心理科学进展 ›› 2023, Vol. 31 ›› Issue (5): 783-799.doi: 10.3724/SP.J.1042.2023.00783
刘文华1,2(), 温秀娟1,2, 陈灵2, 杨瑞1,2, 胡逸儒1
收稿日期:
2022-08-23
出版日期:
2023-05-15
发布日期:
2023-02-13
通讯作者:
刘文华
E-mail:wenhualiu@gzhmu.edu.cn
LIU Wenhua1,2(), WEN Xiujuan1,2, CHEN Ling2, YANG Rui1,2, HU Yiru1
Received:
2022-08-23
Online:
2023-05-15
Published:
2023-02-13
Contact:
LIU Wenhua
E-mail:wenhualiu@gzhmu.edu.cn
摘要:
临床上精神疾病如抑郁症、精神分裂症和双相情感障碍患者均表现出奖赏加工异常现象。奖赏加工包括多个产生时间非常接近的子过程。事件相关电位作为一种时间分辨率高且广泛使用的测量大脑皮层活动的工具, 非常适合于研究奖赏加工中复杂、多面的认知子结构。然而, 很多研究往往只关注测量单一脑电成分, 忽视对整体过程的探讨。奖赏加工可分为两个重要的子阶段并关联着多个相关的事件相关电位成分:奖励期待(线索N2和P3波, 关联性负变波和刺激前负波)和结果评估(反馈负波、反馈P3波和反馈晚期正电位), 这些脑电成分的异常活动与抑郁症、精神分裂症和双相情感障碍患者的临床症状有密切关联。采用多成分的脑电分析方法, 有助于更好地理解精神疾病群体在奖赏加工不同阶段的异常情况, 对促进疾病测评方式的发展也具有作用。
中图分类号:
刘文华, 温秀娟, 陈灵, 杨瑞, 胡逸儒. (2023). 奖励期待和结果评估的脑电成分在精神疾病研究中的应用. 心理科学进展 , 31(5), 783-799.
LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. (2023). Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders. Advances in Psychological Science, 31(5), 783-799.
抑郁症研究 | 样本 | 脑电测量成分 | 实验任务 | 结论 |
---|---|---|---|---|
Wang, He et al., | 抑郁症患者56人 其中实验组32人, 安慰组24人 | Cue-P3 Cue-N2 | 金钱激励延迟任务 | 相比治疗前, 抑郁症患者实验组在治疗后表现出更大的Cue-N2和Cue-P3波幅。 |
Song et al., | 抑郁症患者44人, 健康对照28人 | Cue-P3 FB-P3 | 金钱激励延迟任务 | 相比健康对照组, 抑郁症患者的Cue-P3活动更弱。抑郁症患者中有自杀风险个体和无自杀风险个体的FB-P3波存在差异。 |
Song et al., | 抑郁症患者32人, 健康对照24人 | FB-P3 Cue-P3 | 情绪激励延迟任务 | 相比健康对照组, 抑郁症患者的Cue-P3和FB-P3波幅减小。 |
Landes et al., | 青少年抑郁症患者25人, 健康对照42人 | FB-P3 Cue-P3 | 金钱激励延迟任务 | 相比健康对照组, 青少年抑郁症患者的Cue-P3潜伏期延长, FB-P3波延迟。 |
Luking et al., | 有较高抑郁症状青少年100人 | FB-P3 Cue-P3 | 猜牌任务 | 有较高抑郁症状青少年的Cue-P3和FB-P3波幅减小。 |
Hansenne & Ansseau, | 抑郁症患者52人, 健康对照76人 | CNV | “S1-S2”范式 | 相比健康对照组, 抑郁症患者表现出较小的CNV波幅。 |
Köhler et al., | 老年抑郁症患者66人, 老年健康对照36人 | CNV | “S1-S2”范式 | 相比老年健康对照组, 老年抑郁症患者的CNV波活动表现增强。 |
Zhang et al., | 抑郁症患者40人, 健康对照40人 | CNV | 金钱激励延迟任务 社会激励延迟任务 | 与健康对照组相比, 在社会激励延迟任务中, 抑郁症患者在较大的奖励中表现出更小的CNV波活动。 |
Ait Oumeziane et al., | 有较高抑郁症状33人, 有较低抑郁症状69人 | SPN | 金钱激励延迟任务 社会激励延迟任务 | 相比金钱奖励, 有较高抑郁症状被试对不确定结果的社会奖励表现出减小的SPN波幅。 |
Umemoto & Holroyd, | 大学生68人 | SPN RewP | 概率性强化学习任务 | 相比抑郁得分低的被试, 抑郁得分高的被试表现出较大的SPN波和较小的RewP波。 |
Brush et al., | 抑郁症患者52人, 健康对照48人 | RewP | 门猜测任务 | 相比健康控制组, 抑郁症患者的RewP波显著减小。 |
Foti et al., | 抑郁症患者34人, 健康对照42人 | FRN | 门猜测任务 | 相比健康对照组, 忧郁亚型的抑郁症患者表现出减弱的FRN活动。 |
Liu et al., | 抑郁症患者27人, 健康对照27人 | FRN | 门猜测任务 | 与健康对照组相比, 抑郁症患者的FRN反应减小。 |
Bress et al., | 青春期女生68人 | FRN | 门猜测任务 | 减弱的FRN基线活动可预测之后的抑郁症发病情况。 |
Bress et al., | 儿童71人 | FRN | 门猜测任务 | 有抑郁症状的被试首测和再测时均表现出FRN活动减弱。 |
