心理科学进展 ›› 2024, Vol. 32 ›› Issue (11): 1800-1813.doi: 10.3724/SP.J.1042.2024.01800
收稿日期:
2024-04-19
出版日期:
2024-11-15
发布日期:
2024-09-05
通讯作者:
蒯曙光, E-mail: sgkuai@psy.ecnu.edu.cn基金资助:
HAN Ming1, KUAI Shu-Guang1,2()
Received:
2024-04-19
Online:
2024-11-15
Published:
2024-09-05
摘要:
在使用虚拟现实技术进行心理学研究时, 建立一个高质量的虚拟实验环境至关重要。然而, 对于部分缺乏计算机编程经验的心理学研究者来说, 这一任务常常充满挑战。为应对这一难题, 领域内的研究者开发了多种专门用于虚拟现实实验的工具, 借助游戏引擎等技术, 大大降低了研究者对专业技术知识的依赖。这些工具各具特色, 一部分提供实验框架, 帮助研究者从整体上更轻松地搭建实验环境, 而另一部分则专注于解决特定的技术难题, 在特定环节或范式上为研究者提供必要的技术支持和开发范例。未来, 实验工具还可能会采用“元框架”的理念, 为开发者提供更高效、灵活的开发模式。
中图分类号:
韩明, 蒯曙光. (2024). 面向心理学的虚拟现实实验开发工具. 心理科学进展 , 32(11), 1800-1813.
HAN Ming, KUAI Shu-Guang. (2024). Toolkits for virtual reality research in psychology. Advances in Psychological Science, 32(11), 1800-1813.
工具箱 | 类型 | 描述 | 来源参考 | 编程 语言 | 依赖软件 | 使用所需前 置基础 |
---|---|---|---|---|---|---|
UXF | Unity插件 | 允许使用者通过结构化框架构建实验的核心模块 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
bmlTUX | Unity插件 | 因素设计实验搭建框架 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
Toggle Toolkit | Unity插件 | 为虚拟物体添脚本, 记录被试与虚拟物体的互动行为 | | C# | Unity3D | Unity引擎 |
EVE Framework | Unity项目 文件 | 多功能VR实验的开发工具, 使用SQL进行数据储存, 提供数据预处理的R语言包贮存 | | C# | Unity3D | Unity引擎、C#或 JavaScript、SQL |
VRSTK | Unity插件 | 多功能开发框架, 支持对接其他插件以实现各种功能 | | C#、R、Python | Unity3D | Unity引擎、C#或 JavaScript |
Study Framework Plugin | Unreal Engine插件 | 允许使用虚幻引擎创建因素设计研究 | | C++ | Unreal Engine 4.X | Unreal引擎 |
USE | Unity插件 | 用户生成虚拟环境实验, 支持使用Matlab对数据进行解析 | | C#、Matlab | Unity3D、Matlab | Unity引擎、C#、Matlab |
VREX | Unity项目文件/Unity程序 | 随机生成房间与物体, 用于生成记忆与变化盲视实验 | | C# | 无 | 无 |
Metachron | Unreal Engine项目文件 | 用于研究虚拟时间感知的实验 | | C++ | Unreal Engine 4.X | Unreal引擎 |
PTVR | Python工具箱 | 一个基于Unity, 但支持用户使用python进行编程的视知觉实验工具 | | Python | Python 3.6 | Python |
QuickVR | Unity插件 | 使虚拟身体动作同步响应被试动作, 用于虚拟具身感研究 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
VRthreat Toolkit | Unity插件 | 用于创建威胁场景实验 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
VERA | Unity插件 | 在虚拟现实中收集与记录包括眼动信息在内的注意数据 | | C# | Unity3D | Unity引擎 |
Landmarks | Unity项目文件 | 用于开发空间导航的实验的框架 | | C# | Unity3D | Unity引擎、C# |
OpenMaze | Unity插件 | 用于开发空间导航的实验, 可以通过配置文件定义实验任务 | | C# | Unity3D | 无 |
DeFINE | Unity插件 | 用于开发空间导航的实验, 能在实验期间向参与者提供反馈 | | JavaScript | Unity3D | Unity引擎、C# |
VNT | Unity插件 | 用于开发空间导航的实验 | | C# | Unity3D | Unity引擎、C# |
NavWell | Unity程序 | 在web设计虚拟水迷宫任务, 在unity程序中进行导航实验 | | C#/HTML | 无 | 无 |
PhysioVR | Unity插件 | 在虚拟现实程序中收集多种生理信号的框架 | | C#与JavaScript | Unity3D | Unity引擎、C# |
Excite-O-Meter | Unity插件 | 在Unity中实现心率变异性数据记录与分析 | | JavaScript | Unity3D | Unity引擎 |
PARE-VR | Unity插件 | 通过移动腕表、手机和Unity共同完成的心率变异率测量工具 | | C#、C++和JAVA | Unity3D | Unity引擎 |
vexptoolbox | Python工具箱 | 简化在Vizard平台上开发实验的工具 | | Python | Vizard (6或7) | Python、Vizard |
ExpyVR | 独立应用 | 基于PsychoPy开源脚本进行修改, 支持OpenGL进行3D渲染 | | Python | 无 | Python |
R2VR | R语言的包 | 在R中实现和执行VR实验的包 | | R | 无 | R |
SkyBXF | 基于游戏模组的行为实验框架 | 一款基于VR游戏模组编辑器的插件 | | 无 | 上古卷轴V:天际VR | 无 |
VRQuestionnaireToolkit | Unity插件 | 支持在虚拟现实环境中实施问卷测试的工具 | | JavaScript | Unity3D | Unity引擎、C#或 JavaScript |
MR-RIEW | Unity项目文件 | 提供问卷调查相关虚拟现实功能 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
IXCI | Unity插件 | 提供一个基于Web的可视界面, 用于控制和监视Unity虚拟现实程序 | | JavaScript/HTML | Unity3D | Unity引擎、C#、Web |
CReST | Unreal Engine插件 | 跨现实研究工具, 允许研究人员以增强现实方式对虚拟现实实验中的被试进行同步观察 | | C++ | Unreal Engine 4.27 | Unreal引擎 |
VO | Unity插件 | 记录与重建参与者动作信息 | | JavaScript/HTML | Unity3D | Unity引擎、JavaScript、web |
