigation of detection of semantic incongruities in autistic spectrum conditions. European Journal of Neuroscience, 33(3), 558-567.
doi: 10.1111/j.1460-9568.2010.07503.x pmid: 21198976 |
[24] | Cellot, G., & Cherubini, E. (2014). GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in Pediatrics, 2, 70. https://doi.org/10.3389/fped.2014.00070 |
[25] | Chien, Y. L., Chen, Y. C., & Gau, S. S. (2021). Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder. Neuroimage Clinical, 31, 102729. https://doi.org/10.1016/j.nicl.2021.102729 |
[26] |
Courchesne, E., Mouton, P. R., Calhoun, M. E., Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., Barnes, C. C., & Pierce, K. (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 2001-2010.
doi: 10.1001/jama.2011.1638 pmid: 22068992 |
[27] | Courchet, V., Roberts, A. J., Meyer-Dilhet, G., Del Carmine, P., Lewis, T. L., Polleux, F., & Courchet, J. (2018). Haploinsufficiency of autism spectrum disorder candidate gene NUAK1 impairs cortical development and behavior in mice. Nature Communications, 9(1), 4289. https://doi.org/10.1038/s41467-018-06584-5 |
[28] | de Jong, J. O., Llapashtica, C., Genestine, M., Strauss, K., Provenzano, F., Sun, Y., ... Markx, S. (2021). Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nature Communications, 12(1), 4087. https://doi.org/10.1038/s41467-021-24358-4 |
[29] | Domínguez-Iturza, N., Lo, A. C., Shah, D., Armendáriz, M., Vannelli, A., Mercaldo, V., ... Bagni, C. (2019). The autism- and schizophrenia-associated protein CYFIP1 regulates bilateral brain connectivity and behaviour. Nature Communications, 10(1), 3454. https://doi.org/10.1038/s41467-019-11203-y |
[30] |
Dong, D., Wang, Y., Chang, X., Luo, C., & Yao, D. (2018). Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Schizophrenia Bulletin, 44(1), 168-181. https://doi.org/10.1093/schbul/sbx034
doi: 10.1093/schbul/sbx034 URL pmid: 28338943 |
[31] |
Donovan, A. P., Yu, T., Ellegood, J., Riegman, K. L., De Geus, C., van Ravenswaaij-Arts, C., ... Basson, M. A. (2017). Cerebellar vermis and midbrain hypoplasia upon conditional deletion of Chd7 from the embryonic mid-hindbrain region. Frontiers in Neuroanatomy, 11, 86.
doi: 10.3389/fnana.2017.00086 pmid: 29046629 |
[32] | Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain, 135(3), 949-960. https://doi.org/10.1093/brain/awr364 |
[33] | Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Thuras, P. D. (2009). GABAA receptor downregulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39(2), 223-230. |
[34] | Filice, F., Schwaller, B., Michel, T. M., & Grunblatt, E. (2020). Profiling parvalbumin interneurons using iPSC: Challenges and perspectives for Autism Spectrum Disorder (ASD). Molecular Autism, 11(1), 10. https://doi.org/10.1186/s13229-020-0314-0 |
[35] | Frehner, S. S., Dooley, K. T., Palumbo, M. C., Smith, A. L., Goodman, M. M., Bales, K. L., & Freeman, S. M. (2022). Effect of sex and autism spectrum disorder on oxytocin receptor binding and mRNA expression in the dopaminergic pars compacta of the human substantia nigra. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1858), 20210118. https://doi.org/10.1098/rstb.2021.0118 |
[36] | Gao, R., Pratt, C. P., Yoon, S., Martin-de-Saavedra, M. D., Forrest, M. P., & Penzes, P. (2020). CNTNAP2 is targeted to endosomes by the polarity protein PAR3. European Journal of Neuroscience, 51(4), 1074-1086. https://doi.org/10.1111/ejn.14620 |
