Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (1): 115-128.doi: 10.3724/SP.J.1042.2022.00115
• Regular Articles • Previous Articles Next Articles
Received:
2020-11-16
Online:
2022-01-15
Published:
2021-11-25
CLC Number:
KE Jinhong, WANG Bo. Effects of aerobic exercise on memory and its neurobiological mechanism[J]. Advances in Psychological Science, 2022, 30(1): 115-128.
调节变量 | 水平 | 工作记忆 | 情景记忆 | 内隐记忆 |
---|---|---|---|---|
有氧运动持续时间 | 长期运动 | ↑ | ↑ | ↑ |
单次运动 | — | — | ↑ | |
有氧运动强度 | 低强度 | ↑ | — | — |
高强度 | ↓ | ↑ | ↑ | |
有氧运动发生在记忆任务的阶段 | 记忆编码前 | ↑ | ↑ | ↑ |
记忆编码时 | ↓ | ↓ | ||
记忆巩固时 | ↑ | ↑ |
调节变量 | 水平 | 工作记忆 | 情景记忆 | 内隐记忆 |
---|---|---|---|---|
有氧运动持续时间 | 长期运动 | ↑ | ↑ | ↑ |
单次运动 | — | — | ↑ | |
有氧运动强度 | 低强度 | ↑ | — | — |
高强度 | ↓ | ↑ | ↑ | |
有氧运动发生在记忆任务的阶段 | 记忆编码前 | ↑ | ↑ | ↑ |
记忆编码时 | ↓ | ↓ | ||
记忆巩固时 | ↑ | ↑ |
[1] | 陈静, 刘涵慧, 李会杰. (2020). 有氧运动对高血压患者血压和记忆功能的影响. 中国临床保健杂志, 23(5), 709-712. |
[2] | 董俊. (2018). 有氧运动对学龄儿童工作记忆刷新功能影响的Meta分析. 中国学校卫生, 39(9), 1343-1346. |
[3] | 付燕, 谢攀, 李雪, 王璐, 杨澎湃, 袁琼嘉. (2015). 长期有氧运动对大鼠脑衰老过程中学习记忆与海马BDNF表达的影响. 中国运动医学杂志, 34(8), 750-756. |
[4] | 国家体育总局. (2015). 2014年全民健身活动状况调查公报. 2015-11-16取自 http://www.sport.gov.cn/n316/n340/c212777/content.html |
[5] | 郭玮, 王碧野, 任杰. (2019). 开放性运动锻炼老年人视空间工作记忆优势的机制研究. 中国体育科技, 55(10), 50-55+80. |
[6] | 李夏雯, 周成林, 王小春. (2019, 11月). 有氧运动对甲基苯丙胺戒断者长时记忆影响的行为学特征 [摘要]. 第十一届全国体育科学大会, 南京. |
[7] | 解超. (2020). 不同运动强度对儿童青少年工作记忆影响的Meta分析. 中国学校卫生, 41(3), 356-360+364. |
[8] | 张斌, 刘莹. (2019). 急性有氧运动对认知表现的影响. 心理科学进展, 27(6), 1058-1071. |
[9] |
Aguiar, A. S., Jr., , Boemer, G., Rial, D., Cordova, F. M., Mancini, G., Walz, R., Prediger, R. D. S. (2010). High-intensity physical exercise disrupts implicit memory in mice involvement of the striatal glutathione antioxidant system and intracellular signaling. Neuroscience, 171(4), 1216-1227.
doi: 10.1016/j.neuroscience.2010.09.053 pmid: 20888397 |
[10] |
Albinet, C. T., Abou-Dest, A., André, N., & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69-77.
doi: 10.1016/j.biopsycho.2016.01.010 pmid: 26812613 |
[11] | American College of Sports Medicine. (2016). Acsm's guidelines for exercise testing and prescription (10th ed.). Philadelphia, PA: Wolters Kluwer Health. |
[12] | American Heart Association. (2018). American heart association recommendations for physical activity in adults and kids. Retrieved August 23, 2020 from https://www.heart.org/en/healthy-living/fitness/fitness-basics/aha-recs-for-physical-activity-in-adults |
[13] |
Angulo-Barroso, R., Ferrer-Uris, B., & Busquets, A. (2019). Enhancing children's motor memory retention through acute intense exercise: Effects of different exercise durations. Frontiers in Psychology, 10, Article 2000. https://doi.org/10.3389/fpsyg.2019.02000
doi: 10.3389/fpsyg.2019.02000 URL pmid: 31555181 |
[14] | Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory:A proposed system and its control processes. In K. W. Spence, J. T. Spence (Eds.), Psychology of learning and motivation (Vol. 2, pp. 89-195). New York: Academic Press. https://doi.org/10.1016/S0079-7421(08)60422-3 |
[15] | Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), Psychology of learning and motivation (Vol. 8, pp. 47-89). New York: Academic Press. https://doi.org/10.1016/S0079-7421(08)60452-1 |
[16] |
Basso, J. C., Shang, A., Elman, M., Karmouta, R., & Suzuki, W. A. (2015). Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults. Journal of the International Neuropsychological Society, 21(10), 791-801.
