Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (1): 98-114.doi: 10.3724/SP.J.1042.2022.00098
• Regular Articles • Previous Articles Next Articles
ZHANG Yingqian, ZHAO Guangyi, HAN Yuwei, ZHANG Jingyi, CAO Chengqi, WANG Li, ZHANG Kunlin()
Received:
2020-11-17
Online:
2022-01-15
Published:
2021-11-25
CLC Number:
ZHANG Yingqian, ZHAO Guangyi, HAN Yuwei, ZHANG Jingyi, CAO Chengqi, WANG Li, ZHANG Kunlin. The mechanisms of histone modification in post-traumatic stress disorder[J]. Advances in Psychological Science, 2022, 30(1): 98-114.
被试 | 提取组织 | 创伤类型 (PTSD模型) | 组蛋白 修饰类型 | 测量技术 | 参考文献 | |
---|---|---|---|---|---|---|
大鼠 | SD大鼠 | 海马体 | SPS模型; 情景恐惧条件反射 | 组蛋白H3和H4乙酰化 | ChIP-qPCR; 免疫印迹技术 | (Takei et al., |
SD大鼠 | 外侧杏仁核 | 经典恐惧条件反射的巩固和再巩固 | 组蛋白H3乙酰化 | 免疫印迹技术 | (Maddox, Watts, Doyere, & Schafe, | |
SD大鼠 | 海马体 | SPS模型; 情景恐惧条件反射的形成与消退 | 组蛋白H3和H4乙酰化 | 免疫印迹技术 | (Matsumoto et al., | |
SD大鼠 | 海马体, 杏仁核, 前额皮质 | SPS模型 | 组蛋白H3和H4乙酰化 | 免疫印迹技术 | (Solanki et al., | |
SD大鼠 | 前额皮层质边缘下区, 前额皮质边缘前区; 基底杏仁核, 外侧杏仁核, 中央外侧杏仁核, 中央内侧杏仁核 | 经典恐惧条件反射的形成与消退 | 组蛋白H3和H4乙酰化 | 免疫组化 | (Siddiqui et al., | |
Wister 大鼠 | 海马体 | SPS模型 | 组蛋白H3和H4乙酰化 | ELISA | (Alzoubi et al., | |
SD大鼠 | 前额皮质边缘前区, 前额皮层质边缘下区 | 恐惧条件反射的形成与消退(立刻消退/延迟消退) | 组蛋白H3和H4乙酰化 | 免疫组化 | (Singh et al., | |
Wistar 大鼠 | 海马体 | SPS模型 | 组蛋白H3和H4乙酰化 | ELISA | (Alzoubi et al., | |
SD大鼠 | 外侧杏仁核, 基底杏仁核, 中央外侧杏仁核, 中央内侧杏仁核; 前额皮质边缘前区和下区 | 经典恐惧条件反射的形成与消退 | 组蛋白H3和H4乙酰化 | 免疫组化 | (Siddiqui et al., | |
Wistar大鼠 | 海马体 | SPS模型 | 组蛋白H3和H4乙酰化 | ELISA | (Ahmed et al., | |
Wistar 大鼠 | 海马体, 前额皮质 | 足底电击(IFS) | 组蛋白H3二甲基化 | 免疫印迹技术; ChIP-qPCR | (Zhao et al., | |
小鼠 | C57Bl6/J 小鼠 | 杏仁核 | 经典恐惧条件反射 | 组蛋白H3磷酸化; 组蛋白H3和H4乙酰化; 组蛋白H3二甲基化和三甲基化 | 免疫印迹技术 | (Koshibu et al., |
印度 小家鼠 | 杏仁核 | 天敌模型 | 组蛋白H3和H4乙酰化 | 免疫印迹技术 | (Ragu Varman & Rajan, | |
C57BL/6J 小鼠 | 海马体CA1区 | 情景恐惧条件反射 | 组蛋白H3乙酰化和甲基化 | 定量染色质免疫沉淀 | (Sase et al., | |
H2A.Z 敲除小鼠 | 海马体CA1区 | 单次电击情景恐惧条件反射; SEFL模型 | 组蛋白变体H2A.Z结合力增强; 条件性诱导敲除H2A.Z | ChIP; qPCR; 免疫印迹 | (Ramzan et al., | |
人类 | 退伍军人 | 外周血单核细胞(PBMCs) | 战争 | 组蛋白H3三甲基化 | ChIP-seq | (Bam et al., |
被试 | 提取组织 | 创伤类型 (PTSD模型) | 组蛋白 修饰类型 | 测量技术 | 参考文献 | |
---|---|---|---|---|---|---|
大鼠 | SD大鼠 | 海马体 | SPS模型; 情景恐惧条件反射 | 组蛋白H3和H4乙酰化 | ChIP-qPCR; 免疫印迹技术 | (Takei et al., |
SD大鼠 | 外侧杏仁核 | 经典恐惧条件反射的巩固和再巩固 | 组蛋白H3乙酰化 | 免疫印迹技术 | (Maddox, Watts, Doyere, & Schafe, | |
SD大鼠 | 海马体 | SPS模型; 情景恐惧条件反射的形成与消退 | 组蛋白H3和H4乙酰化 | 免疫印迹技术 | (Matsumoto et al., | |
SD大鼠 | 海马体, 杏仁核, 前额皮质 | SPS模型 | 组蛋白H3和H4乙酰化 | 免疫印迹技术 | (Solanki et al., | |
SD大鼠 | 前额皮层质边缘下区, 前额皮质边缘前区; 基底杏仁核, 外侧杏仁核, 中央外侧杏仁核, 中央内侧杏仁核 | 经典恐惧条件反射的形成与消退 | 组蛋白H3和H4乙酰化 | 免疫组化 | (Siddiqui et al., | |
Wister 大鼠 | 海马体 | SPS模型 | 组蛋白H3和H4乙酰化 | ELISA | (Alzoubi et al., | |
SD大鼠 | 前额皮质边缘前区, 前额皮层质边缘下区 | 恐惧条件反射的形成与消退(立刻消退/延迟消退) | 组蛋白H3和H4乙酰化 | 免疫组化 | (Singh et al., | |
Wistar 大鼠 | 海马体 | SPS模型 | 组蛋白H3和H4乙酰化 | ELISA | (Alzoubi et al., | |
SD大鼠 | 外侧杏仁核, 基底杏仁核, 中央外侧杏仁核, 中央内侧杏仁核; 前额皮质边缘前区和下区 | 经典恐惧条件反射的形成与消退 | 组蛋白H3和H4乙酰化 | 免疫组化 | (Siddiqui et al., | |
Wistar大鼠 | 海马体 | SPS模型 | 组蛋白H3和H4乙酰化 | ELISA | (Ahmed et al., | |
Wistar 大鼠 | 海马体, 前额皮质 | 足底电击(IFS) | 组蛋白H3二甲基化 | 免疫印迹技术; ChIP-qPCR | (Zhao et al., | |
小鼠 | C57Bl6/J 小鼠 | 杏仁核 | 经典恐惧条件反射 | 组蛋白H3磷酸化; 组蛋白H3和H4乙酰化; 组蛋白H3二甲基化和三甲基化 | 免疫印迹技术 | (Koshibu et al., |
印度 小家鼠 | 杏仁核 | 天敌模型 | 组蛋白H3和H4乙酰化 | 免疫印迹技术 | (Ragu Varman & Rajan, | |
C57BL/6J 小鼠 | 海马体CA1区 | 情景恐惧条件反射 | 组蛋白H3乙酰化和甲基化 | 定量染色质免疫沉淀 | (Sase et al., | |
H2A.Z 敲除小鼠 | 海马体CA1区 | 单次电击情景恐惧条件反射; SEFL模型 | 组蛋白变体H2A.Z结合力增强; 条件性诱导敲除H2A.Z | ChIP; qPCR; 免疫印迹 | (Ramzan et al., | |
人类 | 退伍军人 | 外周血单核细胞(PBMCs) | 战争 | 组蛋白H3三甲基化 | ChIP-seq | (Bam et al., |
被试 | 样本量 | 提取组织 | 创伤类型 | 表型 | 性别 | 结果 | 参考文献 |
---|---|---|---|---|---|---|---|
SD大鼠 | n = 7~15 | 海马体 | SPS模型+情景恐惧条件反射 | 恐惧记忆巩固 | 雄 | 僵直反应显著增强; Bdnf启动子区(外显子I和IV)组蛋白H3和H4乙酰化水平↑; Bdnf (包括外显子I和IV)的总mRNA和蛋白质水平↑; TrkB蛋白水平↑ | (Takei et al., |
C57BL/6J小鼠 | n = 8~10 | 海马体CA1区 | 情景恐惧条件反射 | 长时记忆提取能力 | 雄 | 雄鼠长时记忆提取能力强于雌鼠; 雄性特异性Cdk5的表观遗传激活; Cdk5启动子区 H3K9/14乙酰化水平↑; Bdnf 的IV外显启动子 H3K9/14乙酰化水平↑ | (Sase et al., |
雌 | Cdk5的靶向乙酰化仅降低雌鼠的长时记忆提取能力; Bdnf 的IV外显启动子 H3K9/14乙酰化水平↑; 磷酸化tau蛋白水平↑ | ||||||