[37] | Gdalyahu, A., Lazaro, M., Penagarikano, O., Golshani, P., Trachtenberg, J. T., & Geschwind, D. H. (2015). Correction: The Autism related protein contactin- associated protein-like 2 (CNTNAP2) stabilizes new spines: An in vivo mouse Study. PLoS One, 10(5), e0129638. https://doi.org/10.1371/journal.pone.0129638 |
[38] |
Harris, J. (2018). Leo Kanner and autism: A 75-year perspective. International Review of Psychiatry, 30(1), 3-17. https://doi.org/10.1080/09540261.2018.1455646
doi: 10.1080/09540261.2018.1455646 URL pmid: 29667863 |
[39] | Hashemi, E., Ariza, J., Rogers, H., Noctor, S. C., & Martinez- Cerdeno, V. (2018). The number of parvalbumin- expressing interneurons is decreased in the prefrontal cortex in autism. Cerebral Cortex, 28(2), 690. https://doi.org/10.1093/cercor/bhx063 |
[40] | Hernandez, L. M., Lawrence, K. E., Padgaonkar, N. T., Inada, M., Hoekstra, J. N., Lowe, J. K., ... Dapretto, M. (2020). Imaging-genetics of sex differences in ASD: Distinct effects of OXTR variants on brain connectivity. Translational Psychiatry, 10(1), 82. https://doi.org/10.1038/s41398-020-0750-9 |
[41] | Ho, L., & Crabtree, G. R. (2010). Chromatin remodelling during development. Nature, 463(7280), 474-484. https://doi.org/10.1038/nature08911 |
[42] |
Isler, J. R., Martien, K. M., Grieve, P. G., Stark, R. I., & Herbert, M. R. (2010). Reduced functional connectivity in visual evoked potentials in children with autism spectrum disorder. Clinical Neurophysiology, 121(12), 2035-2043. https://doi.org/10.1016/j.clinph.2010.05.004
doi: 10.1016/j.clinph.2010.05.004 URL pmid: 20605520 |
[43] | Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Ohta, H., Kanai, C., ... Hashimoto, R. (2015). Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder. Molecular Autism, 6, 30. https://doi.org/10.1186/s13229-015-0026-z |
[44] |
Jørgensen, H. F., Terry, A., Beretta, C., Pereira, C. F., Leleu, M., Chen, Z. F., ... Fisher, A. G. (2009). REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development, 136(5), 715-721. https://doi.org/10.1242/dev.028548
doi: 10.1242/dev.028548 URL pmid: 19201947 |
[45] |
Joshi, G., Arnold Anteraper, S., Patil, K. R., Semwal, M., Goldin, R. L., Furtak, S. L., ... Biederman, J. (2017). Integration and segregation of default mode network resting-state functional connectivity in transition-age males with high-functioning autism spectrum disorder: A proof-of-concept study. Brain Connectivity, 7(9), 558-573.
doi: 10.1089/brain.2016.0483 pmid: 28942672 |
[46] | Kana, R. K., & Wadsworth, H. M. (2012). “The archeologist's career ended in ruins”: Hemispheric differences in pun comprehension in autism. Neuroimage, 62(1), 77-86. |
[47] |
Kanat, M., Heinrichs, M., & Domes, G. (2014). Oxytocin and the social brain: Neural mechanisms and perspectives in human research. Brain Research, 1580, 160-171. https://doi.org/10.1016/j.brainres.2013.11.003
doi: 10.1016/j.brainres.2013.11.003 URL pmid: 24216134 |
[48] |
Kasah, S., Oddy, C., & Basson, M. A. (2018). Autism-linked CHD gene expression patterns during development predict multi-organ disease phenotypes. Journal of Anatomy, 233(6), 755-769. https://doi.org/10.1111/joa.12889
doi: 10.1111/joa.12889 URL pmid: 30277262 |
[49] | Katayama, Y., Nishiyama, M., Shoji, H., Ohkawa, Y., Kawamura, A., Sato, T., ... Nakayama, K. I. (2016). CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature, 537(7622), 675-679. https://doi.org/10.1038/nature19357 |
[50] |