doi: 10.1017/S135561771500106X URL |
[17] |
Beck, M. M., Grandjean, M. U., Hartmand, S., Spedden, M. E., Christiansen, L., Roig, M., & Lundbye-Jensen, J. (2020). Acute exercise protects newly formed motor memories against rTMS-induced interference targeting primary motor cortex. Neuroscience, 436, 110-121.
doi: 10.1016/j.neuroscience.2020.04.016 URL |
[18] |
Bielefeld, P., Dura, I., Danielewicz, J., Lucassen, P. J., Baekelandt, V., Abrous, D. N., … Fitzsimons, C. P. (2019). Insult-induced aberrant hippocampal neurogenesis: Functional consequences and possible therapeutic strategies. Behavioural Brain Research, 372, Article 112032. https://doi.org/10.1016/j.bbr.2019.112032
doi: S0166-4328(19)30578-9 URL pmid: 31199935 |
[19] |
Budde, H., Voelcker-Rehage, C., Pietrassyk-Kendziorra, S., Machado, S., Ribeiro, P., & Arafat, A. M. (2010). Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting. Psychoneuroendocrinology, 35(3), 382-391.
doi: 10.1016/j.psyneuen.2009.07.015 URL |
[20] |
Chang, Y.-K., Tsai, C.-L., Hung, T.-M., So, E. C., Chen, F.-T., & Etnier, J. L. (2011). Effects of acute exercise on executive function: A study with a tower of london task. Journal of Sport and Exercise Psychology, 33(6), 847-865.
doi: 10.1123/jsep.33.6.847 URL |
[21] |
Chen, A.-G., Yan, J., Yin, H.-C., Pan, C.-Y., & Chang, Y.-K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15(6), 627-636.
doi: 10.1016/j.psychsport.2014.06.004 URL |
[22] |
Chen, F.-T., Chen, Y.-P., Schneider, S., Kao, S.-C., Huang, C.-M., & Chang, Y.-K. (2019). Effects of exercise modes on neural processing of working memory in late middle-aged adults: An fMRI study. Frontiers in Aging Neuroscience, 11, Article 224. https://doi.org/10.3389/fnagi.2019.00224
doi: 10.3389/fnagi.2019.00224 URL |
[23] |
Christiansen, L., Thomas, R., Beck, M. M., Pingel, J., Andersen, J. D., Mang, C. S., … Lundbye-Jensen, J. (2019). The beneficial effect of acute exercise on motor memory consolidation is modulated by dopaminergic gene profile. Journal of Clinical Medicine, 8(5), Article 578. https://doi.org/10.3390/jcm8050578
doi: 10.3390/jcm8050578 URL |
[24] |
Crawford, L. K., Caplan, J. B., & Loprinzi, P. D. (2021). The impact of acute exercise timing on memory interference. Perceptual and Motor Skills, 128(3), 1215-1234.
doi: 10.1177/0031512521993706 pmid: 33573522 |
[25] | Crawford, L. K., Li, H., Zou, L., Wei, G. X., & Loprinzi, P. D. (2020). Hypothesized mechanisms through which exercise may attenuate memory interference. Medicina (Kaunas, Lithuania), 56(3), Article 129. https://doi.org/10.3390/medicina56030129 |
[26] |
Dal Maso, F., Desormeau, B., Boudrias, M. H., & Roig, M. (2018). Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. NeuroImage, 174, 380-392.
doi: 10.1016/j.neuroimage.2018.03.029 URL |
[27] |
de Freitas, G. B., Lourenco, M. V., & de Felice, F. G. (2020). Protective actions of exercise-related FNDC5/Irisin in memory and Alzheimer's disease. Journal of Neurochemistry, 155(6), 602-611.
doi: 10.1111/jnc.v155.6 URL |
[28] |
Delancey, D., Frith, E., Sng, E., & Loprinzi, P. D. (2019). Randomized controlled trial examining the long-term memory effects of acute exercise during the memory consolidation stage of memory formation. Journal of Cognitive Enhancement, 3(3), 245-250.