人类 | PTSD+: 17/PTSD-: 16 | 外周血单核细胞(PBMCs) | 战争 | PTSD | 男/女 | PTSD患者全表观基因组上组蛋白H3的K4, K9, K27和K36三甲基化水平变化显著; TBX-21和IFNG表达水平↑; TBX-21和IFNG基因区域H3K4三甲基化水平↑; IFNG转录起始点附近DNA甲基化水平↓; IL-12B转录本丰度↑; IL-12B启动子区H3K4三甲基化水平↑; IL-12B启动子区DNA甲基化水平↓; PTSD患者许多水平下降的miRNA靶向IFNG和IL-12 | (Bam et al., |
Wistar 大鼠 | N = 72/ n = 12 | 海马体, 前额皮质 | 足底电击(IFS) | 焦虑样行为, 社交行为, 空间学习与记忆 | 雄 | IFS诱发大鼠的PTSD样行为; IFS诱发大鼠神经元树突分支减少和长度缩短; H3K9二甲基化水平↑; Bdnf启动子区结合的H3K9二甲基化水平↑; BDNF mRNA和蛋白质表达量↓; 所有变化均可持续到成年期, Unc0642能缓解大部分症状 | (Zhao et al., |
H2A.Z 敲除小鼠 | n = 6~16 | 海马体CA1区 | 单次电击情景恐惧条件反射; SEFL模型 | 恐惧记忆, 非压力性记忆, 痛觉敏感性 | 雄 | H2A.Z敲除诱发雄鼠恐惧记忆习得↑; H2A.Z抑制非压力性记忆(与性别无关); | (Ramzan et al., |
雌 | 雌鼠B2m、Fkbp5和Th结合H2A.Z能力强于雄鼠; H2A.Z敲除雌鼠 Fos、Arc、Gadd45b、Fkbp5和Th (趋势)结合 H2A.Z能力弱于控制组雌鼠; H2A.Z抑制非压力性记忆(与性别无关); H2A.Z敲除降低雌鼠的恐惧记忆习得和疼痛反应 |
被试 | 样本量 | 提取组织 | 创伤类型 | 表型 | 性别 | 结果 | 参考文献 |
---|---|---|---|---|---|---|---|
SD大鼠 | n = 7~15 | 海马体 | SPS模型+情景恐惧条件反射 | 恐惧记忆巩固 | 雄 | 僵直反应显著增强; Bdnf启动子区(外显子I和IV)组蛋白H3和H4乙酰化水平↑; Bdnf (包括外显子I和IV)的总mRNA和蛋白质水平↑; TrkB蛋白水平↑ | (Takei et al., |
C57BL/6J小鼠 | n = 8~10 | 海马体CA1区 | 情景恐惧条件反射 | 长时记忆提取能力 | 雄 | 雄鼠长时记忆提取能力强于雌鼠; 雄性特异性Cdk5的表观遗传激活; Cdk5启动子区 H3K9/14乙酰化水平↑; Bdnf 的IV外显启动子 H3K9/14乙酰化水平↑ | (Sase et al., |
雌 | Cdk5的靶向乙酰化仅降低雌鼠的长时记忆提取能力; Bdnf 的IV外显启动子 H3K9/14乙酰化水平↑; 磷酸化tau蛋白水平↑ | ||||||
人类 | PTSD+: 17/PTSD-: 16 | 外周血单核细胞(PBMCs) | 战争 | PTSD | 男/女 | PTSD患者全表观基因组上组蛋白H3的K4, K9, K27和K36三甲基化水平变化显著; TBX-21和IFNG表达水平↑; TBX-21和IFNG基因区域H3K4三甲基化水平↑; IFNG转录起始点附近DNA甲基化水平↓; IL-12B转录本丰度↑; IL-12B启动子区H3K4三甲基化水平↑; IL-12B启动子区DNA甲基化水平↓; PTSD患者许多水平下降的miRNA靶向IFNG和IL-12 | (Bam et al., |
Wistar 大鼠 | N = 72/ n = 12 | 海马体, 前额皮质 | 足底电击(IFS) | 焦虑样行为, 社交行为, 空间学习与记忆 | 雄 | IFS诱发大鼠的PTSD样行为; IFS诱发大鼠神经元树突分支减少和长度缩短; H3K9二甲基化水平↑; Bdnf启动子区结合的H3K9二甲基化水平↑; BDNF mRNA和蛋白质表达量↓; 所有变化均可持续到成年期, Unc0642能缓解大部分症状 | (Zhao et al., |
H2A.Z 敲除小鼠 | n = 6~16 | 海马体CA1区 | 单次电击情景恐惧条件反射; SEFL模型 | 恐惧记忆, 非压力性记忆, 痛觉敏感性 | 雄 | H2A.Z敲除诱发雄鼠恐惧记忆习得↑; H2A.Z抑制非压力性记忆(与性别无关); | (Ramzan et al., |
雌 | 雌鼠B2m、Fkbp5和Th结合H2A.Z能力强于雄鼠; H2A.Z敲除雌鼠 Fos、Arc、Gadd45b、Fkbp5和Th (趋势)结合 H2A.Z能力弱于控制组雌鼠; H2A.Z抑制非压力性记忆(与性别无关); H2A.Z敲除降低雌鼠的恐惧记忆习得和疼痛反应 |
被试 | 样本量 | 提取组织 | 创伤类型 | 表型 | 性别 | 结果 | 参考文献 |
---|---|---|---|---|---|---|---|
SD大鼠 | n = 5~9 | 杏仁核外侧核 | 经典恐惧条件反射的巩固和再巩固 | 恐惧记忆巩固和再巩固 | 雄 | 在恐惧记忆形成或提取阶段后不久注射garcinol, 会损害恐惧记忆巩固和再巩固及其相关的神经可塑性; 局部注射garcinol到杏仁核会损害恐惧记忆形成和提取相关的组蛋白H3乙酰化 | (Maddox, Watts, Doyere, & Schafe, |
SD大鼠 | n = 6~10 | 海马体 | SPS模型+情景恐惧条件反射的形成与消退 | 恐惧消退 | 雄 | 伏立诺他增强SPS大鼠恐惧记忆消退能力; 伏立诺他使海马体中NR2B、CaMKII α和β蛋白水平↑; 伏立诺他使组蛋白H3和H4乙酰化水平↑ | (Matsumoto et al., |
SD大鼠 | n = 4~10 | 海马体, 杏仁核, 前额皮质 | SPS模型 | 焦虑和抑郁样行为, 短时和长时记忆 | 雄 | 葡萄粉(GP)预防SPS模型诱导的行为和记忆损伤现象; 葡萄粉抑制SPS模型诱导的血浆皮质酮水平的上升; SPS大鼠而非GP-SPS大鼠杏仁核中BDNF水平↓; 葡萄粉促使SPS大鼠海马体和杏仁核中组蛋白H3乙酰化和HDAC5表达水平↑ | (Solanki et al., |
SD大鼠 | n = 8~12 | 前额皮质边缘下区, 前额皮质边缘前区; 基底杏仁核, 外侧杏仁核, 中央外侧杏仁核, 中央内侧杏仁核 | 恐惧条件反射的形成与消退 | 恐惧记忆习得, 恐惧记忆消退 | 雄 | 恐惧记忆形成和消退阶段前额皮质和杏仁核亚核中c-fos和CBP蛋白水平及组蛋白H3和H4乙酰化水平改变 | (Siddiqui et al., |
Wister 大鼠 | n = 12~15 | 海马体 | SPS模型 | 短时和长时记忆 | 雄 | 己酮可可碱预防SPS模型中PTSD样行为诱发的短时和长时记忆损伤; 己酮可可碱使SPS诱发下降的GSH/GSSG比率、过氧化氢酶、谷胱甘肽过氧化物酶(GPx)、BDNF和组蛋白H3乙酰化水平恢复正常 | (Alzoubi et al., |
SD大鼠 | N = 80~100/n = 20~24 | 前额皮质边缘下区, 前额皮质边缘前区 | 恐惧条件反射的形成与消退(立刻消退/延迟消退) | 立刻消退或延迟消退 | NA | 立刻消退组较延迟消退组表现出更低的从边缘下区到边缘前区的神经回路电信号水平; 立刻消退组较延迟消退组表现出边缘下区更低的c-fos和CBP蛋白、组蛋白H3/H4乙酰化水平 | (Singh et al., |
Wistar 大鼠 | N = 84/ n = 18~24 | 海马体 | SPS模型 | 记忆损伤, 焦虑和抑郁 | 雄 | 依他唑酯治疗阻止PTSD相关氧化应激生物标志物(GSH、GSSG、GPx、TBARS)、BDNF和组蛋白H3乙酰化水平的上升 | (Alzoubi et al., |
SD大鼠 | N=80~96/n =10~12 | 基底杏仁核, 外侧杏仁核, 中央外侧杏仁核, 中央内侧杏仁核; 前额皮质边缘下区, 前额皮质边缘前区 | 恐惧条件反射的形成与消退 | 恐惧记忆习得, 恐惧记忆消退 | 雄 | 恐惧记忆形成和消退阶段前额皮质和杏仁核亚核中c-fos蛋白、HDAC1/HDAC2及组蛋白H3和H4乙酰化水平改变 | (Siddiqui et al., |
被试 | 样本量 | 提取组织 | 创伤类型 | 表型 | 性别 | 结果 | 参考文献 |
Wistar 大鼠 | n = 12 | 海马体 | SPS模型 | 短时和长时记忆损伤 | 雄 | 维生素E预防SPS模型诱导的记忆损伤; 维生素E阻止SPS诱导的氧化应激生物标志物、组蛋白H3乙酰化和BDNF水平的下降 | (Ahmed et al., |
C57Bl6/J小鼠 | n = 3~14 | 杏仁核 | 恐惧条件反射的形成 | 情景记忆和高音调恐惧的长时记忆 | 雄 | 核抑制蛋白磷酸酶1(PP1)促进情景记忆可高音调恐惧相关的长时记忆形成, 促进转录相关的长时程增强; 蛋白磷酸酶1抑制使组蛋白H3上丝氨酸S10磷酸化、H3K14和H4K5乙酰化、H3K36三甲基化、CREB水平↑, 使NFκB水平↓ | (Koshibu et al., |