DomeVR | Unreal Engine项目文件 | 用于人类或动物在沉浸式穹顶虚拟环境中的实验工具 | | C++ | Unreal Engine 4.X | Unreal引擎 |
VALID | FBX | 以多样性为目的, 包含各种肤色种族的, 经过骨骼绑定的3D虚拟化身模型 | | 无 | 无 | 无 |
Hafnia Hands | Unity插件 | 提供了在虚拟现实研究中使用的多种手部模型, 包括各种肤色与非人类模型。 | | 无 | Unity3D | 无 |
表1 虚拟现实实验开发工具简介与网址
工具箱 | 类型 | 描述 | 来源参考 | 编程 语言 | 依赖软件 | 使用所需前 置基础 |
---|---|---|---|---|---|---|
UXF | Unity插件 | 允许使用者通过结构化框架构建实验的核心模块 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
bmlTUX | Unity插件 | 因素设计实验搭建框架 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
Toggle Toolkit | Unity插件 | 为虚拟物体添脚本, 记录被试与虚拟物体的互动行为 | | C# | Unity3D | Unity引擎 |
EVE Framework | Unity项目 文件 | 多功能VR实验的开发工具, 使用SQL进行数据储存, 提供数据预处理的R语言包贮存 | | C# | Unity3D | Unity引擎、C#或 JavaScript、SQL |
VRSTK | Unity插件 | 多功能开发框架, 支持对接其他插件以实现各种功能 | | C#、R、Python | Unity3D | Unity引擎、C#或 JavaScript |
Study Framework Plugin | Unreal Engine插件 | 允许使用虚幻引擎创建因素设计研究 | | C++ | Unreal Engine 4.X | Unreal引擎 |
USE | Unity插件 | 用户生成虚拟环境实验, 支持使用Matlab对数据进行解析 | | C#、Matlab | Unity3D、Matlab | Unity引擎、C#、Matlab |
VREX | Unity项目文件/Unity程序 | 随机生成房间与物体, 用于生成记忆与变化盲视实验 | | C# | 无 | 无 |
Metachron | Unreal Engine项目文件 | 用于研究虚拟时间感知的实验 | | C++ | Unreal Engine 4.X | Unreal引擎 |
PTVR | Python工具箱 | 一个基于Unity, 但支持用户使用python进行编程的视知觉实验工具 | | Python | Python 3.6 | Python |
QuickVR | Unity插件 | 使虚拟身体动作同步响应被试动作, 用于虚拟具身感研究 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
VRthreat Toolkit | Unity插件 | 用于创建威胁场景实验 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
VERA | Unity插件 | 在虚拟现实中收集与记录包括眼动信息在内的注意数据 | | C# | Unity3D | Unity引擎 |
Landmarks | Unity项目文件 | 用于开发空间导航的实验的框架 | | C# | Unity3D | Unity引擎、C# |
OpenMaze | Unity插件 | 用于开发空间导航的实验, 可以通过配置文件定义实验任务 | | C# | Unity3D | 无 |
DeFINE | Unity插件 | 用于开发空间导航的实验, 能在实验期间向参与者提供反馈 | | JavaScript | Unity3D | Unity引擎、C# |
VNT | Unity插件 | 用于开发空间导航的实验 | | C# | Unity3D | Unity引擎、C# |
NavWell | Unity程序 | 在web设计虚拟水迷宫任务, 在unity程序中进行导航实验 | | C#/HTML | 无 | 无 |
PhysioVR | Unity插件 | 在虚拟现实程序中收集多种生理信号的框架 | | C#与JavaScript | Unity3D | Unity引擎、C# |
Excite-O-Meter | Unity插件 | 在Unity中实现心率变异性数据记录与分析 | | JavaScript | Unity3D | Unity引擎 |
PARE-VR | Unity插件 | 通过移动腕表、手机和Unity共同完成的心率变异率测量工具 | | C#、C++和JAVA | Unity3D | Unity引擎 |
vexptoolbox | Python工具箱 | 简化在Vizard平台上开发实验的工具 | | Python | Vizard (6或7) | Python、Vizard |
ExpyVR | 独立应用 | 基于PsychoPy开源脚本进行修改, 支持OpenGL进行3D渲染 | | Python | 无 | Python |
R2VR | R语言的包 | 在R中实现和执行VR实验的包 | | R | 无 | R |
SkyBXF | 基于游戏模组的行为实验框架 | 一款基于VR游戏模组编辑器的插件 | | 无 | 上古卷轴V:天际VR | 无 |
VRQuestionnaireToolkit | Unity插件 | 支持在虚拟现实环境中实施问卷测试的工具 | | JavaScript | Unity3D | Unity引擎、C#或 JavaScript |
MR-RIEW | Unity项目文件 | 提供问卷调查相关虚拟现实功能 | | C# | Unity3D | Unity引擎、C#或 JavaScript |
IXCI | Unity插件 | 提供一个基于Web的可视界面, 用于控制和监视Unity虚拟现实程序 | | JavaScript/HTML | Unity3D | Unity引擎、C#、Web |
CReST | Unreal Engine插件 | 跨现实研究工具, 允许研究人员以增强现实方式对虚拟现实实验中的被试进行同步观察 | | C++ | Unreal Engine 4.27 | Unreal引擎 |
VO | Unity插件 | 记录与重建参与者动作信息 | | JavaScript/HTML | Unity3D | Unity引擎、JavaScript、web |
DomeVR | Unreal Engine项目文件 | 用于人类或动物在沉浸式穹顶虚拟环境中的实验工具 | | C++ | Unreal Engine 4.X | Unreal引擎 |
VALID | FBX | 以多样性为目的, 包含各种肤色种族的, 经过骨骼绑定的3D虚拟化身模型 | | 无 | 无 | 无 |
Hafnia Hands | Unity插件 | 提供了在虚拟现实研究中使用的多种手部模型, 包括各种肤色与非人类模型。 | | 无 | Unity3D | 无 |
[1] |
胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题: 从危机到契机. 心理科学进展, 24(9), 1504-1518.
doi: 10.3724/SP.J.1042.2016.01504 |
[2] |
张凤翔, 陈美璇, 蒲艺, 孔祥祯. (2023). 空间导航能力个体差异的多层次形成机制. 心理科学进展, 31(9), 1642-1664.
doi: 10.3724/SP.J.1042.2023.01642 |