doi: 10.1007/s41465-018-0106-z URL |
[29] |
Diederich, K., Bastl, A., Wersching, H., Teuber, A., Strecker, J.-K., Schmidt, A., … Schäbitz, W.-R. (2017). Effects of different exercise strategies and intensities on memory performance and neurogenesis. Frontiers in Behavioral Neuroscience, 11, Article 47. https://doi.org/10.3389/fnbeh.2017.00047
doi: 10.3389/fnbeh.2017.00047 URL pmid: 28360847 |
[30] |
Dietrich, A. (2006). Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Research, 145(1), 79-83.
pmid: 17081621 |
[31] |
Dodwell, G., Müller, H. J., & Töllner, T. (2019). Electroencephalographic evidence for improved visual working memory performance during standing and exercise. British Journal of Psychology, 110(2), 400-427.
doi: 10.1111/bjop.12352 pmid: 30311188 |
[32] |
Eich, T. S., & Metcalfe, J. (2009). Effects of the stress of marathon running on implicit and explicit memory. Psychonomic Bulletin & Review, 16(3), 475-479.
doi: 10.3758/PBR.16.3.475 URL |
[33] | El Hayek, L., Khalifeh, M., Zibara, V., Assaad, R. A., Emmanuel, N., Karnib, N., … Sleiman, S. F. (2019). Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). Journal of Neuroscience, 39(13), 2369-2382. |
[34] |
Erickson, K. I., Banducci, S. E., Weinstein, A. M., MacDonald, A. W., III., , Ferrell, R. E., Halder, I., Manuck, S. B. (2013). The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychological Science, 24(9), 1770-1779.
doi: 10.1177/0956797613480367 pmid: 23907543 |
[35] |
Fisher, A., Boyle, J. M. E., Paton, J. Y., Tomporowski, P., Watson, C., McColl, J. H., & Reilly, J. J. (2011). Effects of a physical education intervention on cognitive function in young children: Randomized controlled pilot study. BMC Pediatrics, 11, Article 97. https://doi.org/10.1186/1471-2431-11-97
doi: 10.1186/1471-2431-11-97 URL |
[36] |
Friedl-Werner, A., Brauns, K., Gunga, H.-C., Kühn, S., & Stahn, A. C. (2020). Exercise-induced changes in brain activity during memory encoding and retrieval after long-term bed rest. NeuroImage, 223, Article 117359. https://doi.org/10.1016/j.neuroimage.2020.117359
doi: S1053-8119(20)30845-4 URL pmid: 32919056 |
[37] |
Frith, E., Sng, E., & Loprinzi, P. D. (2017). Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. European Journal of Neuroscience, 46(10), 2557-2564.
doi: 10.1111/ejn.2017.46.issue-10 URL |
[38] |
Geng, F., Redcay, E., & Riggins, T. (2019). The influence of age and performance on hippocampal function and the encoding of contextual information in early childhood. NeuroImage, 195, 433-443.
doi: 10.1016/j.neuroimage.2019.03.035 URL |
[39] | Goldstein, E. B. (2018). Cognitive psychology: Connecting mind, research, and everyday experience (5th ed.). Boston, MA: Cengage Learning. |
[40] |
Hacker, S., Banzer, W., Vogt, L., & Engeroff, T. (2020). Acute effects of aerobic exercise on cognitive attention and memory performance: An investigation on duration-based dose-response relations and the impact of increased arousal levels. Journal of Clinical Medicine, 9(5), Article 1380. https://doi.org/10.3390/jcm9051380
doi: 10.3390/jcm9051380 URL |
[41] |
Haynes, A. T., Frith, E., Sng, E., & Loprinzi, P. D. (2019). Experimental effects of acute exercise on episodic memory function: Considerations for the timing of exercise. Psychological Reports, 122(5), 1744-1754.
doi: 10.1177/0033294118786688 pmid: 29975180 |
[42] |
Heisz, J. J., Clark, I. B., Bonin, K., Paolucci, E. M., Michalski, B., Becker, S., & Fahnestock, M. (2017). The effects of physical exercise and cognitive training on memory and neurotrophic factors. Journal of Cognitive Neuroscience, 29(11), 1895-1907.
doi: 10.1162/jocn_a_01164 URL |
[43] |
Heisz, J. J., Vandermorris, S., Wu, J., McIntosh, A. R., & Ryan, J. D. (2015). Age differences in the association of physical activity, sociocognitive engagement, and tv viewing on face memory. Health Psychology, 34(1), 83-88.