Kawano, S., Baba, M., Fukushima, H., Miura, D., Hashimoto, H., & Nakazawa, T. (2022). Autism-associated ANK2 regulates embryonic neurodevelopment. Biochemical and Biophysical Research Communications, 605, 45-50. https://doi.org/10.1016/j.bbrc.2022.03.058
doi: 10.1016/j.bbrc.2022.03.058 URL pmid: 35313230 |
[51] | Kemper, T. L., & Bauman, M. L. (2002). Neuropathology of infantile autism. Molecular Psychiatry, 7, S12-13. https://doi.org/10.1038/sj.mp.4001165 |
[52] |
Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., ... Kenet, T. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 3107-3112. https://doi.org/10.1073/pnas.1214533110
doi: 10.1073/pnas.1214533110 URL pmid: 23319621 |
[53] | Kohlhoff, J., Cibralic, S., Hawes, D. J., & Eapen, V. (2022). Oxytocin receptor gene (OXTR) polymorphisms and social, emotional and behavioral functioning in children and adolescents: A systematic narrative review. Neuroscience & Biobehavioral Reviews, 135, 104573. https://doi.org/10.1016/j.neubiorev.2022.104573 |
[54] | Lam, M., Moslem, M., Bryois, J., Pronk, R. J., Uhlin, E., Ellstrom, I. D., ... Falk, A. (2019). Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. Experimental Cell Research, 383(1), 111469. https://doi.org/10.1016/j.yexcr.2019.06.014 |
[55] |
Lazarev, V. V., Pontes, A., Mitrofanov, A. A., & deAzevedo, L. C. (2015). Reduced interhemispheric connectivity in childhood autism detected by electroencephalographic photic driving coherence. Journal of Autism and Developmental Disorders. 45(2), 537-547.
doi: 10.1007/s10803-013-1959-8 pmid: 24097142 |
[56] |
Lazaro, M. T., Taxidis, J., Shuman, T., Bachmutsky, I., Ikrar, T., Santos, R., ... Golshani, P. (2019). Reduced prefrontal synaptic connectivity and disturbed oscillatory population dynamics in the CNTNAP2 model of autism. Cell Reports, 27(9), 2567-2578. https://doi.org/10.1016/j.celrep.2019.05.006
doi: S2211-1247(19)30617-5 URL pmid: 31141683 |
[57] | Lee, H. C. (2006). Structure and enzymatic functions of human CD38. Molecular Medicine, 12(11-12), 317-323. https://doi.org/10.2119/2006-00086.Lee |
[58] | Liu, X., Zhang, L., Jin, L., Tan, Y., Li, W., & Tang, J. (2018). HCN2 contributes to oxaliplatin-induced neuropathic pain through activation of the CaMKII/CREB cascade in spinal neurons. Molecular Pain, 14, 1744806918778490. https://doi.org/10.1177/1744806918778490 |
[59] |
Long, J., Lu, F., Yang, S., Zhang, Q., Chen, X., Pang, Y., ... Chen, H. (2022). Different functional connectivity optimal frequency in autism compared with healthy controls and the relationship with social communication deficits: Evidence from gene expression and behavior symptom analyses. Human Brain Mapping, 44(1), 258-268. https://doi.org/10.1002/hbm.26011
doi: 10.1002/hbm.26011 URL pmid: 35822559 |
[60] |
Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., & Menon, V. (2013). Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits. Biological Psychiatry, 74(3), 212-219. https://doi.org/10.1016/j.biopsych.2012.12.013
doi: 10.1016/j.biopsych.2012.12.013 URL pmid: 23375976 |
[61] |
Ma, J., Chen, L., He, X. X., Wang, Y. J., Yu, H. L., He, Z. X., ... Zhu, X. J. (2019). Functional prediction and characterization of Dip2 gene in mice. Cell Biology International, 43(4), 421-428. https://doi.org/10.1002/cbin.11106
doi: 10.1002/cbin.11106 URL pmid: 30672040 |
[62] | Ma, J., Zhang, L. Q., He, Z. X., He, X. X., Wang, Y. J., Jian, Y. L., ... Zhu, X. J. (2019). Autism candidate gene DIP2A regulates spine morphogenesis via acetylation of cortactin. PLoS Biology, 17(10), e3000461. https://doi.org/10.1371/journal.pbio.3000461 |