[3] |
Adhanom, I. B., MacNeilage, P., & Folmer, E. (2023). Eye tracking in virtual reality: A broad review of applications and challenges. Virtual Reality, 27(2), 1481-1505. https:// doi.org/10.1007/s10055-022-00738-z
doi: 10.1007/s10055-022-00738-z URL pmid: 37621305 |
[4] | Aguilar, L., Gath-Morad, M., Grübel, J., Ermatinger, J., Zhao, H., Wehrli, S.,... Hölscher, C. (2022). Experiments as code: A concept for reproducible, auditable, debuggable, reusable, & scalable experiments. ArXiv Preprint ArXiv: 2202.12050. |
[5] |
Aksoy, M., Ufodiama, C. E., Bateson, A. D., Martin, S., & Asghar, A. U. R. (2021). A comparative experimental study of visual brain event-related potentials to a working memory task: Virtual reality head-mounted display versus a desktop computer screen. Experimental Brain Research, 239(10), 3007-3022. https://doi.org/10.1007/s00221-021-06158-w
doi: 10.1007/s00221-021-06158-w URL pmid: 34347129 |
[6] |
Alsbury-Nealy, K., Wang, H., Howarth, C., Gordienko, A., Schlichting, M. L., & Duncan, K. D. (2021). OpenMaze: An open-source toolbox for creating virtual navigation experiments. Behavior Research Methods, 54(3), 1374-1387. https://doi.org/10.3758/s13428-021-01664-9
doi: 10.3758/s13428-021-01664-9 URL pmid: 34471962 |
[7] | Banakou, D., Groten, R., & Slater, M. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proceedings of the National Academy of Sciences, 110(31), 12846-12851. https://doi.org/10.1073/pnas.1306779110 |
[8] |
Banakou, D., Hanumanthu, P. D., & Slater, M. (2016). Virtual embodiment of white people in a black virtual body leads to a sustained reduction in their implicit racial bias. Frontiers in Human Neuroscience, 10, 601. https:// doi.org/10.3389/fnhum.2016.00601
URL pmid: 27965555 |
[9] | Bebko, A. O., & Troje, N. F. (2020). bmlTUX: Design and control of experiments in virtual reality and beyond. I-Perception, 11(4), 204166952093840. https://doi.org/10.1177/2041669520938400 |
[10] | Berdejo-Espinola, V., Zahnow, R., O’Bryan, C. J., & Fuller, R. A. (2024). Virtual reality for nature experiences. Nature Human Behaviour, 8, 1005-1007. https://doi.org/10.1038/s41562-024-01857-0 |
[11] | Bernal, G., Hidalgo, N., Russomanno, C., & Maes, P. (2022). Galea: A physiological sensing system for behavioral research in Virtual Environments. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Christchurch, New Zealand, 66-76. https://doi.org/10.1109/VR51125.2022.00024 |
[12] | Bovo, R., Giunchi, D., Steed, A., & Heinis, T. (2022). MR-RIEW: An MR toolkit for designing remote immersive experiment workflows. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 766-767. https://doi.org/10.1109/VRW55335.2022.00234 |
[13] |
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436. https://doi.org/10.1163/156856897X00357
URL pmid: 9176952 |
[14] | Brookes, J., Hall, S., Frühholz, S., & Bach, D. R. (2023). Immersive VR for investigating threat avoidance: The VRthreat toolkit for Unity. Behavior Research Methods, 56, 5040-5054. https://doi.org/10.3758/s13428-023-02241-y |
[15] |
Brookes, J., Warburton, M., Alghadier, M., Mon-Williams, M., & Mushtaq, F. (2020). Studying human behavior with virtual reality: The unity experiment framework. Behavior Research Methods, 52(2), 455-463. https://doi.org/10.3758/s13428-019-01242-0
doi: 10.3758/s13428-019-01242-0 URL pmid: 31012061 |
[16] |