doi: 10.1037/hea0000046 URL |
[44] |
Herold, F., Aye, N., Lehmann, N., Taubert, M., & Müller, N. G. (2020). The contribution of functional magnetic resonance imaging to the understanding of the effects of acute physical exercise on cognition. Brain Sciences, 10(3), Article 175. https://doi.org/10.3390/brainsci10030175
doi: 10.3390/brainsci10030175 URL |
[45] |
Hogan, C. L., Mata, J., & Carstensen, L. L. (2013). Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychology and Aging, 28(2), 587-594.
doi: 10.1037/a0032634 URL |
[46] |
Hopkins, M. E., Davis, F. C., VanTieghem, M. R., Whalen, P. J., & Bucci, D. J. (2012). Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience, 215, 59-68.
doi: 10.1016/j.neuroscience.2012.04.056 pmid: 22554780 |
[47] |
Hyuk, L. H. (2009). Effects of treadmill exercise on memory, hippocampal cell proliferation, BDNF, TrkB, and forebrain cholinergic cells in adolescent rats. Journal of Life Science, 19(3), 403-410.
doi: 10.5352/JLS.2009.19.3.403 URL |
[48] |
Ishihara, T., Miyazaki, A., Tanaka, H., & Matsuda, T. (2020). Identification of the brain networks that contribute to the interaction between physical function and working memory: An fMRI investigation with over 1, 000 healthy adults. NeuroImage, 221, Article 117152. https://doi.org/10.1016/j.neuroimage.2020.117152
doi: S1053-8119(20)30638-8 URL pmid: 32668299 |
[49] |
Jentsch, V. L., & Wolf, O. T. (2020). Acute physical exercise promotes the consolidation of emotional material. Neurobiology of Learning and Memory, 173, Article 107252. https://doi.org/10.1016/j.nlm.2020.107252
doi: 10.1016/j.nlm.2020.107252 URL |
[50] |
Jeon, Y. K., & Ha, C. H. (2017). The effect of exercise intensity on brain derived neurotrophic factor and memory in adolescents. Environmental Health and Preventive Medicine, 22(1), Article 27. https://doi.org/10.1186/s12199-017-0643-6
doi: 10.1186/s12199-017-0643-6 URL |
[51] |
Jo, J. S., Chen, J., Riechman, S., Roig, M., & Wright, D. L. (2019). The protective effects of acute cardiovascular exercise on the interference of procedural memory. Psychological Research-Psychologische Forschung, 83(7), 1543-1555.
doi: 10.1007/s00426-018-1005-8 |
[52] |
Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114(1), 3-28.
pmid: 8346328 |
[53] |
Jongbloed-Pereboom, M., Janssen, A. J., Steiner, K., Steenbergen, B., & Nijhuis-van der Sanden, M. W. (2017). Implicit and explicit motor sequence learning in children born very preterm. Research in Developmental Disabilities, 60, 145-152.
doi: S0891-4222(16)30257-8 pmid: 27931014 |
[54] |
Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning - evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710-2715.
doi: 10.1111/ejn.2012.36.issue-5 URL |
[55] |
Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28(4), 155-164.
pmid: 19652447 |
[56] |
Keyan, D., & Bryant, R. A. (2017). Acute physical exercise in humans enhances reconsolidation of emotional memories. Psychoneuroendocrinology, 86, 144-151.
doi: 10.1016/j.psyneuen.2017.09.019 URL |
[57] |
Keyan, D., & Bryant, R. A. (2019). The capacity for acute exercise to modulate emotional memories: A review of findings and mechanisms. Neuroscience and Biobehavioral Reviews, 107, 438-449.
doi: 10.1016/j.neubiorev.2019.09.033 URL |
[58] |
Knaepen, K., Goekint, M., Heyman, E. M., & Meeusen, R. (2010). Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Medicine (Auckland, N.Z.), 40(9), 765-801.
doi: 10.2165/11534530-000000000-00000 URL |
[59] |
Ledreux, A., Hakansson, K., Carlsson, R., Kidane, M., Columbo, L., Terjestam, Y., … Mohammed, A. K. H. (2019). Differential effects of physical exercise, cognitive training, and mindfulness practice on serum BDNF levels in healthy older adults: A randomized controlled intervention study. Journal of Alzheimer's Disease, 71(4), 1245-1261.
doi: 10.3233/JAD-190756 URL |
[60] |
Lehmann, N., Villringer, A., & Taubert, M. (2020). Colocalized white matter plasticity and increased cerebral blood flow mediate the beneficial effect of cardiovascular exercise on long-term motor learning. Journal of Neuroscience, 40(12), 2416-2429.