[63] |
Martucci, L. L., Amar, M., Chaussenot, R., Benet, G., Bauer, O., de Zelicourt, A., ... Cancela, J. M. (2019). A multiscale analysis in CD38(-/-) mice unveils major prefrontal cortex dysfunctions. FASEB Journal, 33(5), 5823-5835. https://doi.org/10.1096/fj.201800489R
doi: 10.1096/fj.201800489R URL pmid: 30844310 |
[64] | Masuda, F., Nakajima, S., Miyazaki, T., Yoshida, K., Tsugawa, S., Wada, M., … Noda Y. (2019). Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: a systematic review. Translational Psychiatry, 9(1), 110. https://doi.org/10.1038/s41398-019-0444-3 |
[65] |
Mefford, H. C., Cooper, G. M., Zerr, T., Smith, J. D., Baker, C., Shafer, N., ... Eichler, E. E. (2009). A method for rapid, targeted CNV genotyping identifies rare variants associated with neurocognitive disease. Genome Research, 19(9), 1579-1585. https://doi.org/10.1101/gr.094987.109
doi: 10.1101/gr.094987.109 URL pmid: 19506092 |
[66] | Merner, N., Forgeot d'Arc, B., Bell, S. C., Maussion, G., Peng, H., Gauthier, J., ... Mottron, L. (2016). A de novo frameshift mutation in chromodomain helicase DNA‐binding domain 8 (CHD8): A case report and literature review. American Journal of Medical Genetics Part A, 170(5), 1225-1235. |
[67] |
Mochida, G. H., & Walsh, C. A. (2004). Genetic basis of developmental malformations of the cerebral cortex. Archives of Neurology, 61(5), 637-640.
pmid: 15148137 |
[68] |
Nelissen, T. P., Bamford, R. A., Tochitani, S., Akkus, K., Kudzinskas, A., Yokoi, K., ... Oguro-Ando, A. (2018). CD38 is required for dendritic organization in visual cortex and hippocampus. Neuroscience, 372, 114-125. https://doi.org/10.1016/j.neuroscience.2017.12.050
doi: S0306-4522(17)30940-5 URL pmid: 29306053 |
[69] | Olivito, G., Clausi, S., Laghi, F., Tedesco, A. M., Baiocco, R., Mastropasqua, C., ... Leggio, M. (2017). Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. The Cerebellum, 16(2), 283-292. |
[70] | Pagani, M., Bertero, A., Liska, A., Galbusera, A., Sabbioni, M., Barsotti, N., ... Gozzi, A. (2019). Deletion of autism risk gene Shank3 disrupts prefrontal connectivity. The Journal of Neuroscience, 39(27), 5299-5310. https://doi.org/10.1523/JNEUROSCI.2529-18.2019 |
[71] | Paterno, R., Marafiga, J. R., Ramsay, H., Li, T., Salvati, K. A., & Baraban, S. C. (2021). Hippocampal gamma and sharp-wave ripple oscillations are altered in a Cntnap2 mouse model of autism spectrum disorder. Cell Reports, 37(6), 109970. https://doi.org/10.1016/j.celrep.2021.109970 |
[72] | Peca, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N., ... Feng, G. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344), 437-442. https://doi.org/10.1038/nature09965 |
[73] |
Poliak, S., Salomon, D., Elhanany, H., Sabanay, H., Kiernan, B., Pevny, L., ... Peles, E. (2003). Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. Journal of Cell Biology, 162(6), 1149-1160. https://doi.org/10.1083/jcb.200305018
URL pmid: 12963709 |
[74] |
Ponna, S. K., Ruskamo, S., Myllykoski, M., Keller, C., Boeckers, T. M., & Kursula, P. (2018). Structural basis for PDZ domain interactions in the post-synaptic density scaffolding protein Shank3. Journal of Neurochemistry, 145(6), 449-463. https://doi.org/10.1111/jnc.14322
doi: 10.1111/jnc.14322 URL pmid: 29473168 |
[75] |
Provost, B., Lopez, B. R., & Heimerl, S. (2007). A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental concerns. Journal of Autism and Developmental Disorders, 37(2), 321-328.