印度小家鼠 | N = 102/ n = 6~22 | 杏仁核 | 天敌模型 | 本能恐惧反应, 焦虑样行为 | 雄 | 丰富条件下小鼠表现出更少的恐惧反应和焦虑样行为 丰富条件下小鼠暴露在天敌面前后, 5-HT、SERT、5-HT1A、CaMKII/CREB、组蛋白H3和H4乙酰化水平↑, 5-HT2C、HDAC1、HDAC2水平↓; 丰富条件下小鼠暴露在天敌面前后, BDNF转录水平、NPY及其受体Y1表达水平↑, NPY的Y2受体表达水平↓ | (Ragu Varman & Rajan, |
被试 | 样本量 | 提取组织 | 创伤类型 | 表型 | 性别 | 结果 | 参考文献 |
---|---|---|---|---|---|---|---|
SD大鼠 | n = 5~9 | 杏仁核外侧核 | 经典恐惧条件反射的巩固和再巩固 | 恐惧记忆巩固和再巩固 | 雄 | 在恐惧记忆形成或提取阶段后不久注射garcinol, 会损害恐惧记忆巩固和再巩固及其相关的神经可塑性; 局部注射garcinol到杏仁核会损害恐惧记忆形成和提取相关的组蛋白H3乙酰化 | (Maddox, Watts, Doyere, & Schafe, |
SD大鼠 | n = 6~10 | 海马体 | SPS模型+情景恐惧条件反射的形成与消退 | 恐惧消退 | 雄 | 伏立诺他增强SPS大鼠恐惧记忆消退能力; 伏立诺他使海马体中NR2B、CaMKII α和β蛋白水平↑; 伏立诺他使组蛋白H3和H4乙酰化水平↑ | (Matsumoto et al., |
SD大鼠 | n = 4~10 | 海马体, 杏仁核, 前额皮质 | SPS模型 | 焦虑和抑郁样行为, 短时和长时记忆 | 雄 | 葡萄粉(GP)预防SPS模型诱导的行为和记忆损伤现象; 葡萄粉抑制SPS模型诱导的血浆皮质酮水平的上升; SPS大鼠而非GP-SPS大鼠杏仁核中BDNF水平↓; 葡萄粉促使SPS大鼠海马体和杏仁核中组蛋白H3乙酰化和HDAC5表达水平↑ | (Solanki et al., |
SD大鼠 | n = 8~12 | 前额皮质边缘下区, 前额皮质边缘前区; 基底杏仁核, 外侧杏仁核, 中央外侧杏仁核, 中央内侧杏仁核 | 恐惧条件反射的形成与消退 | 恐惧记忆习得, 恐惧记忆消退 | 雄 | 恐惧记忆形成和消退阶段前额皮质和杏仁核亚核中c-fos和CBP蛋白水平及组蛋白H3和H4乙酰化水平改变 | (Siddiqui et al., |
Wister 大鼠 | n = 12~15 | 海马体 | SPS模型 | 短时和长时记忆 | 雄 | 己酮可可碱预防SPS模型中PTSD样行为诱发的短时和长时记忆损伤; 己酮可可碱使SPS诱发下降的GSH/GSSG比率、过氧化氢酶、谷胱甘肽过氧化物酶(GPx)、BDNF和组蛋白H3乙酰化水平恢复正常 | (Alzoubi et al., |
SD大鼠 | N = 80~100/n = 20~24 | 前额皮质边缘下区, 前额皮质边缘前区 | 恐惧条件反射的形成与消退(立刻消退/延迟消退) | 立刻消退或延迟消退 | NA | 立刻消退组较延迟消退组表现出更低的从边缘下区到边缘前区的神经回路电信号水平; 立刻消退组较延迟消退组表现出边缘下区更低的c-fos和CBP蛋白、组蛋白H3/H4乙酰化水平 | (Singh et al., |
Wistar 大鼠 | N = 84/ n = 18~24 | 海马体 | SPS模型 | 记忆损伤, 焦虑和抑郁 | 雄 | 依他唑酯治疗阻止PTSD相关氧化应激生物标志物(GSH、GSSG、GPx、TBARS)、BDNF和组蛋白H3乙酰化水平的上升 | (Alzoubi et al., |
SD大鼠 | N=80~96/n =10~12 | 基底杏仁核, 外侧杏仁核, 中央外侧杏仁核, 中央内侧杏仁核; 前额皮质边缘下区, 前额皮质边缘前区 | 恐惧条件反射的形成与消退 | 恐惧记忆习得, 恐惧记忆消退 | 雄 | 恐惧记忆形成和消退阶段前额皮质和杏仁核亚核中c-fos蛋白、HDAC1/HDAC2及组蛋白H3和H4乙酰化水平改变 | (Siddiqui et al., |
被试 | 样本量 | 提取组织 | 创伤类型 | 表型 | 性别 | 结果 | 参考文献 |
Wistar 大鼠 | n = 12 | 海马体 | SPS模型 | 短时和长时记忆损伤 | 雄 | 维生素E预防SPS模型诱导的记忆损伤; 维生素E阻止SPS诱导的氧化应激生物标志物、组蛋白H3乙酰化和BDNF水平的下降 | (Ahmed et al., |
C57Bl6/J小鼠 | n = 3~14 | 杏仁核 | 恐惧条件反射的形成 | 情景记忆和高音调恐惧的长时记忆 | 雄 | 核抑制蛋白磷酸酶1(PP1)促进情景记忆可高音调恐惧相关的长时记忆形成, 促进转录相关的长时程增强; 蛋白磷酸酶1抑制使组蛋白H3上丝氨酸S10磷酸化、H3K14和H4K5乙酰化、H3K36三甲基化、CREB水平↑, 使NFκB水平↓ | (Koshibu et al., |
印度小家鼠 | N = 102/ n = 6~22 | 杏仁核 | 天敌模型 | 本能恐惧反应, 焦虑样行为 | 雄 | 丰富条件下小鼠表现出更少的恐惧反应和焦虑样行为 丰富条件下小鼠暴露在天敌面前后, 5-HT、SERT、5-HT1A、CaMKII/CREB、组蛋白H3和H4乙酰化水平↑, 5-HT2C、HDAC1、HDAC2水平↓; 丰富条件下小鼠暴露在天敌面前后, BDNF转录水平、NPY及其受体Y1表达水平↑, NPY的Y2受体表达水平↓ | (Ragu Varman & Rajan, |
[1] | 王维, 孟智启, 石放雄. (2012). 组蛋白修饰及其生物学效应. 遗传, 34(7), 810-818. |
[2] | 甄艳, 施季森. (2012). 组蛋白翻译后修饰技术研究进展. 生物学杂志, 29(2), 73-76. |
[3] |
Afifi, T. O., Asmundson, G. J. G., Taylor, S., & Jang, K. L. (2010). The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: A review of twin studies. Clinical Psychology Review, 30(1), 101-112.
doi: 10.1016/j.cpr.2009.10.002 URL |
[4] |
Ahmed, M., Alzoubi, K. H., & Khabour, O. F. (2020). Vitamin E prevents the cognitive impairments in post- traumatic stress disorder rat model: Behavioral and molecular study. Psychopharmacology, 237(2), 599-607. doi: 10.1007/s00213-019-05395-w
doi: 10.1007/s00213-019-05395-w URL |
[5] |
Alzoubi, K. H., Al Subeh, Z. Y., & Khabour, O. F. (2019). Molecular targets for the interactive effect of etazolate during post-traumatic stress disorder: Role of oxidative stress, BDNF and histones. Behavioural Brain Research, 369, Article 111930. doi: 10.1016/j.bbr.2019.111930
doi: S0166-4328(19)30421-8 pmid: 31047921 |
[6] |
Alzoubi, K. H., Khabour, O. F., & Ahmed, M. (2018). Pentoxifylline prevents post-traumatic stress disorder induced memory impairment. Brain Research Bulletin, 139, 263-268. doi: 10.1016/j.brainresbull.2018.03.009
doi: S0361-9230(18)30033-9 pmid: 29559394 |
[7] | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 . |
[8] |
Bam, M., Yang, X., Zhou, J., Ginsberg, J. P., Leyden, Q., Nagarkatti, P. S., & Nagarkatti, M. (2016a). Evidence for epigenetic regulation of pro-inflammatory cytokines, Interleukin-12 and Interferon gamma, in peripheral blood mononuclear cells from PTSD patients. Journal of Neuroimmune Pharmacology, 11(1), 168-181. doi: 10.1007/s11481-015-9643-8
