心理科学进展 ›› 2025, Vol. 33 ›› Issue (2): 223-235.doi: 10.3724/SP.J.1042.2025.0223
黄晗静1, 饶培伦2
收稿日期:
2024-05-21
出版日期:
2025-02-15
发布日期:
2024-12-06
通讯作者:
黄晗静, E-mail: hhj@fzu.edu.cn
基金资助:
HUANG Hanjing1, RAU Pei-Luen Patrick2
Received:
2024-05-21
Online:
2025-02-15
Published:
2024-12-06
摘要: 发展智慧养老是应对人口快速老龄化挑战的重要举措, 既能缓解社会养老压力, 又能满足老年人日益多样化的需求。然而, 当前智慧养老系统的应用仍面临老年人接受度较低、交互效能较低、信任度较低、责任分配不明晰等一系列问题。因此, 本研究旨在从用户需求、交互行为、人机信任、人机责任多层次构建老年用户与智能系统人机共融的理论框架, 深入探究用户特征、系统属性、情境因素对人机共融的影响机理。本研究在用户需求、交互行为层次, 构建用户画像、需求模型与交互行为模型, 优化智能系统属性, 提升老年用户的接受度、交互效能; 在人机信任层次, 探究老年用户与智能系统的人机动态信任发展规律, 剖析各类因素对动态信任的综合影响机理, 促进老年用户持续性的使用行为和稳定的人机关系; 在人机责任层次, 面对智能系统应用可能带来的正面、负面结果, 剖析各类因素对人机责任归因的影响机制, 促进更好的人机协同。开展本研究可促进人机共融理论的发展, 为智能系统的适老化设计与升级提供理论基础与实践贡献。
黄晗静, 饶培伦. (2025). 老年用户与智能系统的多层次人机共融理论探索. 心理科学进展 , 33(2), 223-235.
HUANG Hanjing, RAU Pei-Luen Patrick. (2025). Exploration of multi-level human-machine integration theory between elderly users and intelligent systems. Advances in Psychological Science, 33(2), 223-235.
[1] 曹剑琴, 张警吁, 张亮, 王晓宇. (2023). 交互自然性的心理结构及其影响. [2] 葛翔, 许诗卉, 王璟铭, 杨帆, 刘玳言, 赵敏, 徐濛. (2020). 服务机器人的屏幕设计偏好研究. [3] 国务院. (2022. 国务院关于印发“十四五”国家老龄事业发展和养老服务体系规划的通知. 2022-02-21 取自 2022). 国务院关于印发“十四五”国家老龄事业发展和养老服务体系规划的通知. 2022-02-21 取自 http://www.gov.cn/zhengce/zhengceku/2022-02/21/content_5674844.htm [4] 黄心语, 李晔. (2024). 人机信任校准的双途径:信任抑制与信任提升. [5] 孔祥维, 王子明, 王明征, 胡祥培. (2022). 人工智能使能系统的可信决策:进展与挑战. [6] 史元春. (2018). 自然人机交互. [7] 孙效华, 张义文, 秦觉晓, 李璟璐, 王舒超. (2020). 人机智能协同研究综述. [8] 许为, 高在峰, 葛列众. (2023). 智能时代人因科学研究的新范式取向及重点. [9] Akalin N., Kristoffersson A., & Loutfi A. (2022). Do you feel safe with your robot? Factors influencing perceived safety in human-robot interaction based on subjective and objective measures.International Journal of Human- Computer Studies, 158, 102744. [10] Albayram Y., Jensen T., Khan M. M. H., Fahim M. A. A., Buck R., & Coman E. (2020, November). [11] Ammenwerth E., Iller C., & Mahler C. (2006). IT-adoption and the interaction of task, technology and individuals: A fit framework and a case study.BMC Medical Informatics and Decision Making, 6(1), 3. [12] Ball C., Francis J., Huang K.-T., Kadylak T., Cotten S. R., & Rikard R. V. (2019). The physical-digital divide: Exploring the social gap between digital natives and physical natives.Journal of Applied Gerontology, 38(8), 1167-1184. [13] Bathaee, Y. (2018). The artificial intelligence black box and the failure of intent and causation.Harvard Journal of Law Technology, 31, 889. [14] Belanche D., Casaló L. V., Flavián C., & Schepers J. (2020). Robots or frontline employees? Exploring customers’ attributions of responsibility and stability after service failure or success.Journal of Service Management, 31(2), 267-289. [15] Blanchard-Fields, F., & Beatty, C. (2005). Age differences in blame attributions: The role of relationship outcome ambiguity and personal identification.The Journals of Gerontology: Series B, 60(1), 19-26. [16] Brooks, D. J. (2017). A Human-centric approach to autonomous robot failures.(Unpublished doctorial dissertation). University of Massachusetts Lowell. [17] Bux R., Gilal A., Waqas A., & Kumar M. (2019). Role of age and gender in the adoption of m-commerce in Australia.International Journal of Advanced and Applied Sciences, 6, 48-52. [18] Chang R. C.-S., Lu H.-P., & Yang P. (2018). Stereotypes or golden rules? Exploring likable voice traits of social robots as active aging companions for tech-savvy baby boomers in Taiwan.Computers in Human Behavior, 84, 194-210. [19] Chaves, A. P., & Gerosa, M. A. (2021). How should my Chatbot interact? A Survey on social characteristics in Human-Chatbot interaction design.International Journal of Human-Computer Interaction, 37(8), 729-758. [20] Chen C., Xu X., & Arpan L. (2017). Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States.Energy Research & Social Science, 25, 93-104. [21] Chu C. H., Nyrup R., Leslie K., Shi J., Bianchi A., Lyn A., .. Grenier A. (2022). Digital ageism: Challenges and opportunities in artificial intelligence for older adults.The Gerontologist, 62(7), 947-955. [22] de Graaf, M. M. A., Allouch S. B., & Klamer T. (2015). Sharing a life with harvey: Exploring the acceptance of and relationship-building with a social robot.Computers in Human Behavior, 43, 1-14. [23] Elkins, A. C., & Derrick, D. C. (2013). The sound of trust: Voice as a measurement of trust during interactions with embodied conversational agents.Group Decision and Negotiation, 22(5), 897-913. [24] Esterwood C., & Robert L. P., Jr. (2023). Three strikes and you are out!: The impacts of multiple human-robot trust violations and repairs on robot trustworthiness. Computers in Human Behavior, 142, 107658. [25] Esterwood, C., & Robert, L. P. (2022, August). [26] Fainman, A. (2019). The problem with opaque AI.The Thinker, 82(4), 44-55. [27] Farooq, U., & Grudin, J. (2016). Human-computer integration.Interactions, 23(6), 26-32. [28] Feine J., Gnewuch U., Morana S., & Maedche A. (2019). A taxonomy of social cues for conversational agents.International Journal of Human-Computer Studies, 132, 138-161. [29] Ferreira L., Oliveira T., & Neves C. (2023). Consumer's intention to use and recommend smart home technologies: The role of environmental awareness.Energy, 263, 125814. [30] Fiore S. M., Wiltshire T. J., Lobato E. J., Jentsch F. G., Huang W. H., & Axelrod B. (2013). Toward understanding social cues and signals in human-robot interaction: Effects of robot gaze and proxemic behavior.Frontiers in Psychology, 4, 859. [31] Fischl C., Asaba E., & Nilsson I. (2017). Exploring potential in participation mediated by digital technology among older adults.Journal of Occupational Science, 24(3), 314-326. [32] Furlough C., Stokes T., & Gillan D. J. (2021). Attributing blame to robots: I. The influence of robot autonomy.Human Factors, 63(4), 592-602. [33] Gambino A., Fox J., & Ratan R. A. (2020). Building a stronger CASA: Extending the computers are social actors paradigm.Human-Machine Communication, 1, 71-86. [34] Gansser, O. A., & Reich, C. S. (2021). A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application.Technology in Society, 65, 101535. [35] Ghorayeb A., Comber R., & Gooberman-Hill R. (2021). Older adults' perspectives of smart home technology: Are we developing the technology that older people want?International Journal of Human-Computer Studies, 147, 102571. [36] Guo, Y., & Yang, X. J. (2021). Modeling and predicting trust dynamics in human-robot teaming: A bayesian inference approach.International Journal of Social Robotics, 13(8), 1899-1909. [37] Hancock P. A., Billings D. R., Schaefer K. E., Chen J. Y., de Visser E. J., & Parasuraman R. (2011). A meta-analysis of factors affecting trust in human-robot interaction.Human Factors, 53(5), 517-527. [38] Hancock P. A., Kessler T. T., Kaplan A. D., Brill J. C., & Szalma J. L. (2021). Evolving trust in robots: Specification through sequential and comparative meta-analyses.Human Factors, 63(7), 1196-1229. [39] Heider, F. (1958). [40] Hoffman R. R.