doi: 10.1007/s10803-006-0170-6 pmid: 16868847 |
[76] |
Radonjic, N. V., Hess, J. L., Rovira, P., Andreassen, O., Buitelaar, J. K., Ching, C. R. K., ... Faraone, S. V. (2021). Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Molecular Psychiatry, 26(6), 2101-2110. https://doi.org/10.1038/s41380-020-01002-z
doi: 10.1038/s41380-020-01002-z URL pmid: 33456050 |
[77] |
Richiardi, J., Altmann, A., Milazzo, A. C., Chang, C., Chakravarty, M. M., Banaschewski, T., ... consortium, I. (2015). Correlated gene expression supports synchronous activity in brain networks. Science, 348(6240), 1241-1244. https://doi.org/10.1126/science.1255905
doi: 10.1126/science.1255905 URL pmid: 26068849 |
[78] |
Rodríguez-Paredes, M., Ceballos-Chávez, M., Esteller, M., García-Domínguez, M., & Reyes, J. C. (2009). The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene. Nucleic Acids Research, 37(8), 2449-2460. https://doi.org/10.1093/nar/gkp101
doi: 10.1093/nar/gkp101 URL pmid: 19255092 |
[79] |
Romero-Garcia, R., Whitaker, K. J., Vasa, F., Seidlitz, J., Shinn, M., Fonagy, P., ... Vertes, P. E. (2018). Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. Neuroimage, 171, 256-267. https://doi.org/10.1016/j.neuroimage.2017.12.060
doi: S1053-8119(17)31084-4 URL pmid: 29274746 |
[80] |
Safar, K., Wong, S. M., Leung, R. C., Dunkley, B. T., & Taylor, M. J. (2018). Increased functional connectivity during emotional face processing in children with autism spectrum disorder. Frontiers in Human Neuroscience, 12, 408.
doi: 10.3389/fnhum.2018.00408 pmid: 30364114 |
[81] |
Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., ... State, M. W. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87(6), 1215-1233. https://doi.org/10.1016/j.neuron.2015.09.016
doi: S0896-6273(15)00773-4 URL pmid: 26402605 |
[82] |
Satterstrom, F. K., Kosmicki, J. A., Wang, J., Breen, M. S., De Rubeis, S., An, J. Y., ... Buxbaum, J. D. (2020). Large-Scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 180(3), 568-584e523. https://doi.org/10.1016/j.cell.2019.12.036
doi: S0092-8674(19)31398-4 URL pmid: 31981491 |
[83] | Schrier, M. S., Zhang, Y., Trivedi, M. S., & Deth, R. C. (2022). Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie, 192, 1-12. https://doi.org/10.1016/j.biochi.2021.09.006 |
[84] | Scott, K. E., Mann, R. S., Schormans, A. L., Schmid, S., & Allman, B. L. (2022). Hyperexcitable and immature-like neuronal activity in the auditory cortex of adult rats lacking the language-linked CNTNAP2 gene. Cerebral Cortex, 32(21), 4797-4817. https://doi.org/10.1093/cercor/bhab517 |
[85] | Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43-61. |
[86] |
Seidlitz, J., Vasa, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J., Vertes, P. E., ... Bullmore, E. T. (2018). Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron, 97(1), 231-247. https://doi.org/10.1016/j.neuron.2017.11.039
doi: S0896-6273(17)31092-9 URL pmid: 29276055 |
[87] |
Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M., & Mohammadi, M. (2012). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36(2), 957-963. https://doi.org/10.1007/s10916-010-9560-6
doi: 10.1007/s10916-010-9560-6 URL pmid: 20711644 |
[88] |
Shen, T., Ji, F., Yuan, Z., & Jiao, J. (2015). CHD2 is required for embryonic neurogenesis in the developing cerebral cortex. Stem Cells, 33(6), 1794-1806.