doi: 10.1007/s11481-015-9643-8 URL |
[9] |
Bam, M., Yang, X., Zumbrun, E. E., Zhong, Y., Zhou, J., Ginsberg, J. P., … Nagarkatti, M. (2016b). Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Scientific Reports, 6, Article 31209. doi: 10.1038/srep31209
doi: 10.1038/srep31209 URL |
[10] |
Beery, A. K. (2018). Inclusion of females does not increase variability in rodent research studies. Current Opinion in Behavioral Sciences, 23, 143-149. doi: 10.1016/j.cobeha.2018.06.016
doi: 10.1016/j.cobeha.2018.06.016 URL |
[11] |
Benjet, C., Bromet, E., Karam, E. G., Kessler, R. C., McLaughlin, K. A., Ruscio, A. M., … Koenen, K. C. (2016). The epidemiology of traumatic event exposure worldwide: Results from the World Mental Health Survey Consortium. Psychological Medicine, 46(2), 327-343. doi: 10.1017/s0033291715001981
doi: 10.1017/S0033291715001981 pmid: 26511595 |
[12] |
Biel, M., Wascholowski, V., & Giannis, A. (2005). Epigenetics-- an epicenter of gene regulation: Histones and histone-modifying enzymes. Angewandte Chemie-international Edition, 44(21), 3186-3216. doi: 10.1002/anie.200461346
doi: 10.1002/anie.200461346 URL |
[13] |
Blouin, A. M., Sillivan, S. E., Joseph, N. F., & Miller, C. A. (2016). The potential of epigenetics in stress-enhanced fear learning models of PTSD. Learning & Memory, 23(10), 576-586. doi: 10.1101/lm.040485.115
doi: 10.1101/lm.040485.115 |
[14] |
Bredy, T. W., Wu, H., Crego, C., Zellhoefer, J., Sun, Y. E., & Barad, M. (2007). Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learning & Memory, 14(4), 268-276. doi: 10.1101/lm.500907
doi: 10.1101/lm.500907 |
[15] |
Breslau, N., Kessler, R. C., Chilcoat, H. D., Schultz, L. R., Davis, G. C., & Andreski, P. (1998). Trauma and posttraumatic stress disorder in the community: The 1996 Detroit Area Survey of Trauma. Archives of General Psychiatry, 55(7), 626-632. doi: 10.1001/archpsyc.55.7.626
doi: 10.1001/archpsyc.55.7.626 pmid: 9672053 |
[16] |
Britton, L. M., Gonzales-Cope, M., Zee, B. M., & Garcia, B. A. (2011). Breaking the histone code with quantitative mass spectrometry. Expert Review of Proteomics, 8(5), 631-643. doi: 10.1586/epr.11.47
doi: 10.1586/epr.11.47 URL |
[17] |
Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., & Allis, C. D. (1996). Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell, 84(6), 843-851. doi: 10.1016/s0092-8674(00)81063-6
doi: 10.1016/s0092-8674(00)81063-6 pmid: 8601308 |
[18] |
Chaouloff, F. (2013). Social stress models in depression research: What do they tell us? Cell and Tissue Research, 354(1), 179-190. doi: 10.1007/s00441-013-1606-x
doi: 10.1007/s00441-013-1606-x pmid: 23532563 |
[19] |
Conrad, D., Wilker, S., Schneider, A., Karabatsiakis, A., Pfeiffer, A., Kolassa, S., … Kolassa, I. T. (2018). Integrated genetic, epigenetic, and gene set enrichment analyses identify NOTCH as a potential mediator for PTSD risk after trauma: Results from two independent African cohorts. Psychophysiology, 57(1), Article e13288. doi: 10.1111/psyp.13288
doi: 10.1111/psyp.13288 |
[20] |
Dudek, K. A., Dion-Albert, L., Lebel, M., LeClair, K., Labrecque, S., Tuck, E., … Menard, C. (2020). Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression. Proceedings of the National Academy of Sciences of the United States of America, 117(6), 3326-3336. doi: 10.1073/pnas.1914655117
doi: 10.1073/pnas.1914655117 |
[21] |
Fairlie, D. P., & Sweet, M. J. (2012). HDACs and their inhibitors in immunology: Teaching anticancer drugs new tricks. Immunology and Cell Biology, 90(1), 3-5. doi: 10.1038/icb.2011.105
doi: 10.1038/icb.2011.105 pmid: 22217545 |
[22] |
Fani, N., Michopoulos, V., van Rooij, S. J. H., Clendinen, C., Hardy, R. A., Jovanovic, T., … Stevens, J. S. (2019). Structural connectivity and risk for anhedonia after trauma: A prospective study and replication. Journal of Psychiatric Research, 116, 34-41. doi: 10.1016/j.jpsychires.2019.05.009