Kujawa et al., | 儿童407人 | FRN | 奖励任务 | 母亲的抑郁症状越严重, 儿童的FRN活动减弱程度越高。 |
Weinberg & Shankman, | 忧郁亚型抑郁症缓解期患者29人, 非忧郁亚型抑郁症缓解期患者56人, 健康对照86人 | RewP FRN | 门猜测任务 | 忧郁亚型的抑郁症缓解期患者对正性刺激有着更弱的FRN/RewP活动。 |
Klawohn et al., | 抑郁症患者83人, 健康对照45人 | FB-LPP RewP | 门猜测任务 图片观看任务 | 相比健康对照组, 抑郁症患者表现出减小的RewP活动以及对愉悦图片的LPP反应降低。 |
Barch et al., | 干预组60人, 对照组58人 | RewP FB-LPP | 门猜测任务 图片观看任务 | 干预组儿童对奖励反应的RewP活动增加, 但RewP波在治疗前后并无显著差异。对正性图片有更高FB-LPP基线水平的儿童, 干预后其抑郁症状明显减少。 |
Berry et al., | 大学生45人 | FRN RewP | 门猜测任务 | 抑郁症状越严重, 被试的RewP和FRN反应越大。 |
Grunewald et al., | 抑郁症患者36人, 健康对照26人 | FB-LPP | 情绪Go/NoGo任务 | 相比健康对照组, 抑郁症患者的LPP波幅减弱。 |
Webb et al., | 青少年女性抑郁症患者26人, 健康对照25人 | FRN FB-LPP | 内隐条件任务 | 与健康青少年相比, 青少年抑郁症患者表现出更强的FRN反应以及减弱的LPP反应。 |
Kujawa et al., | 儿童323人 | FB-LPP | 情绪中断任务 | 对不愉快刺激有更大的LPP反应的儿童, 在高水平压力下易出现精神症状。 |
Nelson et al., | 青少年女生550人 | FB-LPP | 图片观看任务 | 父母有抑郁史的儿童, 对情绪刺激表现出较弱的LPP反应。 |
Weinberg et al., | 单相焦虑患者51人、单相抑郁症患者24人, 同时伴有焦虑和抑郁的患者有70人, 健康对照32人 | FB-LPP | 图片观看任务 | 相比健康对照组, 单相抑郁症患者在奖励条件下的FB-LPP活动减小。 |
Levinson et al., | 青少年143人 | FB-LPP | 情绪中断任务 | 当生活压力越大时, 青少年的FB-LPP活动越弱, 抑郁症状越严重。 |
Sandre et al., | 大学生160人 | FB-LPP | 图片观看任务 | 伴有抑郁症状的大学生对正性图片表现出减弱的LPP活动, 其减弱的LPP活动能够预测6周后更严重的抑郁症状。 |
表1 抑郁症相关的奖赏加工脑电研究
抑郁症研究 | 样本 | 脑电测量成分 | 实验任务 | 结论 |
---|---|---|---|---|
Wang, He et al., | 抑郁症患者56人 其中实验组32人, 安慰组24人 | Cue-P3 Cue-N2 | 金钱激励延迟任务 | 相比治疗前, 抑郁症患者实验组在治疗后表现出更大的Cue-N2和Cue-P3波幅。 |
Song et al., | 抑郁症患者44人, 健康对照28人 | Cue-P3 FB-P3 | 金钱激励延迟任务 | 相比健康对照组, 抑郁症患者的Cue-P3活动更弱。抑郁症患者中有自杀风险个体和无自杀风险个体的FB-P3波存在差异。 |
Song et al., | 抑郁症患者32人, 健康对照24人 | FB-P3 Cue-P3 | 情绪激励延迟任务 | 相比健康对照组, 抑郁症患者的Cue-P3和FB-P3波幅减小。 |
Landes et al., | 青少年抑郁症患者25人, 健康对照42人 | FB-P3 Cue-P3 | 金钱激励延迟任务 | 相比健康对照组, 青少年抑郁症患者的Cue-P3潜伏期延长, FB-P3波延迟。 |
Luking et al., | 有较高抑郁症状青少年100人 | FB-P3 Cue-P3 | 猜牌任务 | 有较高抑郁症状青少年的Cue-P3和FB-P3波幅减小。 |
Hansenne & Ansseau, | 抑郁症患者52人, 健康对照76人 | CNV | “S1-S2”范式 | 相比健康对照组, 抑郁症患者表现出较小的CNV波幅。 |
Köhler et al., | 老年抑郁症患者66人, 老年健康对照36人 | CNV | “S1-S2”范式 | 相比老年健康对照组, 老年抑郁症患者的CNV波活动表现增强。 |
Zhang et al., | 抑郁症患者40人, 健康对照40人 | CNV | 金钱激励延迟任务 社会激励延迟任务 | 与健康对照组相比, 在社会激励延迟任务中, 抑郁症患者在较大的奖励中表现出更小的CNV波活动。 |
Ait Oumeziane et al., | 有较高抑郁症状33人, 有较低抑郁症状69人 | SPN | 金钱激励延迟任务 社会激励延迟任务 | 相比金钱奖励, 有较高抑郁症状被试对不确定结果的社会奖励表现出减小的SPN波幅。 |
Umemoto & Holroyd, | 大学生68人 | SPN RewP | 概率性强化学习任务 | 相比抑郁得分低的被试, 抑郁得分高的被试表现出较大的SPN波和较小的RewP波。 |
Brush et al., | 抑郁症患者52人, 健康对照48人 | RewP | 门猜测任务 | 相比健康控制组, 抑郁症患者的RewP波显著减小。 |
Foti et al., | 抑郁症患者34人, 健康对照42人 | FRN | 门猜测任务 | 相比健康对照组, 忧郁亚型的抑郁症患者表现出减弱的FRN活动。 |