doi: 10.1523/JNEUROSCI.2310-19.2020 pmid: 32041897 |
[61] |
Li, C., Liu, T., Li, R., & Zhou, C. (2020). Effects of exercise on proactive interference in memory: Potential neuroplasticity and neurochemical mechanisms. Psychopharmacology, 237(7), 1917-1929.
doi: 10.1007/s00213-020-05554-4 URL |
[62] |
Lopez-Vicente, M., Garcia-Aymerich, J., Torrent-Pallicer, J., Forns, J., Ibarluzea, J., Lertxundi, N., … Sunyer, J. (2017). Are early physical activity and sedentary behaviors related to working memory at 7 and 14 years of age? Journal of Pediatrics, 188, 35-41.
doi: 10.1016/j.jpeds.2017.05.079 |
[63] |
Loprinzi, P. D. (2018). Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory. Health Promotion Perspectives, 8(4), 255-262.
doi: 10.15171/hpp.2018.36 pmid: 30479978 |
[64] |
Loprinzi, P. D. (2019). Does brain-derived neurotrophic factor mediate the effects of exercise on memory? Physician and Sportsmedicine, 47(4), 395-405.
doi: 10.1080/00913847.2019.1610255 |
[65] |
Loprinzi, P. D., Blough, J., Crawford, L., Ryu, S., Zou, L., & Li, H. (2019). The temporal effects of acute exercise on episodic memory function: Systematic review with meta-analysis. Brain Sciences, 9(4), Article 87. https://doi.org/10.3390/brainsci9040087
doi: https://doi.org/10.3390/brainsci9040087 URL |
[66] |
Loprinzi, P. D., Chism, M., & Marable, S. (2019). Does engaging in acute exercise prior to memory encoding and during memory consolidation have an additive effect on long-term memory function? Journal of Science in Sport and Exercise, 2(1), 77-81.
doi: 10.1007/s42978-019-00040-6 URL |
[67] | Loprinzi, P. D., Day, S., & Deming, R. (2019). Acute exercise intensity and memory function: Evaluation of the transient hypofrontality hypothesis. Medicina (Kaunas, Lithuania), 55(8), Article 445. https://doi.org/10.3390/medicina55080445 |
[68] |
Loprinzi, P. D., & Edwards, M. K. (2018). Exercise and implicit memory: A brief systematic review. Psychological Reports, 121(6), 1072-1085.
doi: 10.1177/0033294117745563 pmid: 29298585 |
[69] |
Loprinzi, P. D., & Frith, E. (2018). The role of sex in memory function: Considerations and recommendations in the context of exercise. Journal of Clinical Medicine, 7(6), Article 132. https://doi.org/10.3390/jcm7060132
doi: 10.3390/jcm7060132 URL |
[70] |
Loprinzi, P. D., & Frith, E. (2019a). A brief primer on the mediational role of BDNF in the exercise-memory link. Clinical Physiology and Functional Imaging, 39(1), 9-14.
doi: 10.1111/cpf.2019.39.issue-1 URL |
[71] | Loprinzi, P. D., & Frith, E. (2019b). Protective and therapeutic effects of exercise on stress-induced memory impairment. Journal of Physiological Sciences, 69(1), 1-12. |
[72] |
Loprinzi, P. D., Lovorn, A., Hamilton, E., & Mincarelli, N. (2019). Acute exercise on memory reconsolidation. Journal of Clinical Medicine, 8(8), Article 1200. https://doi.org/10.3390/jcm8081200
doi: 10.3390/jcm8081200 URL |
[73] |
Loprinzi, P. D., Ponce, P., Zou, L., & Li, H. (2019). The counteracting effects of exercise on high-fat diet-induced memory impairment: A systematic review. Brain Sciences, 9(6), Article 145. https://doi.org/10.3390/brainsci9060145
doi: 10.3390/brainsci9060145 URL |
[74] |
Loprinzi, P. D., Zou, L., & Li, H. (2019). The endocannabinoid system as a potential mechanism through which exercise influences episodic memory function. Brain Sciences, 9(5), Article 112. https://doi.org/10.3390/brainsci9050112
doi: 10.3390/brainsci9050112 URL |
[75] |
Lourenco, M. V., Frozza, R. L., de Freitas, G. B., Zhang, H., Kincheski, G. C., Ribeiro, F. C., … de Felice, F. G. (2019). Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nature Medicine, 25(1), 165-175.