doi: 10.1016/j.jpsychires.2019.05.009 URL |
[23] |
Frewen, P. A., Dozois, D. J. A., & Lanius, R. A. (2012). Assessment of anhedonia in psychological trauma: Psychometric and neuroimaging perspectives. European Journal of Psychotraumatology, 3(1), Article 8587. doi: 10.3402/ejpt.v3i0.8587
doi: 10.3402/ejpt.v3i0.8587 URL |
[24] |
Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509-524.
doi: 10.1038/nrm3838 URL |
[25] |
Hammamieh, R., Chakraborty, N., Gautam, A., Muhie, S., Yang, R., Donohue, D., … Jett, M. (2017). Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans. Translational Psychiatry, 7(7), Article e1169. doi: 10.1038/tp.2017.129
doi: 10.1038/tp.2017.129 URL |
[26] |
Hawasli, A. H., Benavides, D. R., Nguyen, C., Kansy, J. W., Hayashi, K., Chambon, P., … Bibb, J. A. (2007). Cyclin- dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nature Neuroscience, 10(7), 880-886. doi: 10.1038/nn1914
doi: 10.1038/nn1914 pmid: 17529984 |
[27] |
Heinzelmann, M., & Gill, J. (2013). Epigenetic mechanisms shape the biological response to trauma and risk for PTSD: A critical review. Nursing Research and Practice, 2013, Article 417010. doi: 10.1155/2013/417010
doi: 10.1155/2013/417010 pmid: 23710355 |
[28] | Janssen, K. A., Sidoli, S., & Garcia, B. A. (2017). Recent achievements in characterizing the histone code and approaches to integrating epigenomics and systems biology. In A. K. Shukla (Ed.), Methods in Enzymology (Vol. 586, pp. 359-378). Proteomics in Biology, Pt B. |
[29] |
Karch, K. R., Denizio, J. E., Black, B. E., & Garcia, B. A. (2013). Identification and interrogation of combinatorial histone modifications. Frontiers in Genetics, 4, Article 264. doi: 10.3389/fgene.2013.00264
doi: 10.3389/fgene.2013.00264 |
[30] |
Kashdan, T. B., Elhai, J. D., & Frueh, B. C. (2006). Anhedonia and emotional numbing in combat veterans with PTSD. Behaviour Research and Therapy, 44(3), 457-467. doi: 10.1016/j.brat.2005.03.001
doi: 10.1016/j.brat.2005.03.001 pmid: 16446151 |
[31] |
Kimura, H. (2013). Histone modifications for human epigenome analysis. Journal of Human Genetics, 58(7), 439-445. doi: 10.1038/jhg.2013.66
doi: 10.1038/jhg.2013.66 URL |
[32] |
Koenen, K. C., Ratanatharathorn, A., Ng, L., McLaughlin, K. A., Bromet, E. J., Stein, D. J., … Kessler, R. C. (2017). Posttraumatic stress disorder in the World Mental Health Surveys. Psychological Medicine, 47(13), 2260-2274. doi: 10.1017/S0033291717000708
doi: 10.1017/S0033291717000708 pmid: 28385165 |
[33] |
Kokras, N., & Dalla, C. (2014). Sex differences in animal models of psychiatric disorders. British Journal of Pharmacology, 171(20), 4595-4619. doi: 10.1111/bph.12710
doi: 10.1111/bph.12710 pmid: 24697577 |
[34] |
Koshibu, K., Gräff, J., & Mansuy, I. M. (2011). Nuclear protein phosphatase-1: An epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience, 173, 30-36. doi: 10.1016/j.neuroscience.2010.11.023
doi: 10.1016/j.neuroscience.2010.11.023 pmid: 21093547 |
[35] |
Lepack, A. E., Bagot, R. C., Peña, C. J., Loh, Y. E., Farrelly, L. A., Lu, Y., … Maze, I. (2016). Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 113(44), 12562-12567. doi: 10.1073/pnas.1608270113
doi: 10.1073/pnas.1608270113 |
[36] |
Li, G., Wang, L., Zhang, K. L., Cao, C. Q., Cao, X., Fang, R. J., … Zhang, X. Y. (2019). FKBP5 genotype linked to combined PTSD-depression symptom in chinese earthquake survivors. Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie, 64(12), 863-871. doi: 10.1177/0706743719870505
doi: 10.1177/0706743719870505 |
[37] |
Liberzon, I., Krstov, M., & Young, E. A. (1997). Stress- restress: Effects on ACTH and fast feedback. Psychoneuroendocrinology, 22(6), 443-453. doi: 10.1016/s0306-4530(97)00044-9
doi: 10.1016/s0306-4530(97)00044-9 pmid: 9364622 |
[38] |
Liberzon, I., López, J. F., Flagel, S. B., Vazquez, D. M., & Young, E. A. (1999). Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: Relevance to post-traumatic stress disorder. Journal of Neuroendocrinology, 11(1), 11-17.