(2017). A taxonomy of emergent trusting in the human-machine relationship. In P. J. Smith & R. R. Hoffman (Eds.), Cognitive systems engineering (pp. 137-164), London: CRC Press. [41] Honig, S., & Oron-Gilad, T. (2018). Understanding and resolving failures in human-robot interaction: Literature review and model development.Frontiers in Psychology, 9, 861. [42] Horstmann, A. C., & Krämer, N. C. (2022). The fundamental attribution error in human-robot interaction: An experimental investigation on attributing responsibility to a social robot for its pre-programmed behavior.International Journal of Social Robotics, 14(5), 1137-1153. [43] Huff E., Jr., DellaMaria N., Posadas B., & Brinkley J. (2019, October). [44] Hung L., Gregorio M., Mann J., Wallsworth C., Horne N., Berndt A., .. Chaudhury H. (2021). Exploring the perceptions of people with dementia about the social robot PARO in a hospital setting.Dementia: The International Journal of Social Research and Practice, 20(2), 485-504. [45] Ito, T. A., & Urland, G. R. (2003). Race and gender on the brain: Electrocortical measures of attention to the race and gender of multiply categorizable individuals.Journal of Personality and Social Psychology, 85(4), 616-626. [46] Jin, S. V., & Youn, S. (2022). Social presence and imagery processing as predictors of Chatbot continuance intention in Human-AI-Interaction. [47] Jones E. E.,& Nisbett, R. E. (1972). The actor and the observer: Divergent perceptions of the causes of behavior New York: Gerneral Learning Press Divergent perceptions of the causes of behavior. New York: Gerneral Learning Press. [48] Jörling M., Böhm R., & Paluch S. (2019). Service robots: Drivers of perceived responsibility for service outcomes.Journal of Service Research, 22(4), 404-420. [49] Kanstrup, A. M., & Bygholm, A. (2019). The lady with the roses and other invisible users: Revisiting unused data on nursing home residents in living labs. In Neves, B & Vetere, F (Eds.), [50] Kohn S. C., Momen A., Wiese E., Lee Y.-C., & Shaw T. H. (2019). The consequences of purposefulness and human- likeness on trust repair attempts made by self-driving vehicles.Human Factors and Ergonomics Society, 63(1), 222-226. [51] Krajník T., Kulich M., Mudrová L., Ambrus R., & Duckett T. (2015, May). [52] Lee M., Frank L., & Ijsselsteijn W. (2021). Brokerbot: A cryptocurrency Chatbot in the social-technical gap of trust.Computer Supported Cooperative Work, 30(1), 79-117. [53] Lee, S., & Oh, H. (2021). Anthropomorphism and its implications for advertising hotel brands.Journal of Business Research, 129, 455-464. [54] Lee S. K., Kavya P., & Lasser S. C. (2021). Social interactions and relationships with an intelligent virtual agent.International Journal of Human-Computer Studies, 150, 102608. [55] Lei, X., & Rau, P.-L. P. (2021). Effect of relative status on responsibility attributions in human-robot collaboration: Mediating role of sense of responsibility and moderating role of power distance orientation.Computers in Human Behavior, 122, 106820. [56] Lewis M., Sycara K., & Walker, P. (2018). The role of trust in human-robot interaction. In H. A. Abbass, J. Scholz, & D. J. Reid (Eds.), Foundations of trusted autonomy (pp. 135-159). Cham: Springer International Publishing. [57] Li W., Yigitcanlar T., Erol I., & Liu A. (2021). Motivations, barriers and risks of smart home adoption: From systematic literature review to conceptual framework.Energy research and Social Science, 80, 102211. [58] Liberman Z., Woodward A. L., & Kinzler K. D. (2017). The origins of social categorization.Trends