Liu et al., | 抑郁症患者27人, 健康对照27人 | FRN | 门猜测任务 | 与健康对照组相比, 抑郁症患者的FRN反应减小。 |
Bress et al., | 青春期女生68人 | FRN | 门猜测任务 | 减弱的FRN基线活动可预测之后的抑郁症发病情况。 |
Bress et al., | 儿童71人 | FRN | 门猜测任务 | 有抑郁症状的被试首测和再测时均表现出FRN活动减弱。 |
Kujawa et al., | 儿童407人 | FRN | 奖励任务 | 母亲的抑郁症状越严重, 儿童的FRN活动减弱程度越高。 |
Weinberg & Shankman, | 忧郁亚型抑郁症缓解期患者29人, 非忧郁亚型抑郁症缓解期患者56人, 健康对照86人 | RewP FRN | 门猜测任务 | 忧郁亚型的抑郁症缓解期患者对正性刺激有着更弱的FRN/RewP活动。 |
Klawohn et al., | 抑郁症患者83人, 健康对照45人 | FB-LPP RewP | 门猜测任务 图片观看任务 | 相比健康对照组, 抑郁症患者表现出减小的RewP活动以及对愉悦图片的LPP反应降低。 |
Barch et al., | 干预组60人, 对照组58人 | RewP FB-LPP | 门猜测任务 图片观看任务 | 干预组儿童对奖励反应的RewP活动增加, 但RewP波在治疗前后并无显著差异。对正性图片有更高FB-LPP基线水平的儿童, 干预后其抑郁症状明显减少。 |
Berry et al., | 大学生45人 | FRN RewP | 门猜测任务 | 抑郁症状越严重, 被试的RewP和FRN反应越大。 |
Grunewald et al., | 抑郁症患者36人, 健康对照26人 | FB-LPP | 情绪Go/NoGo任务 | 相比健康对照组, 抑郁症患者的LPP波幅减弱。 |
Webb et al., | 青少年女性抑郁症患者26人, 健康对照25人 | FRN FB-LPP | 内隐条件任务 | 与健康青少年相比, 青少年抑郁症患者表现出更强的FRN反应以及减弱的LPP反应。 |
Kujawa et al., | 儿童323人 | FB-LPP | 情绪中断任务 | 对不愉快刺激有更大的LPP反应的儿童, 在高水平压力下易出现精神症状。 |
Nelson et al., | 青少年女生550人 | FB-LPP | 图片观看任务 | 父母有抑郁史的儿童, 对情绪刺激表现出较弱的LPP反应。 |
Weinberg et al., | 单相焦虑患者51人、单相抑郁症患者24人, 同时伴有焦虑和抑郁的患者有70人, 健康对照32人 | FB-LPP | 图片观看任务 | 相比健康对照组, 单相抑郁症患者在奖励条件下的FB-LPP活动减小。 |
Levinson et al., | 青少年143人 | FB-LPP | 情绪中断任务 | 当生活压力越大时, 青少年的FB-LPP活动越弱, 抑郁症状越严重。 |
Sandre et al., | 大学生160人 | FB-LPP | 图片观看任务 | 伴有抑郁症状的大学生对正性图片表现出减弱的LPP活动, 其减弱的LPP活动能够预测6周后更严重的抑郁症状。 |
精神分裂症研究 | 样本 | 脑电测量成分 | 实验任务 | 结论 |
---|---|---|---|---|
Vignapiano et al., | 精神分裂症患者38人, 健康对照25人 | Cue-P3 | 金钱激励延迟任务 | 精神分裂症患者的P3早期波幅在不同奖励下并无明显差异, P3晚期波幅在损失越大的情况下也越大。 |
Vignapiano et al., | 精神分裂症患者38人, 健康对照25人 | Cue-N2 | 金钱激励延迟任务 | 精神分裂症患者表现异常的N2波活动。 |
Catalano, | 精神分裂症患者26人, 健康对照23人 | RewP | 金钱激励延迟任务 社会激励延迟任务 | 精神分裂症患者和健康对照组的RewP波没有显著差异。 |
Clayson et al., | 精神分裂症患者92人, 健康对照74人 | Cue-P3 SPN FB-P3 RewP | 线索奖励任务 | 精神分裂症患者与健康对照组的Cue-P3活动没有显著差异, 但SPN, FB-P3, RewP表现出较弱的活动。 |
Abram et al., | 精神分裂症患者54人, 健康对照54人 | FB-LPP SPN RewP | 老虎机任务 | 精神分裂症患者与健康对照组的SPN或RewP波幅无显著差异, 但在FB-LPP活动上存在差异。 |
Bedwell et al., | 精神分裂症患者16人, 双相情感障碍患者10人, 其他情绪障碍患者5人, 健康对照13人 | FB-LPP | 巴甫洛夫式金钱 奖励预测任务 | 在奖励性刺激条件下, 精神分裂症患者阴性症状的严重程度与减弱的FB-LPP波活动相关; 在厌恶性刺激条件下, 患者紊乱性症状的严重程度与更大的FRN波活动有关。 |
Horan et al., | 精神分裂症患者35人, 健康对照33人 | FRN | FN赌博任务 | 精神分裂症患者与健康对照组的FRN波活动没有显著性差异。 |
Llerena et al., | 精神分裂症患者92人, 健康对照63人 | ERN FRN | 侧抑制任务 时间估计任务 | 相比健康对照组, 精神分裂症患者的ERN活动减少, FRN活动无显著差别。 |
Horat et al., | 精神分裂症患者16人, 健康对照19人 | FRN | 最后通牒实验 | 相比健康对照组, 精神分裂症患者在提议条件下, P2和FRN波的波幅无差异。在响应条件下, FRN的波幅有显著差异。 |