doi: 10.1038/s41591-018-0275-4 pmid: 30617325 |
[76] |
Lundbye-Jensen, J., Skriver, K., Nielsen, J. B., & Roig, M. (2017). Acute exercise improves motor memory consolidation in preadolescent children. Frontiers in Human Neuroscience, 11, Article 182. https://doi.org/10.3389/fnhum.2017.00182
doi: 10.3389/fnhum.2017.00182 URL pmid: 28473761 |
[77] |
Maass, A., Düzel, S., Brigadski, T., Goerke, M., Becke, A., Sobieray, U., … Düzel, E. (2016). Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise- related changes in memory, hippocampal perfusion and volumes in older adults. NeuroImage, 131, 142-154.
doi: 10.1016/j.neuroimage.2015.10.084 pmid: 26545456 |
[78] |
Mang, C. S., Snow, N. J., Campbell, K. L., Ross, C. J., & Boyd, L. A. (2014). A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. Journal of Applied Physiology, 117(11), 1325-1336.
doi: 10.1152/japplphysiol.00498.2014 URL |
[79] | McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3-4), 421-428. |
[80] |
Mello, P. B., Benetti, F., Cammarota, M., & Izquierdo, I. (2008). Effects of acute and chronic physical exercise and stress on different types of memory in rats. Anais da Academia Brasileira de Ciências, 80(2), 301-309.
doi: 10.1590/S0001-37652008000200008 URL |
[81] |
Molteni, R., Ying, Z., & Gómez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 16(6), 1107-1116.
doi: 10.1046/j.1460-9568.2002.02158.x URL |
[82] | Moore, D., & Loprinzi, P. D. (2020). Exercise influences episodic memory via changes in hippocampal neurocircuitry and long-term potentiation. European Journal of Neuroscience. https://doi.org/10.1111/ejn.14728 |
[83] |
Moore, D., & Loprinzi, P. D. (2021). The association of self-reported physical activity on human sensory long- term potentiation. AIMS Neuroscience, 8(3), 435-447.
doi: 10.3934/Neuroscience.2021023 URL |
[84] |
Moore, D. C., Ryu, S., & Loprinzi, P. D. (2020). Experimental effects of acute exercise on forgetting. Physiology International, 107(3), 359-375.
doi: 10.1556/2060.2020.00033 URL |
[85] |
Nauer, R. K., Dunne, M. F., Stern, C. E., Storer, T. W., & Schon, K. (2020). Improving fitness increases dentate gyrus/CA3 volume in the hippocampal head and enhances memory in young adults. Hippocampus, 30(5), 488-504.
doi: 10.1002/hipo.v30.5 URL |
[86] | Ngo, C., & Newcombe, N. (2020). Relational binding and holistic retrieval in aging. OSF Preprints. https://doi.org/10.31219/osf.io/y35ku |
[87] |
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., … Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the USA, 104(13), 5638-5643.
doi: 10.1073/pnas.0611721104 URL |
[88] |
Perez, L., Padilla, C., Parmentier, F. B., & Andres, P. (2014). The effects of chronic exercise on attentional networks. Plos One, 9(7), Article e101478. https://doi.org/10.1371/journal.pone.0101478
doi: 10.1371/journal.pone.0101478 URL |
[89] |
Piepmeier, A. T., Etnier, J. L., Wideman, L., Berry, N. T., Kincaid, Z., & Weaver, M. A. (2020). A preliminary investigation of acute exercise intensity on memory and BDNF isoform concentrations. European Journal of Sport Science, 20(6), 819-830.
doi: 10.1080/17461391.2019.1660726 pmid: 31495276 |
[90] |
Pyke, W., Ifram, F., Coventry, L., Sung, Y., Champion, I., & Javadi, A.-H. (2020). The effects of different protocols of physical exercise and rest on long-term memory. Neurobiology of Learning and Memory, 167, Article 107128. https://doi.org/10.1016/j.nlm.2019.107128
doi: 10.1016/j.nlm.2019.107128 URL |
[91] |
Quaney, B. M., Boyd, L. A., McDowd, J. M., Zahner, L. H., He, J., Mayo, M. S., & Macko, R. F. (2009). Aerobic exercise improves cognition and motor function poststroke. Neurorehabilitation and Neural Repair, 23(9), 879-885.