in Cognitive Sciences, 21(7), 556-568. [59] Liu, P., & Du, Y. (2022). Blame attribution asymmetry in human-automation cooperation.Risk Analysis, 42(8), 1769-1783. [60] Liu S. X., Shen Q., & Hancock J. (2021). Can a social robot be too warm or too competent? Older Chinese adults' perceptions of social robots and vulnerabilities.Computers in Human Behavior, 125, 106942. [61] Macrae, C. N., & Bodenhausen, G. V. (2000). Social cognition: Thinking categorically about others.Annual Review of Psychology, 51, 93-120. [62] Madhavan, P., & Wiegmann, D. A. (2007). Similarities and differences between human-human and human-automation trust: An integrative review.Theoretical Issues in Ergonomics Science, 8(4), 277-301. [63] Mann J. A., Macdonald B. A., Kuo I. H., Li X., & Broadbent E. (2015). People respond better to robots than computer tablets delivering healthcare instructions.Computers in Human Behavior, 43, 112-117. [64] Mattila, A. S., & Patterson, P. G. (2004). Service recovery and fairness perceptions in collectivist and individualist contexts.Journal of Service Research, 6(4), 336-346. [65] Mayer R. C., Davis J. H., & Schoorman F. D. (1995). An integrative model of organizational trust.The Academy of Management Review, 20(3), 709-734. [66] McGlynn S. A., Kemple S., Mitzner T. L., King C. A., & Rogers W. A. (2017). Understanding the potential of PARO for healthy older adults.International Journal of Human-Computer Studies, 100, 33-47. [67] Miller, D. T., & Ross, M. (1975). Self-serving biases in the attribution of causality: Fact or fiction?Psychological Bulletin, 82(2), 213-225. [68] Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI.Nature Machine Intelligence, 1(11), 501-507. [69] Naneva S., Sarda Gou M., Webb T. L., & Prescott T. J. (2020). A systematic review of attitudes, anxiety, acceptance, and trust towards social robots.International Journal of Social Robotics, 12(6), 1179-1201. [70] Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social responses to computers.Journal of Social Issues, 56(1), 81-103. [71] Nass C., Steuer J., & Tauber E. R. (1994, April). [72] Natarajan, M., & Gombolay, M. (2020, March). [73] Navare U. P., Ciardo F., Kompatsiari K., De Tommaso D., & Wykowska A. (2024). When performing actions with robots, attribution of intentionality affects the sense of joint agency. Science Robotics, 9(91), eadj3665. [74] Nicolas G., de la Fuente M., & Fiske S. T. (2017). Mind the overlap in multiple categorization: A review of crossed categorization, intersectionality, and multiracial perception.Group Processes & Intergroup Relations, 20(5), 621-631. [75] Peek S. T., Luijkx K. G., Rijnaard M. D., Nieboer M. E., van der Voort, C. S., Aarts S., .. Wouters E. J. (2016). Older adults' reasons for using technology while aging in place.Gerontology, 62(2), 226-237. [76] Peek S. T., Wouters E. J., van Hoof J., Luijkx K. G., Boeije H. R., & Vrijhoef H. J. (2014). Factors influencing acceptance of technology for aging in place: A systematic review.Journal of Medical Informatics, 83(4), 235-248. [77] Reeves B.,& Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people and places Cambridge: Cambridge University Press How people treat computers, television, and new media like real people and places. Cambridge: Cambridge University Press. [78] Reig S., Carter E. J., Fong T., Forlizzi J., & Steinfeld A. (2021, March). [79] Robinson H., MacDonald B. A., & Broadbent E. (2014). The role of healthcare robots for older people at home: A Review.International