Toyomaki et al., | 精神分裂症患者11人, 健康对照11人 | FB-LPP | 赌博任务 | 相比健康对照组, 精神分裂症患者在自我决定条件下的FB-LPP活动显著降低。 |
表2 精神分裂症奖励相关脑电研究
精神分裂症研究 | 样本 | 脑电测量成分 | 实验任务 | 结论 |
---|---|---|---|---|
Vignapiano et al., | 精神分裂症患者38人, 健康对照25人 | Cue-P3 | 金钱激励延迟任务 | 精神分裂症患者的P3早期波幅在不同奖励下并无明显差异, P3晚期波幅在损失越大的情况下也越大。 |
Vignapiano et al., | 精神分裂症患者38人, 健康对照25人 | Cue-N2 | 金钱激励延迟任务 | 精神分裂症患者表现异常的N2波活动。 |
Catalano, | 精神分裂症患者26人, 健康对照23人 | RewP | 金钱激励延迟任务 社会激励延迟任务 | 精神分裂症患者和健康对照组的RewP波没有显著差异。 |
Clayson et al., | 精神分裂症患者92人, 健康对照74人 | Cue-P3 SPN FB-P3 RewP | 线索奖励任务 | 精神分裂症患者与健康对照组的Cue-P3活动没有显著差异, 但SPN, FB-P3, RewP表现出较弱的活动。 |
Abram et al., | 精神分裂症患者54人, 健康对照54人 | FB-LPP SPN RewP | 老虎机任务 | 精神分裂症患者与健康对照组的SPN或RewP波幅无显著差异, 但在FB-LPP活动上存在差异。 |
Bedwell et al., | 精神分裂症患者16人, 双相情感障碍患者10人, 其他情绪障碍患者5人, 健康对照13人 | FB-LPP | 巴甫洛夫式金钱 奖励预测任务 | 在奖励性刺激条件下, 精神分裂症患者阴性症状的严重程度与减弱的FB-LPP波活动相关; 在厌恶性刺激条件下, 患者紊乱性症状的严重程度与更大的FRN波活动有关。 |
Horan et al., | 精神分裂症患者35人, 健康对照33人 | FRN | FN赌博任务 | 精神分裂症患者与健康对照组的FRN波活动没有显著性差异。 |
Llerena et al., | 精神分裂症患者92人, 健康对照63人 | ERN FRN | 侧抑制任务 时间估计任务 | 相比健康对照组, 精神分裂症患者的ERN活动减少, FRN活动无显著差别。 |
Horat et al., | 精神分裂症患者16人, 健康对照19人 | FRN | 最后通牒实验 | 相比健康对照组, 精神分裂症患者在提议条件下, P2和FRN波的波幅无差异。在响应条件下, FRN的波幅有显著差异。 |
Toyomaki et al., | 精神分裂症患者11人, 健康对照11人 | FB-LPP | 赌博任务 | 相比健康对照组, 精神分裂症患者在自我决定条件下的FB-LPP活动显著降低。 |
双相情感障碍研究 | 样本 | 脑电测量成分 | 实验任务 | 结论 |
---|---|---|---|---|
Mason et al., | 双相情感障碍患者20人, 健康对照19人 | FRN FB-P3 | 轮盘赌博任务 | 相比健康对照组, 双相情感障碍患者FRN和N1波活动增强, FB-P3波活动无显著差异。 |
Ryu et al., | 双相情感障碍躁狂期患者24人, 稳定期患者20人, 健康对照24人 | FRN | 概率性奖励任务 | 相比健康对照组, 双相情感障碍躁狂期和稳定期患者表现出增强的FRN活动。 |
Ryu et al., | 双相情感障碍躁狂期患者24人, 稳定期20人, 健康对照30人 | FRN | 最后通牒实验 | 与健康对照组相反, 双相情感障碍稳定期患者对不公平条件的反应比对公平条件的反应表现出减弱的FRN活动。躁狂期患者在公平和不公平条件之间的FRN波幅没有显著差异。 |
Wang, Wu et al., | 双相情感障碍抑郁期患者24人, 健康对照20人 | FRN | 经典的赌博任务 | 与健康对照组相比, 损失会引起双相情感障碍抑郁期患者更大的FRN波反应, 而在奖励条件下两组的FRN波活动无显著差异。 |
表3 双相情感障碍奖励相关脑电研究
双相情感障碍研究 | 样本 | 脑电测量成分 | 实验任务 | 结论 |
---|---|---|---|---|
Mason et al., | 双相情感障碍患者20人, 健康对照19人 | FRN FB-P3 | 轮盘赌博任务 | 相比健康对照组, 双相情感障碍患者FRN和N1波活动增强, FB-P3波活动无显著差异。 |
Ryu et al., | 双相情感障碍躁狂期患者24人, 稳定期患者20人, 健康对照24人 | FRN | 概率性奖励任务 | 相比健康对照组, 双相情感障碍躁狂期和稳定期患者表现出增强的FRN活动。 |
Ryu et al., | 双相情感障碍躁狂期患者24人, 稳定期20人, 健康对照30人 | FRN | 最后通牒实验 | 与健康对照组相反, 双相情感障碍稳定期患者对不公平条件的反应比对公平条件的反应表现出减弱的FRN活动。躁狂期患者在公平和不公平条件之间的FRN波幅没有显著差异。 |
Wang, Wu et al., | 双相情感障碍抑郁期患者24人, 健康对照20人 | FRN | 经典的赌博任务 | 与健康对照组相比, 损失会引起双相情感障碍抑郁期患者更大的FRN波反应, 而在奖励条件下两组的FRN波活动无显著差异。 |
[1] |
李丹阳, 李鹏, 李红. (2018). 反馈负波及其近10年理论解释. 心理科学进展, 26(9), 1642-1650.