doi: 10.1002/stem.2001 pmid: 25786798 |
[89] | Shiota, Y., Hirosawa, T., Yoshimura, Y., Tanaka, S., Hasegawa, C., Iwasaki, S., ... Kikuchi, M. (2022). Effect of CNTNAP2 polymorphism on receptive language in children with autism spectrum disorder without language developmental delay. Neuropsychopharmacol Reports, 42(3), 352-355. https://doi.org/10.1002/npr2.12267 |
[90] | Steinbeis, N. (2016). The role of self-other distinction in understanding others' mental and emotional states: Neurocognitive mechanisms in children and adults. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150074. https://doi.org/10.1098/rstb.2015.0074 |
[91] |
Stolerman, E. S., Smith, B., Chaubey, A., & Jones, J. R. (2016). CHD8 intragenic deletion associated with autism spectrum disorder. European Journal of Medical Genetics, 59(4), 189-194.
doi: 10.1016/j.ejmg.2016.02.010 pmid: 26921529 |
[92] | Subbaraju, V., Suresh, M. B., Sundaram, S., & Narasimhan, S. (2017). Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: A spatial filtering approach. Medical Image Analysis, 35, 375-389. https://doi.org/10.1016/j.media.2016.08.003 |
[93] |
Subtil-Rodríguez, A., Vázquez-Chávez, E., Ceballos-Chávez, M., Rodríguez-Paredes, M., Martín-Subero, J. I., Esteller, M., & Reyes, J. C. (2014). The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes. Nucleic Acids Research, 42(4), 2185-2196. https://doi.org/10.1093/nar/gkt1161
doi: 10.1093/nar/gkt1161 URL pmid: 24265227 |
[94] | Sugathan, A., Biagioli, M., Golzio, C., Erdin, S., Blumenthal, I., Manavalan, P., ... Talkowski, M. E. (2014). CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 111(42), E4468-4477. https://doi.org/10.1073/pnas.1405266111 |
[95] | Uchino, S., & Waga, C. (2013). SHANK3 as an autism spectrum disorder-associated gene. Brain and Development, 35(2), 106-110. https://doi.org/10.1016/j.braindev.2012.05.013 |
[96] | Uzefovsky, F., Bethlehem, R. A. I., Shamay-Tsoory, S., Ruigrok, A., Holt, R., Spencer, M., ... Baron-Cohen, S. (2019). The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Molecular Autism, 10, 12. https://doi.org/10.1186/s13229-019-0258-4 |
[97] |
Uzefovsky, F., Shalev, I., Israel, S., Edelman, S., Raz, Y., Mankuta, D., Knafo-Noam, A., & Ebstein, R. P. (2015). Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67, 60-65. https://doi.org/10.1016/j.yhbeh.2014.11.007
doi: 10.1016/j.yhbeh.2014.11.007 URL pmid: 25476609 |
[98] |
Varea, O., Martin-de-Saavedra, M. D., Kopeikina, K. J., Schürmann, B., Fleming, H. J., Fawcett-Patel, J. M., ... Penzes, P. (2015). Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 6176-6181. https://doi.org/10.1073/pnas.1423205112
doi: 10.1073/pnas.1423205112 URL pmid: 25918374 |
[99] |
Vollert, J., Magerl, W., Baron, R., Binder, A., Enax-Krumova, E. K., Geisslinger, G., ... Treede, R. D. (2018). Pathophysiological mechanisms of neuropathic pain: Comparison of sensory phenotypes in patients and human surrogate pain models. Pain, 159(6), 1090-1102. https://doi.org/10.1097/j.pain.0000000000001190
doi: 10.1097/j.pain.0000000000001190 URL pmid: 29494416 |
[100] | Wang, F., Yin, X. S., Lu, J., Cen, C., & Wang, Y. (2022). Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Science Signal, 15(719), eabd0033. https://doi.org/10.1126/scisignal.abd0033 |
[101] | Wang, J., Liu, J., Gao, Y., Wang, K., & Jiang, K. (2018). Autism spectrum disorder early in development associated with CHD8 mutations among two Chinese children. BMC Pediatrics, 18(1), 338. https://doi.org/10.1186/s12887-018-1307-4 |
[102] |