Journal of Social Robotics, 6, 575-591. [80] Rodrigues Barbosa G. A., da Silva Fernandes U., Sales Santos N., & Oliveira Prates R. (2024). Human-computer integration as an extension of interaction: Understanding its state-of-the-art and the next challenges.International Journal of Human-Computer Interaction, 40(11), 2761-2780. [81] Rosales, A., & Fernández-Ardèvol, M. (2020). Ageism in the era of digital platforms.Convergence (Lond), 26(5-6), 1074-1087. [82] Schaefer K. E., Chen J. Y. C., Szalma J. L., & Hancock P. A. (2016). A meta-analysis of factors influencing the development of trust in automation: Implications for understanding Autonomy in Future Systems.Human Factors, 58(3), 377-400. [83] Schwaninger, I. (2020, March). [84] Shi J.-g., Liu M., Fu G., & Dai X. (2023). Internet use among older adults: Determinants of usage and impacts on individuals’ well-being.Computers in Human Behavior, 139, 107538. [85] Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI.International Journal of Human-Computer Studies, 146, 102551. [86] Taing C.-M., Rau P.-L. P., & Huang H. (2017). Handpad: A virtual mouse for controlling laptops in a smart home.Human-centric Computing Information Sciences, 7, 1-11. [87] Tay B., Jung Y., & Park T. (2014). When stereotypes meet robots: The double-edge sword of robot gender and personality in human-robot interaction.Computers in Human Behavior, 38, 75-84. [88] Tomasino K. N., Lattie E. G., Ho J., Palac H. L., Kaiser S. M., & Mohr D. C. (2017). Harnessing peer support in an online intervention for older adults with depression.The American Journal of Geriatric Psychiatry, 25(10), 1109-1119. [89] Tsertsidis A., Kolkowska E., & Hedström K. (2019). Factors influencing seniors' acceptance of technology for ageing in place in the post-implementation stage: A literature review. International Journal of Medical Informatics, 129, 324-333. [90] Weiner, B. (1995). Judgments of responsibility: A foundation for a theory of social conduct. New York: Guilford Press. [91] Weiner, B. (2000). Intrapersonal and interpersonal theories of motivation from an attributional perspective.Educational Psychology Review, 12(1), 1-14. [92] Whitmore A., Agarwal A., & Xu L. D. (2015). The internet of things—A survey of topics and trends.Information Systems Frontiers, 17(2), 261-274. [93] Xie Y., Zhu K., Zhou P., & Liang C. (2023). How does anthropomorphism improve human-AI interaction satisfaction: A dual-path model.Computers in Human Behavior, 148, 107878. [94] Yang G. Z., Dario P., & Kragic D. (2018). Social robotics-Trust, learning, and social interaction. Science Robotics, 3(21), eaau8839. [95] Yang X. J., Schemanske C., & Searle C. (2021). Toward quantifying trust dynamics: How people adjust their trust after moment-to-moment interaction with automation. [96] Zafrani O., Nimrod G., & Edan Y. (2023). Between fear and trust: Older adults’ evaluation of socially assistive robots.International Journal of Human-Computer Studies, 171, 102981. [97] Zhang, M. X. (2023). Older people's attitudes towards emerging technologies: A systematic literature review.Public Understanding of Science, 32(8), 948-968. [98] Zhong R., Ma M., Zhou Y., Lin Q., Li L., & Zhang N. (2024). User acceptance of smart home voice assistant: A comparison among younger, middle-aged, and older adults.Universal Access in the Information Society, 23(1), 275-292. [99] Zhou, J., & Gao, Q. (2021). Design for aging. In G. Salvendy, & W. Karwowski (Eds.), |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||