doi: 10.3724/SP.J.1042.2018.01642 |
[2] |
秦浩方, 黄蓉, 贾世伟. (2021). 反馈相关负波:一种抑郁症的生物标记物. 心理科学进展, 29(3), 404-413.
doi: 10.3724/SP.J.1042.2021.00404 |
[3] |
Abram, S. V., Roach, B. J., Holroyd, C. B., Paulus, M. P., Ford, J. M., Mathalon, D. H., & Fryer, S. L. (2020). Reward processing electrophysiology in schizophrenia: Effects of age and illness phase. NeuroImage. Clinical, 28, 102492. https://doi.org/10.1016/j.nicl.2020.102492
doi: 10.1016/j.nicl.2020.102492 URL |
[4] | Adams, R. A., Huys, Q. J., & Roiser, J. P. (2016). Computational psychiatry: Towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery, and Psychiatry, 87(1), 53-63. https://doi.org/10.1136/jnnp-2015-310737 |
[5] |
Ait Oumeziane, B., Jones, O., & Foti, D. (2019). Neural sensitivity to social and monetary reward in depression: Clarifying general and domain-specific deficits. Frontiers in Behavioral Neuroscience, 13, 199. https://doi.org/10.3389/fnbeh.2019.00199
doi: 10.3389/fnbeh.2019.00199 URL pmid: 31649515 |
[6] |
Barch, D. M., Whalen, D., Gilbert, K., Kelly, D., Kappenman, E. S., Hajcak, G., & Luby, J. L. (2020). Neural indicators of anhedonia: Predictors and mechanisms of treatment change in a randomized clinical trial in early childhood depression. Biological Psychiatry, 88(11), 879-887. https://doi.org/10.1016/j.biopsych.2020.06.032
doi: 10.1016/j.biopsych.2020.06.032 URL pmid: 33153527 |
[7] |
Becker, M. P., Nitsch, A. M., Miltner, W. H., & Straube, T. (2014). A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task. The Journal of Neuroscience, 34(8), 3005-3012. https://doi.org/10.1523/JNEUROSCI.3684-13.2014
doi: 10.1523/JNEUROSCI.3684-13.2014 URL |
[8] | Bedwell, J. S., Potts, G. F., Gooding, D. C., Trachik, B. J., Chan, C. C., & Spencer, C. C. (2016). Transdiagnostic psychiatric symptoms and event-related potentials following rewarding and aversive outcomes. PLoS One, 11(6), 0157084. https://doi.org/10.1371/journal.pone.0157084 |
[9] |
Bernat, E. M., Nelson, L. D., & Baskin-Sommers, A. R. (2015). Time-frequency theta and delta measures index separable components of feedback processing in a gambling task. Psychophysiology, 52(5), 626-637. https://doi.org/10.1111/psyp.12390
doi: 10.1111/psyp.12390 URL pmid: 25581491 |
[10] |
Berry, M. P., Tanovic, E., Joormann, J., & Sanislow, C. A. (2019). Relation of depression symptoms to sustained reward and loss sensitivity. Psychophysiology, 56(7), e13364. https://doi.org/10.1111/psyp.13364
doi: 10.1111/psyp.2019.56.issue-7 URL |
[11] | Borsini, A., Wallis, A. S. J., Zunszain, P., Pariante, C. M., & Kempton, M. J. (2020). Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression. Cognitive, Affective & Behavioral Neuroscience, 20(4), 816-841. https://doi.org/10.3758/s13415-020-00804-6 |
[12] |
Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50(1), 74-81. https://doi.org/10.1111/j.1469-8986.2012.01485.x
doi: 10.1111/j.1469-8986.2012.01485.x URL pmid: 23252717 |
[13] |
Bress, J. N., Meyer, A., & Proudfit, G. H. (2015). The stability of the feedback negativity and its relationship with depression during childhood and adolescence. Development and Psychopathology, 27(4pt1), 1285-1294. https://doi.org/10.1017/S0954579414001400
doi: 10.1017/S0954579414001400 URL |
[14] |
Brunia, C. H., Hackley, S. A., Boxtel, G. J., Kotani, Y., & Ohgami, Y. (2011). Waiting to perceive: Reward or punishment? Clinical Neurophysiology, 122(5), 858-868. https://doi.org/10.1016/j.clinph.2010.12.039
doi: 10.1016/j.clinph.2010.12.039 URL pmid: 21215692 |
[15] |
Brush, C. J., Ehmann, P. J., Hajcak, G., Selby, E. A., & Alderman, B. L. (2018). Using multilevel modeling to examine blunted neural responses to reward in major depression. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 3(12), 1032-1039. https://doi.org/10.1016/j.bpsc.2018.04.003
doi: 10.1016/j.bpsc.2018.04.003 URL |
[16] |
Campos, R. C., Holden, R. R., & Lambert, C. E. (2019). Avoidance of psychological pain and suicidal ideation in community samples: Replication across two countries and two languages. Journal of Clinical Psychology, 75(12), 2160-2168. https://doi.org/10.1002/jclp.22837
doi: 10.1002/jclp.22837 URL pmid: 31332793 |
[17] |
Campos, R. C., Simões, A., Costa, S., Pio, A. S., & Holden, R. R. (2020). Psychological pain and suicidal ideation in undergraduates: The role of pain avoidance. Death Studies, 44(6), 375-378. https://doi.org/10.1080/07481187.2018.1554610
doi: 10.1080/07481187.2018.1554610 URL pmid: 30912716 |
[18] | Carlson, J. M., Foti, D., Harmon-Jones, E., & Proudfit, G. H. (2015). Midbrain volume predicts fMRI and ERP measures of reward reactivity. Brain Structure & Function, 220(3), 1861-1866. https://doi.org/10.1007/s00429-014-0725-9 |