Weisman, O., Pelphrey, K. A., Leckman, J. F., Feldman, R., Lu, Y., Chong, A., ... Ebstein, R. P. (2015). The association between 2D:4D ratio and cognitive empathy is contingent on a common polymorphism in the oxytocin receptor gene (OXTR rs53576). Psychoneuroendocrinology, 58, 23-32. https://doi.org/10.1016/j.psyneuen.2015.04.007
doi: 10.1016/j.psyneuen.2015.04.007 URL pmid: 25935637 |
[103] | Whittaker, D. E., Riegman, K. L., Kasah, S., Mohan, C., Yu, T., Sala, B. P., ... Michetti, C. (2017). The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. The Journal of Clinical Investigation, 127(3), 874-887. |
[104] |
Willsey, A. J., Sanders, S. J., Li, M., Dong, S., Tebbenkamp, A. T., Muhle, R. A., ... State, M. W. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155(5), 997-1007. https://doi.org/10.1016/j.cell.2013.10.020
doi: 10.1016/j.cell.2013.10.020 URL pmid: 24267886 |
[105] |
Winslow, J. T., Hearn, E. F., Ferguson, J., Young, L. J., Matzuk, M. M., & Insel, T. R. (2000). Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Hormones and Behavior, 37(2), 145-155.
pmid: 10753584 |
[106] | Yadav, S. K., Bhat, A. A., Hashem, S., Nisar, S., Kamal, M., Syed, N., ... Haris, M. (2021). Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Translational Psychiatry, 11(1), 349. https://doi.org/10.1038/s41398-021-01473-w |
[107] |
Yang, R., Walder-Christensen, K. K., Kim, N., Wu, D., Lorenzo, D. N., Badea, A., ... Bennett, V. (2019). ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proceedings of the National Academy of Sciences of the United States of America, 116(30), 15262-15271. https://doi.org/10.1073/pnas.1904348116
doi: 10.1073/pnas.1904348116 URL pmid: 31285321 |
[108] | Yuan, C. -C., Zhao, X., Florens, L., Swanson, S. K., Washburn, M. P., & Hernandez, N. (2007). CHD8 associates with human staf and contributes to efficient U6 RNA polymerase III transcription. Molecular and Cellular Biology, 27(24), 8729-8738. https://doi.org/10.1128/mcb.00846-07 |
[109] |
Zahir, F., Firth, H. V., Baross, A., Delaney, A. D., Eydoux, P., Gibson, W. T., ... Marra, M. A. (2007). Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children. Journal of Medical Genetics, 44(9), 556-561.
pmid: 17545556 |
[110] | Zeeland, S. -V., Abrahams, B. S., Alvarez-Retuerto, A. I., Sonnenblick, L. I., Rudie, J. D., Ghahremani, D., ... Geschwind, D. H. (2010). Bookheimer, SY 2010. Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Science Translational Medicine, 2( 56), 56ra80. |
[111] |
Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M. S., Saxena, S., ... Elsabbagh, M. (2022). Global prevalence of autism: A systematic review update. Autism Research, 15(5), 778-790. https://doi.org/10.1002/aur.2696
doi: 10.1002/aur.2696 URL pmid: 35238171 |
[112] |
Zeng, H., Shen, E. H., Hohmann, J. G., Oh, S. W., Bernard, A., Royall, J. J., ... Guillozet-Bongaarts, A. L. (2012). Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell, 149(2), 483-496. https://doi.org/10.1016/j.cell.2012.02.052
doi: 10.1016/j.cell.2012.02.052 URL pmid: 22500809 |
[113] | Zhang, L., Mabwi, H. A., Palange, N. J., Jia, R., Ma, J., Bah, F. B., ... Zheng, Y. (2015). Expression patterns and potential biological roles of Dip2a. PLoS One, 10(11), e0143284. https://doi.org/10.1371/journal.pone.0143284 |
[114] |
Zhou, H., Xu, X., Yan, W., Zou, X., Wu, L., Luo, X., ... Team, L. -N. S. (2020). Prevalence of autism spectrum disorder in China: A nationwide multi-center population-based study among children aged 6 to 12 years. Neuroscience Bulletin, 36(9), 961-971. https://doi.org/10.1007/s12264-020-00530-6
doi: 10.1007/s12264-020-00530-6 URL pmid: 32607739 |
[115] |
Zikopoulos, B., & Barbas, H. (2010). Changes in prefrontal axons may disrupt the network in autism. Journal of Neuroscience, 30(44), 14595-14609.