Butkeviciute, E., Bikulciene, L., Sidekerskiene, T., Blazauskas, T., Maskeliunas, R., Damasevicius, R., & Wei, W. (2019). Removal of movement artefact for mobile EEG analysis in sports exercises. IEEE Access, 7, 7206-7217. https://doi.org/10.1109/ACCESS.2018.2890335
doi: 10.1109/ACCESS.2018.2890335 URL |
[17] |
Castet, E., Termoz-Masson, J., Vizcay, S., Delachambre, J., Myrodia, V., Aguilar, C., Matonti, F., & Kornprobst, P. (2024). PTVR - A software in Python to make virtual reality experiments easier to build and more reproducible. Journal of Vision, 24(4), 19. https://doi.org/10.1167/jov.24.4.19
doi: 10.1167/jov.24.4.19 URL pmid: 38652657 |
[18] | Colombo, G., & Grübel, J. (2023). The spatial performance assessment for cognitive evaluation (SPACE):A novel game for the early detection of cognitive impairment. Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 1-6. https://doi.org/10.1145/3544549.3583828 |
[19] |
Commins, S., Duffin, J., Chaves, K., Leahy, D., Corcoran, K., Caffrey, M.,... Thornberry, C. (2020). NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments. Behavior Research Methods, 52(3), 1189-1207. https://doi.org/10.3758/s13428-019-01310-5
doi: 10.3758/s13428-019-01310-5 URL pmid: 31637666 |
[20] | Cools, R., Zhang, X., & Simeone, A. L. (2023). CReST:Design and evaluation of the cross-reality study tool. Proceedings of the 22nd International Conference on Mobile and Ubiquitous Multimedia, Vienna, Austria, 409-419. https://doi.org/10.1145/3626705.3627803 |
[21] | Delvigne, V., Ris, L., Dutoit, T., Wannous, H., & Vandeborre, J. -P. (2020). VERA: Virtual environments recording attention. 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), Vancouver, Canada, 1-7. https://doi.org/10.1109/SeGAH49190.2020.9201699 |
[22] | Do, T. D., Zelenty, S., Gonzalez-Franco, M., & McMahan, R. P. (2023). VALID: A perceptually validated virtual avatar library for inclusion and diversity. Frontiers in Virtual Reality, 4, 1248915. https://doi.org/10.3389/frvir.2023.1248915 |
[23] | Draschkow, D. (2022). Remote virtual reality as a tool for increasing external validity. Nature Reviews Psychology, 1(8), 433-434. https://doi.org/10.1038/s44159-022-00082-8 |
[24] |
Draschkow, D., Anderson, N. C., David, E., Gauge, N., Kingstone, A., Kumle, L.,... Võ, M. L. -H. (2023). Using XR (Extended Reality) for behavioral, clinical, and learning sciences requires updates in infrastructure and funding. Policy Insights from the Behavioral and Brain Sciences, 10(2), 317-323. https://doi.org/10.1177/23727322231196305
doi: 10.1177/23727322231196305 URL pmid: 37900910 |
[25] |
Draschkow, D., Nobre, A. C., & van Ede, F. (2022). Multiple spatial frames for immersive working memory. Nature Human Behaviour, 6(4), 536-544. https://doi.org/10.1038/s41562-021-01245-y
doi: 10.1038/s41562-021-01245-y URL pmid: 35058640 |
[26] | Ehret, J., Bönsch, A., Fels, J., Schlittmeier, S. J., & Kuhlen, T. W. (2024). StudyFramework: Comfortably setting up and conducting factorial-design studies using the unreal engine. 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW): Workshop” Open Access Tools and Libraries for Virtual Reality, Orlando, FL, USA, 442-449. https://doi.org/10.1109/VRW62533.2024.00087 |
[27] | Emmelkamp, P. M. G., & Meyerbröker, K. (2021). Virtual reality therapy in mental health. Annual Review of Clinical Psychology, 17(1), 495-519. https://doi.org/10.1146/annurev-clinpsy-081219-115923 |