doi: 10.1177/1545968309338193 URL |
[92] |
Rathore, A., & Lom, B. (2017). The effects of chronic and acute physical activity on working memory performance in healthy participants: A systematic review with meta-analysis of randomized controlled trials. Systematic Reviews, 6, Article 124. https://doi.org/10.1186/s13643-017-0514-7
doi: 10.1186/s13643-017-0514-7 URL |
[93] | Ricker, T. J., Nieuwenstein, M. R., Bayliss, D. M., & Barrouillet, P. (2018). Working memory consolidation:Insights from studies on attention and working memory. Annals of the New York Academy of Sciences, 1424(1), 8-18. |
[94] |
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8), 1645-1666.
doi: 10.1016/j.neubiorev.2013.06.012 URL |
[95] |
Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(3), 501-518.
doi: 10.1037/0278-7393.13.3.501 URL |
[96] |
Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B., & Nielsen, J. B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 46-58.
doi: 10.1016/j.nlm.2014.08.004 pmid: 25128877 |
[97] |
Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17(1), 75-82.
pmid: 12763194 |
[98] | Soga, K., Kamijo, K., & Masaki, H. (2017). Aerobic exercise during encoding impairs hippocampus-dependent memory. Journal of Sport & Exercise Psychology, 39(4), 249-260. |
[99] |
Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends in Neurosciences, 43(7), 533-543.
doi: S0166-2236(20)30101-6 pmid: 32409017 |
[100] |
Stillman, C. M., Watt, J. C., Grove, G. A., Jr., , Wollam, M. E., Uyar, F., Mataro, M., … Erickson, K. I (2016). Physical activity is associated with reduced implicit learning but enhanced relational memory and executive functioning in young adults. Plos One, 11(9), Article e0162100. https://doi.org/10.1371/journal.pone.0162100
doi: 10.1371/journal.pone.0162100 URL |
[101] |
Suwabe, K., Byun, K., Hyodo, K., Reagh, Z. M., Roberts, J. M., Matsushita, A., … Soya, H. (2018). Rapid stimulation of human dentate gyrus function with acute mild exercise. Proceedings of the National Academy of Sciences of the USA, 115(41), 10487-10492.
doi: 10.1073/pnas.1805668115 URL |
[102] |
Taki, Y., Thyreau, B., Kinomura, S., Sato, K., Goto, R., Kawashima, R., & Fukuda, H. (2011). Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals. Plos One, 6(7), Article e22734. https://doi.org/10.1371/journal.pone.0022734
doi: 10.1371/journal.pone.0022734 URL |
[103] | Tulving, E. (1972). Episodic and semantic memory. In E. Tulving, W. Donaldson (Eds.), Organization of memory. New York: Academic Press |
[104] |
Tulving, E. (1985). How many memory systems are there? American Psychologist, 40(4), 385-398.
doi: 10.1037/0003-066X.40.4.385 URL |
[105] |
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352-373.
doi: 10.1037/h0020071 URL |
[106] |
Turk-Browne, N. B., Yi, D.-J., & Chun, M. M. (2006). Linking implicit and explicit memory: Common encoding factors and shared representations. Neuron, 49(6), 917-927.
pmid: 16543138 |
[107] |
van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25(38), 8680-8685.
doi: 10.1523/JNEUROSCI.1731-05.2005 URL |
[108] | Voss, M. W., Weng, T. B., Narayana-Kumanan, K., Cole, R. C., Wharff, C., Reist, L., … Pierce, G. L. (2020). Acute exercise effects predict training change in cognition and connectivity. Medicine and Science in Sports and Exercise, 52(1), 131-140. |
[109] |
Wagner, G., Herbsleb, M., de la Cruz, F., Schumann, A., Köhler, S., Puta, C., … Bär, K.-J. (2017). Changes in fMRI activation in anterior hippocampus and motor cortex during memory retrieval after an intense exercise intervention. Biological Psychology, 124, 65-78.
doi: S0301-0511(17)30003-0 pmid: 28119067 |
[110] |
Wang, B. (2021). Effect of post-encoding emotion on long-term memory: Modulation of emotion category and memory strength. The Journal of General Psychology, 148(2), 192-218.
doi: 10.1080/00221309.2020.1769543 URL |
[111] |
Wanner, P., Cheng, F.-H., & Steib, S. (2020). Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neuroscience and Biobehavioral Reviews, 116, 365-381.
doi: 10.1016/j.neubiorev.2020.06.018 URL |
[112] |
Wanner, P., Müller, T., Cristini, J., Pfeifer, K., & Steib, S. (2020). Exercise intensity does not modulate the effect of acute exercise on learning a complex whole-body task. Neuroscience, 426, 115-128.