pmid: 9918224 |
[39] |
Logue, M. W., Miller, M. W., Wolf, E. J., Huber, B. R., Morrison, F. G., Zhou, Z., … Verfaellie, M. (2020). An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clinical Epigenetics, 12(1), Article 46. doi: 10.1186/s13148-020-0820-0
doi: 10.1186/s13148-020-0820-0 pmid: 32171335 |
[40] |
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28(42), 10576-10586. doi: 10.1523/jneurosci.1786-08.2008
doi: 10.1523/jneurosci.1786-08.2008 URL |
[41] |
Maddox, S. A., Kilaru, V., Shin, J., Jovanovic, T., Almli, L. M., Dias, B. G., … Smith, A. K. (2018). Estrogen- dependent association of HDAC4 with fear in female mice and women with PTSD. Molecular Psychiatry, 23(3), 658-665. doi: 10.1038/mp.2016.250
doi: 10.1038/mp.2016.250 pmid: 28093566 |
[42] |
Maddox, S. A., Watts, C. S., Doyere, V., & Schafe, G. E. (2013). A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. Plos One, 8(1), Article e54463. doi: 10.1371/journal.pone.0054463
doi: 10.1371/journal.pone.0054463 URL |
[43] |
Maddox, S. A., Watts, C. S., & Schafe, G. E. (2013). p300/CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala. Learning & Memory, 20(2), 109-119. doi: 10.1101/lm.029157.112
doi: 10.1101/lm.029157.112 |
[44] |
Mahan, A. L., Mou, L., Shah, N., Hu, J. H., Worley, P. F., & Ressler, K. J. (2012). Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning. Journal of Neuroscience, 32(13), 4651-4659. doi: 10.1523/jneurosci.3308-11.2012
doi: 10.1523/JNEUROSCI.3308-11.2012 pmid: 22457511 |
[45] |
Marinova, Z., Maercker, A., Grünblatt, E., Wojdacz, T. K., & Walitza, S. (2017). A pilot investigation on DNA methylation modifications associated with complex posttraumatic symptoms in elderly traumatized in childhood. BMC Research Notes, 10(1), Article 752. doi: 10.1186/s13104-017-3082-y
doi: 10.1186/s13104-017-3082-y pmid: 29258561 |
[46] |
Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6(11), 838-849. doi: 10.1038/nrm1761
doi: 10.1038/nrm1761 pmid: 16261189 |
[47] |
Matsumoto, Y., Morinobu, S., Yamamoto, S., Matsumoto, T., Takei, S., Fujita, Y., & Yamawaki, S. (2013). Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder. Psychopharmacology, 229(1), 51-62. doi: 10.1007/s00213-013-3078-9
doi: 10.1007/s00213-013-3078-9 pmid: 23584669 |
[48] |
Mehta, D., Klengel, T., Conneely, K. N., Smith, A. K., Altmann, A., Pace, T. W., … Binder, E. B. (2013). Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8302-8307. doi: 10.1073/pnas.1217750110
doi: 10.1073/pnas.1217750110 |
[49] |
Mehta, D., Pelzer, E. S., Bruenig, D., Lawford, B., McLeay, S., Morris, C. P., … Voisey, J. (2019). DNA methylation from germline cells in veterans with PTSD. Journal of Psychiatric Research, 116, 42-50. doi: 10.1016/j.jpsychires.2019.06.001
doi: 10.1016/j.jpsychires.2019.06.001 URL |
[50] |
Mehta, N. D., Stevens, J. S., Li, Z., Gillespie, C. F., Fani, N., Michopoulos, V., & Felger, J. C. (2020). Inflammation, reward circuitry and symptoms of anhedonia and PTSD in trauma-exposed women. Social Cognitive and Affective Neuroscience, 15(10), 1046-1055. doi: 10.1093/scan/nsz100
doi: 10.1093/scan/nsz100 URL |
[51] |
Monsey, M. S., Ota, K. T., Akingbade, I. F., Hong, E. S., & Schafe, G. E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. Plos One, 6(5), Article e19958. doi: 10.1371/journal.pone.0019958
doi: 10.1371/journal.pone.0019958 URL |
[52] |
Moser, D. A., Paoloni-Giacobino, A., Stenz, L., Adouan, W., Manini, A., Suardi, F., … Schechter, D. S. (2015). BDNF methylation and maternal brain activity in a violence- related sample. Plos One, 10(12), Article e0143427. doi: 10.1371/journal.pone.0143427
doi: 10.1371/journal.pone.0143427 URL |
[53] |
Nemeroff, C. B., Bremner, J. D., Foa, E. B., Mayberg, H. S., North, C. S., & Stein, M. B. (2006). Posttraumatic stress disorder: A state-of-the-science review. Journal of Psychiatric Research, 40(1), 1-21. doi: 10.1016/j.jpsychires.2005.07.005
doi: 10.1016/j.jpsychires.2005.07.005 pmid: 16242154 |
[54] | Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., … Koenen, K. C. (2018, November). Largest genome-wide association study for PTSD identifies genetic risk loci in European and African ancestries and implicates novel biological pathways. bioRvix. [Preprint.] doi: 10.1101/458562 |
[55] | Oki, M., Aihara, H., & Ito, T. (2007). Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Sub-cellular Biochemistry, 41, 319-336. |
[56] |
Olson, E. A., Kaiser, R. H., Pizzagalli, D. A., Rauch, S. L., & Rosso, I. M. (2018). Anhedonia in trauma-exposed individuals: Functional connectivity and decision-making correlates. Biological Psychiatry-Cognitive Neuroscience and Neuroimaging, 3(11), 959-967. doi: 10.1016/j.bpsc.2017.10.008
doi: 10.1016/j.bpsc.2017.10.008 URL |
[57] |
Parade, S. H., Novick, A. M., Parent, J., Seifer, R., Klaver, S. J., Marsit, C. J., … Tyrka, A. R. (2017). Stress exposure and psychopathology alter methylation of the serotonin receptor 2A (HTR2A) gene in preschoolers. Development and Psychopathology, 29(5), 1619-1626. doi: 10.1017/s0954579417001274
doi: 10.1017/s0954579417001274 URL |
[58] |
Pathak, S. S., Maitra, S., Chakravarty, S., & Kumar, A. (2017). Histone lysine demethylases of JMJD2 or KDM4 family are important epigenetic regulators in reward circuitry in the etiopathology of depression. Neuropsychopharmacology, 42(4), 854-863. doi: 10.1038/npp.2016.231
doi: 10.1038/npp.2016.231 URL |
[59] |
Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503-533. doi: 10.1146/annurev.biochem.70.1.503