[28] | Feick, M., Kleer, N., Tang, A., & Krüger, A. (2020). The virtual reality questionnaire toolkit. Adjunct Publication of the 33rd Annual ACM Symposium on User Interface Software and Technology, Virtual Event, USA, 68-69. https://doi.org/10.1145/3379350.3416188 |
[29] | Freeman, D., Lambe, S., Kabir, T., Petit, A., Rosebrock, L., Yu, L. -M., … West, J. (2022). Automated virtual reality therapy to treat agoraphobic avoidance and distress in patients with psychosis (gameChange): A multicentre, parallel-group, single-blind, randomised, controlled trial in England with mediation and moderation analyses. The Lancet Psychiatry, 9(5), 375-388. https://doi.org/10.1016/S2215-0366(22)00060-8 |
[30] |
Geraets, C. N. W., van der Stouwe, E. C. D., Pot-Kolder, R., & Veling, W. (2021). Advances in immersive virtual reality interventions for mental disorders: A new reality? Current Opinion in Psychology, 41, 40-45. https://doi.org/10.1016/j.copsyc.2021.02.004
doi: 10.1016/j.copsyc.2021.02.004 URL pmid: 33714892 |
[31] | Grübel, J. (2023). The design, experiment, analyse, and reproduce principle for experimentation in virtual reality. Frontiers in Virtual Reality, 4, 1069423. https://doi.org/10.3389/frvir.2023.1069423 |
[32] | Grübel, J., Weibel, R., Jiang, M. H., Hölscher, C., Hackman, D. A., & Schinazi, V. R. (2017). EVE:A Framework for Experiments in Virtual Environments. In Barkowsky, T., Burte, H., Hölscher, C., Schultheis, H. (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10523 LNAI (pp. 159-176). Springer Verlag. https://doi.org/10.1007/978-3-319-68189-4_10 |
[33] | Hakim, A., & Hammad, S. (2022). Use of virtual reality in psychology. In C. Biele, J. Kacprzyk, W. Kopeć, J. W. Owsiński, A. Romanowski, & M. Sikorski (Eds.), Digital interaction and machine intelligence. MIDI 2021 (pp. 208-217, Vol. 440). Springer, Cham. https://doi.org/10.1007/978-3-031-11432-8_21 |
[34] | Halbig, A., & Latoschik, M. E. (2021). A systematic review of physiological measurements, factors, methods, and applications in virtual reality. Frontiers in Virtual Reality, 2, 694567. https://doi.org/10.3389/frvir.2021.694567 |
[35] | Hofmann, S. M., Klotzsche, F., Mariola, A., Nikulin, V., Villringer, A., & Gaebler, M. (2021). Decoding subjective emotional arousal from EEG during an immersive virtual reality experience. ELife, 10, e64812. https://doi.org/10.7554/eLife.64812 |
[36] | Howie, S., & Gilardi, M. (2021). Virtual Observations: A software tool for contextual observation and assessment of user’s actions in virtual reality. Virtual Reality, 25(2), 447-460. https://doi.org/10.1007/s10055-020-00463-5 |
[37] | Jiménez-Ruescas, J., Sánchez, R., Maya, Y., Fernández- Caballero, A., García, A. S., & González, P. (2023). A framework for managing the experimental evaluation of ambient assisted living systems. In J. Bravo & G. Urzáiz (Eds.), Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023) (pp. 124-135, Vol. 835). Springer, Cham. https://doi.org/10.1007/978-3-031-48306-6_13 |
[38] | Kilteni, K., Groten, R., & Slater, M. (2012). The sense of embodiment in virtual reality. Presence: Teleoperators and Virtual Environments, 21(4), 373-387. https://doi.org/10.1162/PRES_a_00124 |
[39] | Landeck, M., Unruh, F., Lugrin, J. -L., & Latoschik, M. E. (2020). Metachron: A framework for time perception research in VR. 26th ACM Symposium on Virtual Reality Software and Technology, Virtual Event, Canada, 1-3. https://doi.org/10.1145/3385956.3422111 |