doi: 10.1016/j.neuroscience.2019.11.027 URL |
[113] |
Wheeler, M. J., Green, D. J., Ellis, K. A., Cerin, E., Heinonen, I., Naylor, L. H., … Dunstan, D. W. (2020). Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: A three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition. British Journal of Sports Medicine, 54(13), 776-781.
doi: 10.1136/bjsports-2018-100168 URL |
[114] |
Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., … Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597-609.
doi: 10.1016/j.nlm.2006.11.003 URL |
[115] |
Yamazaki, Y., Sato, D., Yamashiro, K., Tsubaki, A., Yamaguchi, Y., Takehara, N., & Maruyama, A. (2017). Inter-individual differences in exercise-induced spatial working memory improvement:A near-infrared spectroscopy study. In H. J. Halpern, J. C. LaManna, D. K. Harrison, B. Epel (Eds.), Oxygen transport to tissue XXXIX (Vol. 977, pp. 81-88). New York: Springer International Publishing. https://doi.org/10.1007/978-3-319-55231-6_12
doi: https://doi.org/10.1007/978-3-319-55231-6_12 |
[116] |
Yanes, D., Frith, E., & Loprinzi, P. D. (2019). Memory- related encoding-specificity paradigm: Experimental application to the exercise domain. Europe’s Journal of Psychology, 15(3), 447-458.
doi: 10.5964/ejop.v15i3.1767 URL |
[117] |
Zach, S., & Shalom, E. (2016). The influence of acute physical activity on working memory. Perceptual and Motor Skills, 122(2), 365-374.
doi: 10.1177/0031512516631066 URL |
[118] |
Zou, L., Yu, Q., Liu, S., & Loprinzi, P. D. (2020). Exercise on visuo-spatial memory: Direct effects and underlying mechanisms. American Journal of Health Behavior, 44(2), 169-179.
doi: 10.5993/AJHB.44.2.5 URL |
[1] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[2] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[3] | ZHAO Bingjie, ZHANG Qihan, CHEN Yixin, ZHANG Peng, BAI Xuejun. Processing characteristics and mechanisms of perception and memory of mind sports experts in domain-specific tasks [J]. Advances in Psychological Science, 2022, 30(9): 1993-2003. |
[4] | WANG Xinlin, QIU Xiaoyue, WENG Xuchu, YANG Ping. Modulating working memory related-oscillation via entrainment of neural oscillation [J]. Advances in Psychological Science, 2022, 30(4): 802-816. |
[5] | LI Junjiao, CHEN Wei, SHI Pei, DONG Yuanyuan, ZHENG Xifu. The function and mechanisms of prediction error in updating fear memories [J]. Advances in Psychological Science, 2022, 30(4): 834-850. |
[6] | CHEN Xingming, FU Tong, LIU Chang, ZHANG Bin, FU Yunfa, LI Enze, ZHANG Jian, CHEN Shengqiang, DANG Caiping. Neuroplasticity induced by working memory training: A spatio-temporal model of decreased distribution in brain regions based on fMRI experiments [J]. Advances in Psychological Science, 2022, 30(2): 255-274. |
[7] | CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory [J]. Advances in Psychological Science, 2022, 30(12): 2708-2717. |
[8] | JIN Yuwei, SUN Xiao, SONG Yaowu. Embodied memory and its intrinsic mechanism [J]. Advances in Psychological Science, 2022, 30(11): 2497-2506. |
[9] | HOU Wenwen, SU Yi (ESTHER). The influence of atypical attention and memory on vocabulary delay in children with autism spectrum disorder [J]. Advances in Psychological Science, 2022, 30(11): 2558-2569. |
[10] | WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search [J]. Advances in Psychological Science, 2022, 30(10): 2206-2218. |
[11] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
[12] | LIU Zejun, LIU Wei. Unitization improves associative memory: The role of familiarity and recollection processes [J]. Advances in Psychological Science, 2022, 30(10): 2240-2253. |
[13] | ZHENG Zhiwei, XIAO Fengqiu, SHAO Qi, ZHAO Xiaofeng, HUANG Yan, LI Juan. Neural mechanisms of successful episodic memory aging [J]. Advances in Psychological Science, 2022, 30(10): 2254-2268. |
[14] | ZHU Junping. How to overcome boundary conditions: Implications from the molecular mechanism of memory strength as a constraint on destabilization [J]. Advances in Psychological Science, 2021, 29(8): 1450-1461. |
[15] | WANG Chundi, WANG Da-hui. Capacity and maintenance mechanism of vibrotactile working memory [J]. Advances in Psychological Science, 2021, 29(7): 1141-1148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||