doi: 10.1146/annurev.biochem.70.1.503 pmid: 11395416 |
[60] |
Prendergast, B. J., Onishi, K. G., & Zucker, I. (2014). Female mice liberated for inclusion in neuroscience and biomedical research. Neuroscience and Biobehavioral Reviews, 40, 1-5. doi: 10.1016/j.neubiorev.2014.01.001
doi: 10.1016/j.neubiorev.2014.01.001 pmid: 24456941 |
[61] |
Ragu Varman, D., & Rajan, K. E. (2015). Environmental enrichment reduces anxiety by differentially activating serotonergic and Neuropeptide Y (NPY)-ergic system in Indian field mouse (Mus booduga): An animal model of post-Traumatic stress disorder. Plos One, 10(5), Article e0127945. doi: 10.1371/journal.pone.0127945
doi: 10.1371/journal.pone.0127945 URL |
[62] |
Ramzan, F., Creighton, S. D., Hall, M., Baumbach, J., Wahdan, M., Poulson, S. J., … Zovkic, I. B. (2020). Sex- specific effects of the histone variant H2A.Z on fear memory, stress-enhanced fear learning and hypersensitivity to pain. Scientific Reports, 10(1), Article 14331. doi: 10.1038/s41598-020-71229-x
doi: 10.1038/s41598-020-71229-x URL |
[63] |
Rei, D., Mason, X., Seo, J., Gräff, J., Rudenko, A., Wang, J., … Tsai, L. H. (2015). Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7291-7296. doi: 10.1073/pnas.1415845112
doi: 10.1073/pnas.1415845112 |
[64] |
Risbrough, V. B., Glynn, L. M., Davis, E. P., Sandman, C. A., Obenaus, A., Stern, H. S., … Baker, D. G. (2018). Does anhedonia presage increased risk of posttraumatic stress disorder? : Adolescent anhedonia and posttraumatic disorders. Current Topics in Behavioral Neurosciences, 38, 249-265. doi: 10.1007/7854_2018_51
doi: 10.1007/7854_2018_51 pmid: 29796839 |
[65] |
Rodgers, A. B., & Bale, T. L. (2015). Germ cell origins of posttraumatic stress disorder risk: The transgenerational impact of parental stress experience. Biological Psychiatry, 78(5), 307-314. doi: 10.1016/j.biopsych.2015.03.018
doi: 10.1016/j.biopsych.2015.03.018 pmid: 25895429 |
[66] |
Sase, A. S., Lombroso, S. I., Santhumayor, B. A., Wood, R. R., Lim, C. J., Neve, R. L., & Heller, E. A. (2019). Sex- specific regulation of fear memory by targeted epigenetic editing of Cdk5. Biological Psychiatry, 85(8), 623-634. doi: 10.1016/j.biopsych.2018.11.022
doi: 10.1016/j.biopsych.2018.11.022 URL |
[67] |
Schechter, D. S., Moser, D. A., Pointet, V. C., Aue, T., Stenz, L., Paoloni-Giacobino, A., … Dayer, A. G. (2017). The association of serotonin receptor 3A methylation with maternal violence exposure, neural activity, and child aggression. Behavioural Brain Research, 325(Pt B),268-277. doi: 10.1016/j.bbr.2016.10.009
doi: S0166-4328(16)30772-0 pmid: 27720744 |
[68] |
Schnurr, P. P., Lunney, C. A., Bovin, M. J., & Marx, B. P. (2009). Posttraumatic stress disorder and quality of life: Extension of findings to veterans of the wars in Iraq and Afghanistan. Clinical Psychology Review, 29(8), 727-735.
doi: 10.1016/j.cpr.2009.08.006 pmid: 19744758 |
[69] |
Serpeloni, F., Radtke, K. M., Hecker, T., Sill, J., Vukojevic, V., de Assis, S. G., … Nätt, D. (2019). Does prenatal stress shape postnatal resilience? - An epigenome-wide study on violence and mental health in humans. Frontiers in Genetics, 10, Article 269. doi: 10.3389/fgene.2019.00269
doi: 10.3389/fgene.2019.00269 pmid: 31040859 |
[70] |
Siddiqui, S. A., Singh, S., Ranjan, V., Ugale, R., Saha, S., & Prakash, A. (2017). Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cellular and Molecular Neurobiology, 37(7), 1287-1301. doi: 10.1007/s10571-017-0464-6
doi: 10.1007/s10571-017-0464-6 pmid: 28097489 |
[71] |
Siddiqui, S. A., Singh, S., Ugale, R., Ranjan, V., Kanojia, R., Saha, S., … Prakash, A. (2019). Regulation of HDAC1 and HDAC2 during consolidation and extinction of fear memory. Brain Research Bulletin, 150, 86-101. doi: 10.1016/j.brainresbull.2019.05.011
doi: S0361-9230(18)30934-1 pmid: 31108155 |
[72] |
Singh, S., Siddiqui, S. A., Tripathy, S., Kumar, S., Saha, S., Ugale, R., … Prakash, A. (2018). Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Research Bulletin, 140, 355-364. doi: 10.1016/j.brainresbull.2018.06.004
doi: 10.1016/j.brainresbull.2018.06.004 URL |
[73] |
Solanki, N., Alkadhi, I., Atrooz, F., Patki, G., & Salim, S. (2015). Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder. Nutrition Research, 35(1), 65-75. doi: 10.1016/j.nutres.2014.11.008
doi: 10.1016/j.nutres.2014.11.008 URL |
[74] |
Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41-45. doi: 10.1038/47412
doi: 10.1038/47412 URL |
[75] |
Su, S. C., Rudenko, A., Cho, S., & Tsai, L. H. (2013). Forebrain-specific deletion of Cdk5 in pyramidal neurons results in mania-like behavior and cognitive impairment. Neurobiology of Learning and Memory, 105, 54-62. doi: 10.1016/j.nlm.2013.06.016
doi: 10.1016/j.nlm.2013.06.016 URL |
[76] |
Takei, S., Morinobu, S., Yamamoto, S., Fuchikami, M., Matsumoto, T., & Yamawaki, S. (2011). Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. Journal of Psychiatric Research, 45(4), 460-468. doi: 10.1016/j.jpsychires.2010.08.009
doi: 10.1016/j.jpsychires.2010.08.009 URL |
[77] |
Taunton, J., Hassig, C. A., & Schreiber, S. L. (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science, 272(5260), 408-411. doi: 10.1126/science.272.5260.408
doi: 10.1126/science.272.5260.408 pmid: 8602529 |
[78] |
Uddin, M., Chang, S.-C., Zhang, C., Ressler, K., Mercer, K. B., Galea, S., … Koenen, K. C. (2013). Adcyap1r1 genotype, posttraumatic stress disorder, and depression among women exposed to childhood maltreatment. Depression and Anxiety, 30(3), 251-258.