doi: 10.1523/JNEUROSCI.2257-10.2010 pmid: 21048117 |
[1] | TU Haixia, WENG Xuchu, XU Bo. The relationship between abnormal cerebellar development and Autism Spectrum Disorder [J]. Advances in Psychological Science, 2025, 33(4): 565-573. |
[2] | YANG Ping, FANG Runqiu, WENG Xuchu. Atypical facial expression characteristics in children with autism spectrum disorder and their application in early screening [J]. Advances in Psychological Science, 2025, 33(4): 588-597. |
[3] | TIAN Renxia, YANG Ping, GUO Yuanyuan, WU Xia. Treatment of autism spectrum disorder: The potential role of repetitive transcranial magnetic stimulation [J]. Advances in Psychological Science, 2025, 33(4): 598-610. |
[4] | FAN Guirong, WENG Xuchu, GENG Hongyan. Relationship between inflammatory bowel disease and autism spectrum disorder in children [J]. Advances in Psychological Science, 2025, 33(4): 611-619. |
[5] | ZHOU Aibao, YUAN Yue. Self-processing mechanisms and interventions for children with autism spectrum disorders [J]. Advances in Psychological Science, 2025, 33(2): 212-222. |
[6] | FU Chunye, LI Aixin, LYU Xiaokang, WANG Chongying. Visual perception in individuals with autism spectrum disorder: Bayesian and predictive coding-based perspective [J]. Advances in Psychological Science, 2024, 32(7): 1164-1178. |
[7] | JING Wei, CHEN Qi, XUE Yun Qing, YANG Miao, ZHANG Jie. Predictive coding deficits in autism: Abnormalities in feedback or feedforward connectivities? [J]. Advances in Psychological Science, 2024, 32(5): 813-833. |
[8] | GAO Limei, WANG Kai, LI Dandan. The application of social robots in intervention for children with autism spectrum disorders [J]. Advances in Psychological Science, 2024, 32(5): 834-844. |
[9] | CHEN Yan, LI Jing. The impact of interpersonal synchronization on autistic children’s cooperative behavior and its intervention promotion [J]. Advances in Psychological Science, 2024, 32(4): 639-653. |
[10] | Fang Yang, Jinyu Tian, Peijun Yuan, Chunyan Liu, Xinyuan Zhang, Li Yang, Yi Jiang. Unconscious, but not Conscious, Gaze-triggered Social Attention Reflects the Autistic Traits in Adults and Children [J]. Advances in Psychological Science, 2023, 31(suppl.): 98-98. |
[11] | Ziwei Chen, Mengxin Wen, Di Fu, Xun Liu. Exploring the Effect of Averted Gaze Faces and Face-like Objects on Attentional Shifts in Adolescents with Autism-Like Traits [J]. Advances in Psychological Science, 2023, 31(suppl.): 101-101. |
[12] | PENG Yujia, WANG Yuxi, LU Di. The mechanism of emotion processing and intention inference in social anxiety disorder based on biological motion [J]. Advances in Psychological Science, 2023, 31(6): 905-914. |
[13] | LI Sijin, WANG Tingdong, PENG Zhilin, ZHANG Dandan. Perception, discrimination, and learning of speech in newborns [J]. Advances in Psychological Science, 2023, 31(12): 2295-2305. |
[14] | XIAO Shihua, LI Jing. Implementation of Naturalistic Developmental Behavioral Interventions: An early intervention program for children with autism spectrum disorder [J]. Advances in Psychological Science, 2023, 31(12): 2350-2367. |
[15] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||