[19] |
Castro, M. K., Bailey, D. H., Zinger, J. F., & Martin, E. A. (2019). Late electrophysiological potentials and emotion in schizophrenia: A meta-analytic review. Schizophrenia Research, 211, 21-31. https://doi.org/10.1016/j.schres.2019.07.013
doi: S0920-9964(19)30276-2 URL pmid: 31324440 |
[20] | Catalano, L. T. (2018). Electrophysiology of social reward processing in schizophrenia (Unpublished Doctoral dissertation). University of Maryland. http://hdl.handle.net/1903/21137 |
[21] |
Clayson, P. E., Carbine, K. A., & Larson, M. J. (2020). A registered report of error-related negativity and reward positivity as biomarkers of depression: P-Curving the evidence. International Journal of Psychophysiology, 150, 50-72. https://doi.org/10.1016/j.ijpsycho.2020.01.005
doi: S0167-8760(20)30018-0 URL pmid: 31987869 |
[22] |
Clayson, P. E., Wynn, J. K., Infantolino, Z. P., Hajcak, G., Green, M. F., & Horan, W. P. (2019). Reward processing in certain versus uncertain contexts in schizophrenia: An event-related potential (ERP) study. Journal of Abnormal Psychology, 128(8), 867-880. https://doi.org/10.1037/abn0000469
doi: 10.1037/abn0000469 URL pmid: 31657597 |
[23] |
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11, 126. https://doi.org/10.1186/1741-7015-11-126
doi: 10.1186/1741-7015-11-126 URL pmid: 23672542 |
[24] |
Donaldson, K. R., Ait Oumeziane, B., Helie, S., & Foti, D. (2016). The temporal dynamics of reversal learning: P3 amplitude predicts valence-specific behavioral adjustment. Physiology & Behavior, 161, 24-32. https://doi.org/10.1016/j.physbeh.2016.03.034
doi: 10.1016/j.physbeh.2016.03.034 URL |
[25] | Ducasse, D., Holden, R. R., Boyer, L., Artéro, S., Calati, R., Guillaume, S., Courtet, P., & Olié, E. (2018). Psychological pain in suicidality: A meta-analysis. The Journal of Clinical Psychiatry, 79(3). https://doi.org/10.4088/JCP.16r10732 |
[26] |
Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. Neuroimage, 101(Supplement C),50-58. https://doi.org/10.1016/j.neuroimage.2014.06.058
doi: 10.1016/j.neuroimage.2014.06.058 URL pmid: 24996119 |
[27] |
Foti, D., Weinberg, A., Bernat, E. M., & Proudfit, G. H. (2015). Anterior cingulate activity to monetary loss and basal ganglia activity to monetary gain uniquely contribute to the feedback negativity. Clinical Neurophysiology, 126(7), 1338-1347. https://doi.org/10.1016/j.clinph.2014.08.025
doi: 10.1016/j.clinph.2014.08.025 URL pmid: 25454338 |
[28] |
Foti, D., Weinberg, A., Dien, J., & Hajcak, G. (2011). Event-related potential activity in the basal ganglia differentiates rewards from nonrewards: Temporospatial principal components analysis and source localization of the feedback negativity. Human Brain Mapping, 32(12), 2207-2216. https://doi.org/10.1002/hbm.21182
doi: 10.1002/hbm.21182 URL pmid: 21305664 |
[29] |
Fuentemilla, L., Cucurell, D., Marco-Pallares, J., Guitart- Masip, M., Moris, J., & Rodriguez-Fornells, A. (2013). Electrophysiological correlates of anticipating improbable but desired events. Neuroimage, 78, 135-144. https://doi.org/10.1016/j.neuroimage.2013.03.062
doi: 10.1016/j.neuroimage.2013.03.062 URL pmid: 23583745 |
[30] |
Glazer, J. E., Kelley, N. J., Pornpattananangkul, N., Mittal, V. A., & Nusslock, R. (2018). Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. International Journal of Psychophysiology, 132(Pt B),184-202. https://doi.org/10.1016/j.ijpsycho.2018.02.002
doi: S0167-8760(17)30473-7 URL pmid: 29454641 |
[31] |
Grunewald, M., Döohnert, M., Brandeis, D., Klein, A. M., Klitzing, K., Matuschek, T., & Stadelmann, S. (2019). Attenuated LPP to emotional face stimuli associated with parent- and self-reported depression in children and adolescents. Journal of Abnormal Child Psychology, 47(1), 109-118. https://doi.org/10.1007/s10802-018-0429-3
doi: 10.1007/s10802-018-0429-3 URL pmid: 29679244 |
[32] |
Hansenne, M., & Ansseau, M. (2001). Contingent negative variation and personality in depression. Neuropsychobiology, 44(1), 7-12. https://doi.org/10.1159/000054907
URL pmid: 11408786 |
[33] |
Horan, W. P., Foti, D., Hajcak, G., Wynn, J. K., & Green, M. F. (2012). Impaired neural response to internal but not external feedback in schizophrenia. Psychological Medicine, 42(8), 1637-1647. https://doi.org/10.1017/S0033291711002819
doi: 10.1017/S0033291711002819 URL pmid: 22152069 |
[34] |
Horat, S. K., Favre, G., Prevot, A., Ventura, J., Herrmann, F. R., Gothuey, I., … Missonnier, P. (2018). Impaired social cognition in schizophrenia during the Ultimatum Game: An EEG study. Schizophrenia Research, 192, 308-316. https://doi.org/10.1016/j.schres.2017.05.037