doi: 10.1002/da.22037 URL |
[79] |
Vieira, P. A., Lovelace, J. W., Corches, A., Rashid, A. J., Josselyn, S. A., & Korzus, E. (2014). Prefrontal consolidation supports the attainment of fear memory accuracy. Learning & Memory, 21(8), 394-405. doi: 10.1101/lm.036087.114
doi: 10.1101/lm.036087.114 |
[80] |
Wang, L., Cao, C., Wang, R., Zhang, J., & Li, Z. (2012). The dimensionality of PTSD symptoms and their relationship to health-related quality of life in Chinese earthquake survivors. Journal of Anxiety Disorders, 26(7), 711-718.
doi: 10.1016/j.janxdis.2012.06.005 pmid: 22858897 |
[81] |
Widom, C. S. (1999). Posttraumatic stress disorder in abused and neglected children grown up. The American Journal of Psychiatry, 156(8), 1223-1229. doi: 10.1176/ajp.156.8.1223
doi: 10.1176/ajp.156.8.1223 |
[82] |
Wilkinson, M. B., Xiao, G., Kumar, A., LaPlant, Q., Renthal, W., Sikder, D., … Nestler, E. J. (2009). Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. Journal of Neuroscience, 29(24), 7820-7832. doi: 10.1523/jneurosci.0932-09.2009
doi: 10.1523/JNEUROSCI.0932-09.2009 pmid: 19535594 |
[83] |
Wilson, C. B., McLaughlin, L. D., Ebenezer, P. J., Nair, A. R., & Francis, J. (2014). Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder. Behavioural Brain Research, 268, 72-80. doi: 10.1016/j.bbr.2014.03.029
doi: 10.1016/j.bbr.2014.03.029 pmid: 24675160 |
[84] |
Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., … Hyman, S. E. (2015). Post-traumatic stress disorder. Nature Reviews Disease Primers, 1, Article 15057. https://doi.org/10.1038/nrdp.2015.57
doi: 10.1038/nrdp.2015.57 URL |
[85] |
Yun, M., Wu, J., Workman, J. L., & Li, B. (2011). Readers of histone modifications. Cell Research, 21(4), 564-578. doi: 10.1038/cr.2011.42
doi: 10.1038/cr.2011.42 URL |
[86] |
Zhang, K., Qu, S., Chang, S., Li, G., Cao, C., Fang, K., … Wang, J. (2017). An overview of posttraumatic stress disorder genetic studies by analyzing and integrating genetic data into genetic database PTSDgene. Neuroscience and Biobehavioral Reviews, 83, 647-656. doi: 10.1016/j.neubiorev.2017.08.021
doi: 10.1016/j.neubiorev.2017.08.021 URL |
[87] |
Zhao, M., Wang, W., Jiang, Z., Zhu, Z., Liu, D., & Pan, F. (2020). Long-term effect of post-traumatic stress in adolescence on dendrite development and H3K9me2/BDNF expression in male rat hippocampus and prefrontal cortex. Frontiers in Cell and Developmental Biology, 8, Article 682. doi: 10.3389/fcell.2020.00682
doi: 10.3389/fcell.2020.00682 URL |
[88] |
Zhong, P., Liu, X., Zhang, Z., Hu, Y., Liu, S. J., Lezama-Ruiz, M., … Liu, Q. S. (2014). Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression- related behaviors. Journal of Neuroscience, 34(18), 6352-6366. doi: 10.1523/jneurosci.3673-13.2014
doi: 10.1523/JNEUROSCI.3673-13.2014 pmid: 24790206 |
[89] |
Zhou, V. W., Goren, A., & Bernstein, B. E. (2011). Charting histone modifications and the functional organization of mammalian genomes. Nature Reviews Genetics, 12(1), 7-18. doi: 10.1038/nrg2905
doi: 10.1038/nrg2905 URL |
[90] |
Zovkic, I. B., Meadows, J. P., Kaas, G. A., & Sweatt, J. D. (2013). Interindividual variability in stress susceptibility: A role for epigenetic mechanisms in PTSD. Frontiers in Psychiatry, 4, Article 60. doi: 10.3389/fpsyt.2013.00060
doi: 10.3389/fpsyt.2013.00060 pmid: 23805109 |
[1] | LIU Xiaohan, CHEN Minglong, GUO Jing. Application of machine learning in prognosis and trajectory of post-traumatic stress disorder in children [J]. Advances in Psychological Science, 2022, 30(4): 851-862. |
[2] | PANG Zhuo-Yue, XI Ju-Zhe, ZUO Zhi-Hong. A knowledge-mapping analysis of U.S. research on treatments for children and adolescents with post-traumatic stress disorder (PTSD) [J]. Advances in Psychological Science, 2017, 25(7): 1182-1196. |
[3] | ZHU Ye, CAO Chengqi, WANG Li. Endocannabinoid and post-traumatic stress disorder: Possible mechanisms and clinical application [J]. Advances in Psychological Science, 2017, 25(12): 2043-2056. |
[4] | ZHANG Ke; ZHAO Mei; LIN Wenjuan. The role of epigenetic regulation in stress-induced depression [J]. Advances in Psychological Science, 2016, 24(12): 1882-1888. |
[5] | LV Yaodi; WU Kaijun; ZHANG Yuqing. Application of The Chinese PTSD Inventory (CPI) to College Students [J]. Advances in Psychological Science, 2015, 23(8): 1324-1330. |
[6] | ZHANG Xingli; LI Xiaoyan; LIU Mingxin; SHI Jiannong; LIU Zhengkui. Development of Posttraumatic Stress Disorder (PTSD) and the Cognitive Neural Mechanism of PTSD among Orphans after Major Disaster [J]. Advances in Psychological Science, 2015, 23(2): 168-174. |
[7] | LIU Weizhi;LIU Taosheng;WANG Wei;YAN Jin. Translational Medicine in Post-Traumatic Stress Disorder [J]. Advances in Psychological Science, 2013, 21(11): 1976-1982. |
[8] |
ZHAO Guo-Qiu;WANG Yong-Guang;WANG Yi-Qiang; CAO Ri-Fang;FU Su-Fen . Psychological Crisis Intervention in Disasters: Comment on Psychiatric View [J]. , 2009, 17(3): 489-494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||