[40] | Li, H., Shin, H., Zhang, M., Yu, A., Huh, H., Kwon, G.,... Lu, N. (2023). Hair-compatible sponge electrodes integrated on VR headset for electroencephalography. Soft Science, 3(3), 21. https://doi.org/10.20517/ss.2023.11 |
[41] | Lin, Z., Yang, Z., Feng, C., & Zhang, Y. (2022). PsyBuilder: An open-source, cross-platform graphical experiment builder for psychtoolbox with built-In performance optimization. Advances in Methods and Practices in Psychological Science, 5(1), 251524592110705. https://doi.org/10.1177/25152459211070573 |
[42] | Liu, Z. -M., & Chen, Y. -H. (2022). A modularity design approach to behavioral research with immersive virtual reality: A SkyrimVR-based behavioral experimental framework. Behavior Research Methods, 55(7), 3805-3819. https://doi.org/10.3758/s13428-022-01990-6 |
[43] | Moinnereau, M. -A., de Oliveira, A. A., & Falk, T. H. (2022). Immersive media experience: A survey of existing methods and tools for human influential factors assessment. Quality and User Experience, 7(1), 5. https://doi.org/10.1007/s41233-022-00052-1 |
[44] | Müller, M. M., Scherer, J., Unterbrink, P., Bertrand, O. J. N., Egelhaaf, M., & Boeddeker, N. (2023). The virtual navigation toolbox: Providing tools for virtual navigation experiments. PLOS ONE, 18(11), e0293536. https://doi.org/10.1371/journal.pone.0293536 |
[45] | Nicoll, B., & Keogh, B. (2019). The Unity game engine and the circuits of cultural software (pp. 9-11). Springer. |
[46] | Nolte, D., Vidal De Palol, M., Keshava, A., Madrid-Carvajal, J., Gert, A. L., von Butler, E. -M., Kömürlüoğlu, P., & König, P. (2024). Combining EEG and eye-tracking in virtual reality: Obtaining fixation-onset event-related potentials and event-related spectral perturbations. Attention, Perception, & Psychophysics. Advance online publication. https://doi.org/10.3758/s13414-024-02917-3 |
[47] | Oliva, R., Beacco, A., Navarro, X., & Slater, M. (2022). QuickVR: A standard library for virtual embodiment in unity. Frontiers in Virtual Reality, 3, 937191. https://doi.org/10.3389/frvir.2022.937191 |
[48] |
Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research Methods, 51(1), 195-203. https://doi.org/10.3758/s13428-018-01193-y
doi: 10.3758/s13428-018-01193-y URL pmid: 30734206 |
[49] | Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1-2), 8-13. https://doi.org/10.1016/j.jneumeth.2006.11.017 |
[50] | Peng, K., Moussavi, Z., Karunakaran, K. D., Borsook, D., Lesage, F., & Nguyen, D. K. (2024). iVR-fNIRS: Studying brain functions in a fully immersive virtual environment. Neurophotonics, 11(2). https://doi.org/10.1117/1.NPh.11.2.020601 |
[51] | Pohl, H., & Mottelson, A. (2022). Hafnia Hands: A multi- skin hand texture resource for virtual reality research. Frontiers in Virtual Reality, 3, 719506. https://doi.org/10.3389/frvir.2022.719506 |
[52] | Quintero, L., Papapetrou, P., & Munoz, J. E. (2019). Open-Source physiological computing framework using heart rate variability in mobile virtual reality applications. 2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), San Diego, CA, USA, 126-1267. https://doi.org/10.1109/AIVR46125.2019.00027 |
[53] | Quintero, L., Papapetrou, P., Munoz, J. E., de Mooij, J., & Gaebler, M. (2022). Excite-O-Meter: An open-source Unity plugin to analyze heart activity and movement trajectories in custom VR environments. 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 46-47. https://doi.org/10.1109/VRW55335.2022.00017 |