doi: S0920-9964(17)30311-0 URL pmid: 28578921 |
[35] |
Kamei, M., Kotani, Y., & Sakuma, H. (2018). Preparing for saliencies: Emotional expectations under probabilistically and aversively salient situations. Psychophysiology, 55(6), 13056. https://doi.org/10.1111/psyp.13056
doi: 10.1111/psyp.13056 URL pmid: 29315615 |
[36] |
Keren, H., O’Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. The American Journal of Psychiatry, 175(11), 1111-1120. https://doi.org/10.1176/appi.ajp.2018.17101124
doi: 10.1176/appi.ajp.2018.17101124 URL |
[37] |
Klawohn, J., Burani, K., Bruchnak, A., Santopetro, N., & Hajcak, G. (2021). Reduced neural response to reward and pleasant pictures independently relate to depression. Psychological Medicine, 51(5), 741-749. https://doi.org/10/gnn449
doi: 10.1017/S0033291719003659 URL |
[38] |
Köhler, S., Ashton, C. H., Marsh, R., Thomas, A. J., Barnett, N. A., & O’Brien, J. T. (2011). Electrophysiological changes in late life depression and their relation to structural brain changes. International Psychogeriatrics, 23(1), 141-148. https://doi.org/10.1017/S1041610210001250
doi: 10.1017/S1041610210001250 URL pmid: 20561385 |
[39] |
Kujawa, A., Hajcak, G., Danzig, A. P., Black, S. R., Bromet, E. J., Carlson, G. A., & Klein, D. N. (2016). Neural reactivity to emotional stimuli prospectively predicts the impact of a natural disaster on psychiatric symptoms in children. Biological Psychiatry, 80(5), 381-389. https://doi.org/10.1016/j.biopsych.2015.09.008
doi: 10.1016/j.biopsych.2015.09.008 URL pmid: 26526228 |
[40] |
Kujawa, A., Proudfit, G. H., & Klein, D. N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. Journal of Abnormal Psychology, 123(2), 287-297. https://doi.org/10.1037/a0036285
doi: 10.1037/a0036285 URL pmid: 24886003 |
[41] |
Landes, I., Bakos, S., Kohls, G., Bartling, J., Schulte-Körne, G., & Greimel, E. (2018). Altered neural processing of reward and punishment in adolescents with Major Depressive Disorder. Journal of Affective Disorders, 232, 23-33. https://doi.org/10.1016/j.jad.2018.01.017
doi: S0165-0327(16)31969-3 URL pmid: 29475180 |
[42] |
Levinson, A. R., Speed, B. C., & Hajcak, G. (2019). Neural response to pleasant pictures moderates prospective relationship between stress and depressive symptoms in adolescent girls. Journal of Clinical Child and Adolescent Psychology, 48(4), 643-655. https://doi.org/10.1080/15374416.2018.1426004
doi: 10.1080/15374416.2018.1426004 URL pmid: 29412004 |
[43] |
Liu, W. -h, Wang, L. -z, Shang, H. -r, Shen, Y., Li, Z., Cheung, E. F. C., & Chan, R. C. K. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53(Suppl. C), 213-220. https://doi.org/10.1016/j.neuropsychologia.2013.11.023
doi: 10.1016/j.neuropsychologia.2013.11.023 URL |
[44] |
Llerena, K., Wynn, J. K., Hajcak, G., Green, M. F., & Horan, W. P. (2016). Patterns and reliability of EEG during error monitoring for internal versus external feedback in schizophrenia. International Journal of Psychophysiology, 105(Suppl. C), 39-46. https://doi.org/10.1016/j.ijpsycho.2016.04.012
doi: 10.1016/j.ijpsycho.2016.04.012 URL |
[45] |
Luking, K. R., Gilbert, K., Kelly, D., Kappenman, E. S., Hajcak, G., Luby, J. L., & Barch, D. M. (2021). The relationship between depression symptoms and adolescent neural response during reward anticipation and outcome depends on developmental timing: Evidence from a longitudinal study. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 6(5), 527-535. https://doi.org/10.1016/j.bpsc.2020.11.001
doi: 10.1016/j.bpsc.2020.11.001 URL |
[46] |
Mason, L., O’Sullivan, N., Montaldi, D., Bentall, R. P., & El-Deredy, W. (2014). Decision-making and trait impulsivity in bipolar disorder are associated with reduced prefrontal regulation of striatal reward valuation. Brain, 137(8), 2346-2355. https://doi.org/10.1093/brain/awu152
doi: 10.1093/brain/awu152 URL |
[47] |
Mason, L., Trujillo-Barreto, N. J., Bentall, R. P., & El-Deredy, W. (2016). Attentional bias predicts increased reward salience and risk taking in bipolar disorder. Biological Psychiatry, 79(4), 311-319. https://doi.org/10.1016/j.biopsych.2015.03.014
doi: 10.1016/j.biopsych.2015.03.014 URL pmid: 25863360 |
[48] |
Meadows, C. C., Gable, P. A., Lohse, K. R., & Miller, M. W. (2016). The effects of reward magnitude on reward processing: An averaged and single trial event-related potential study. Biological Psychology, 118, 154-160. https://doi.org/10.1016/j.biopsycho.2016.06.002
doi: S0301-0511(16)30193-4 URL pmid: 27288743 |
[49] |
Moris, J., Luque, D., & Rodriguez-Fornells, A. (2013). Learning-induced modulations of the stimulus-preceding negativity. Psychophysiology, 50(9), 931-939. https://doi.org/10.1111/psyp.12073