[54] | Rey, A., Bellucci, A., Diaz, P., & Aedo, I. (2021). A tool for monitoring and controlling standalone immersive HCI experiments. Adjunct Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology, Virtual Event, USA, 20-22. https://doi.org/10.1145/3474349.3480217 |
[55] | Saffo, D., Yildirim, C., Di Bartolomeo, S., & Dunne, C. (2020). Crowdsourcing virtual reality experiments using VRChat. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 1-8. https://doi.org/10.1145/3334480.3382829 |
[56] |
Schuetz, I., Karimpur, H., & Fiehler, K. (2022). vexptoolbox: A software toolbox for human behavior studies using the Vizard virtual reality platform. Behavior Research Methods, 55(2), 570-582. https://doi.org/10.3758/s13428-022-01831-6
doi: 10.3758/s13428-022-01831-6 URL pmid: 35322350 |
[57] | Skibba, R. (2018). Virtual reality comes of age. Nature, 553(7689), 402-403. https://doi.org/10.1038/d41586-018-00894-w |
[58] | Skola, F., & Liarokapis, F. (2021). BCIManager: A library for development of brain-computer interfacing applications in Unity. 2021 IEEE Conference on Games (CoG), Copenhagen, Denmark, 1-4. https://doi.org/10.1109/CoG52621.2021.9619123 |
[59] |
Slater, M., Perez-Marcos, D., Ehrsson, H. H., & Sanchez-Vives, M. V. (2008). Towards a digital body: The virtual arm illusion. Frontiers in Human Neuroscience, 2, 6. https://doi.org/10.3389/neuro.09.006.2008
doi: 10.3389/neuro.09.006.2008 URL pmid: 18958207 |
[60] | Stangl, M., Maoz, S. L., & Suthana, N. (2023). Mobile cognition: imaging the human brain in the ‘real world’. Nature Reviews Neuroscience, 24(6), 347-362. https://doi.org/10.1038/s41583-023-00692-y |
[61] | Starrett, M. J., McAvan, A. S., Huffman, D. J., Stokes, J. D., Kyle, C. T., Smuda, D. N.,... Ekstrom, A. D. (2021). Landmarks: A solution for spatial navigation and memory experiments in virtual reality. Behavior Research Methods, 53(3), 1046-1059. https://doi.org/10.3758/s13428-020-01481-6 |
[62] | Tauscher, J. -P., Schottky, F. W., Grogorick, S., Bittner, P. M., Mustafa, M., & Magnor, M. (2019). Immersive EEG: Evaluating electroencephalography in virtual reality. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 1794-1800. https://doi.org/10.1109/VR.2019.8797858 |
[63] |
Tiwari, K., Kyrki, V., Cheung, A., & Yamamoto, N. (2021). DeFINE: Delayed feedback-based immersive navigation environment for studying goal-directed human navigation. Behavior Research Methods, 53(6), 2668-2688. https://doi.org/10.3758/s13428-021-01586-6
doi: 10.3758/s13428-021-01586-6 URL pmid: 34027593 |
[64] |
Ugwitz, P., Šašinková, A., Šašinka, Č., Stachoň, Z., & Juřík, V. (2021). Toggle toolkit: A tool for conducting experiments in Unity virtual environments. Behavior Research Methods, 53(4), 1581-1591. https://doi.org/10.3758/s13428-020-01510-4
doi: 10.3758/s13428-020-01510-4 URL pmid: 33409983 |
[65] | van Steenbergen, H., Spapé, R., & Verdonschot, M. (2019). The E-Primer: An introduction to creating psychological experiments in E-Prime (pp. 1-304). Amsterdam University Press. |
[66] |
Vasser, M., & Aru, J. (2020). Guidelines for immersive virtual reality in psychological research. Current Opinion in Psychology, 36, 71-76. https://doi.org/10.1016/j.copsyc.2020.04.010
doi: S2352-250X(20)30068-3 URL pmid: 32563049 |
[67] |
Vasser, M., Kängsepp, M., Magomedkerimov, M., Kilvits, K., Stafinjak, V., Kivisik, T., Vicente, R., & Aru, J. (2017). VREX: An open-source toolbox for creating 3D virtual reality experiments. BMC Psychology, 5(1), 4. https://doi.org/10.1186/s40359-017-0173-4
doi: 10.1186/s40359-017-0173-4 URL pmid: 28196507 |
[68] |
Vercelloni, J., Peppinck, J., Santos-Fernandez, E., McBain, M., Heron, G., Dodgen, T., Peterson, E. E., & Mengersen, K. (2021). Connecting virtual reality and ecology: A new tool to run seamless immersive experiments in R. PeerJ Computer Science, 7, e544. https://doi.org/10.7717/peerj-cs.544
doi: 10.7717/peerj-cs.544 URL pmid: 34141881 |
[69] | Watson, M. R., Voloh, B., Thomas, C., Hasan, A., & Womelsdorf, T. (2019). USE: An integrative suite for temporally-precise psychophysical experiments in virtual environments for human, nonhuman, and artificially intelligent agents. Journal of Neuroscience Methods, 326, 108374. https://doi.org/10.1016/j.jneumeth.2019.108374 |
[70] | Weisberg, S. M., Schinazi, V. R., Ferrario, A., & Newcombe, N. S. (2022). Evaluating the effects of a programming error on a virtual environment measure of spatial navigation behavior. Journal of Experimental Psychology: Learning, Memory, and Cognition, 49(4), 575-589. https://doi.org/10.1037/xlm0001146 |
[71] |
Wiener, J. M., Carroll, D., Moeller, S., Bibi, I., Ivanova, D., Allen, P., & Wolbers, T. (2020). A novel virtual-reality- based route-learning test suite: Assessing the effects of cognitive aging on navigation. Behavior Research Methods, 52(2), 630-640. https://doi.org/10.3758/s13428-019-01264-8
doi: 10.3758/s13428-019-01264-8 URL pmid: 31236900 |
[72] | Wolfel, M., Hepperle, D., Purps, C. F., Deuchler, J., & Hettmann, W. (2021). Entering a new dimension in virtual reality research:An overview of existing toolkits, their features and challenges. 2021 International Conference on Cyberworlds (CW), Caen, France, 180-187. https://doi.org/10.1109/CW52790.2021.00038 |
[73] | Zilcha-Mano, S., & Krasovsky, T. (2024). Using virtual reality to understand mechanisms of therapeutic change. Nature Reviews Psychology, 3, 295-296. https://doi.org/10.1038/s44159-024-00303-2 |
[1] | 赵加伟, 夏涛, 胡传鹏. 心理学研究中预注册的现状、挑战与建议[J]. 心理科学进展, 2024, 32(5): 715-727. |
[2] | 黄顺森, 陈豪杰, 来枭雄, 代欣然, 王耘. 多元宇宙样分析:简介及应用[J]. 心理科学进展, 2023, 31(2): 196-208. |
[3] | 刘泽民, 陈宥辛. 遮蔽周边视力对虚拟现实中视觉诱导晕动症的影响[J]. 心理科学进展, 2019, 27(suppl.): 16-16. |
[4] | 胡逸斐, 周晨, 缪明诚, 蒯曙光. 他们是一组吗:共同注意社会交互群组知觉的认知启发模型[J]. 心理科学进展, 2019, 27(suppl.): 136-136. |
[5] | 殷继兴, 胡传鹏. 神经科学偏见效应:可重复性及其心理机制的探索[J]. 心理科学进展, 2019, 27(12): 1988-1995. |
[6] | 张家鑫, 海拉干, 李会杰. 空间导航的测量及其在认知老化中的应用[J]. 心理科学进展, 2019, 27(12): 2019-2033. |
[7] | 赵佩琼, 陈巍, 张静, 平贤洁. 橡胶手错觉:拥有感研究的实验范式及其应用[J]. 心理科学进展, 2019, 27(1): 37-50. |
[8] | 林弋琪, 王希, 彭凯平, 倪士光. 虚拟现实技术与自闭症谱系障碍治疗:科技新希望[J]. 心理科学进展, 2018, 26(3): 518-526. |
[9] | 刘传军, 廖江群. 具身效应何处寻:解决可重复性危机的分析性途径[J]. 心理科学进展, 2018, 26(12): 2260-2271. |
[10] | 陈静, 孙伟, 翟广涛, 李黎. 分离光流信息与形状信息对个体朝向目标行进的影响[J]. 心理科学进展, 2017, 25(suppl.): 30-30. |
[11] | 李明英, 吴惠宁, 蒯曙光, 张畅芯. 虚拟现实技术在执行功能评估中的应用[J]. 心理科学进展, 2017, 25(6): 933-942. |
[12] | 胡传鹏;王非;过继成思;宋梦迪; 隋洁;彭凯平. 心理学研究中的可重复性问题:从危机到契机[J]. 心理科学进展, 2016, 24(9): 1504-1518. |
[13] | 朱滢. “开放科学 数据共享 软件共享”, 你准备好了吗?[J]. 心理科学进展, 2016, 24(6): 995-996. |
[14] | 王广新;李立. 焦虑障碍的虚拟现实暴露疗法研究述评[J]. 心理科学进展, 2012, 20(8): 1277-1286. |
[15] | 郑霞; SAUZEON Hélène; 周明全; N’KAOUA Bernard. 虚拟现实技术应用于神经心理评估的研究概述[J]. 心理科学进展, 2010, 18(3): 511-521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||