doi: 10.1111/psyp.12073 URL pmid: 23808750 |
[50] |
Nelson, B. D., Perlman, G., Hajcak, G., Klein, D. N., & Kotov, R. (2015). Familial risk for distress and fear disorders and emotional reactivity in adolescence: An event-related potential investigation. Psychological Medicine, 45(12), 2545-2556. https://doi.org/10.1017/S0033291715000471
doi: 10.1017/S0033291715000471 URL pmid: 25851615 |
[51] |
Novak, B. K., Novak, K. D., Lynam, D. R., & Foti, D. (2016). Individual differences in the time course of reward processing: Stage-specific links with depression and impulsivity. Biological Psychology, 119, 79-90. https://doi.org/10.1016/j.biopsycho.2016.07.008
doi: 10.1016/j.biopsycho.2016.07.008 URL pmid: 27396750 |
[52] |
Novak, K. D., & Foti, D. (2015). Teasing apart the anticipatory and consummatory processing of monetary incentives: An event-related potential study of reward dynamics. Psychophysiology, 52(11), 1470-1482. https://doi.org/10.1111/psyp.12504
doi: 10.1111/psyp.12504 URL pmid: 26223291 |
[53] | Paul, K., Vassena, E., Severo, M. C., & Pourtois, G. (2020). Dissociable effects of reward magnitude on fronto-medial theta and FRN during performance monitoring. Psychophysiology, 57(2). https://doi.org/10.1111/psyp.13481 |
[54] | Pornpattananangkul, N., Nadig, A., Heidinger, S., Walden, K., & Nusslock, R. (2017). Elevated outcome-anticipation and outcome-evaluation ERPs associated with a greater preference for larger-but-delayed rewards. Cognitive, Affective & Behavioral Neuroscience, 17(3), 625-641. https://doi.org/10.3758/s13415-017-0501-4 |
[55] |
Pornpattananangkul, N., & Nusslock, R. (2015). Motivated to win: Relationship between anticipatory and outcome reward-related neural activity. Brain and Cognition, 100, 21-40. https://doi.org/10.1016/j.bandc.2015.09.002
doi: 10.1016/j.bandc.2015.09.002 URL pmid: 26433773 |
[56] |
Potts, G. F. (2011). Impact of reward and punishment motivation on behavior monitoring as indexed by the error-related negativity. International Journal of Psychophysiology, 81(3), 324-331. https://doi.org/10.1016/j.ijpsycho.2011.07.020
doi: 10.1016/j.ijpsycho.2011.07.020 URL pmid: 21855583 |
[57] |
Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459. https://doi.org/10.1111/psyp.12370
doi: 10.1111/psyp.12370 URL pmid: 25327938 |
[58] |
Proudfit, G. H., Bress, J. N., Foti, D., Kujawa, A., & Klein, D. N. (2015). Depression and Event-related Potentials: Emotional disengagement and reward insensitivity. Current Opinion in Psychology, 4, 110-113. https://doi.org/10.1016/j.copsyc.2014.12.018
URL pmid: 26462292 |
[59] | Ryu, V., Ha, R. Y., & Cho, H. S. (2021). Altered behavioral and electrophysiological responses to social fairness in manic and euthymic patients with bipolar disorder. Brain and Behavior, 11(8), e2289. https://doi.org/10.1002/brb3.2289 |
[60] | Ryu, V., Ha, R. Y., Lee, S. J., Ha, K., & Cho, H. S. (2017). Behavioral and electrophysiological alterations for reinforcement learning in manic and euthymic patients with bipolar disorder. CNS Neuroscience & Therapeutics, 23(3), 248-256. https://doi.org/10.1111/cns.12671 |
[61] |
Sambrook, T. D., & Goslin, J. (2016). Principal components analysis of reward prediction errors in a reinforcement learning task. Neuroimage, 124(Pt A),276-286. https://doi.org/10.1016/j.neuroimage.2015.07.032
doi: S1053-8119(15)00643-6 URL pmid: 26196667 |
[62] |
Sandre, A., Bagot, R. C., & Weinberg, A. (2019). Blunted neural response to appetitive images prospectively predicts symptoms of depression, and not anxiety, during the transition to university. Biological Psychology, 145, 31-41. https://doi.org/10.1016/j.biopsycho.2019.04.001
doi: S0301-0511(18)30762-2 URL pmid: 30974147 |
[63] |
Song, W., Li, H., Guo, T., Jiang, S., & Wang, X. (2019). Effect of affective reward on cognitive event-related potentials and its relationship with psychological pain and suicide risk among patients with major depressive disorder. Suicide and Life-Threatening Behavior, 49(5), 1290-1306. https://doi.org/10.1111/sltb.12524
doi: 10.1111/sltb.12524 URL pmid: 30390328 |
[64] |
Song, W., Li, H., Sun, F., Guo, T., Jiang, S., & Wang, X. (2020). Pain avoidance and its relation to neural response to punishment characterizes suicide attempters with major depression disorder. Psychiatry Research, 294, 113507. https://doi.org/10.1016/j.psychres.2020.113507
doi: 10.1016/j.psychres.2020.113507 URL |
[65] |
Stephan, K. E., Schlagenhauf, F., Huys, Q. J. M., Raman, S., Aponte, E. A., Brodersen, K. H., … Heinz, A. (2017). Computational neuroimaging strategies for single patient predictions. Neuroimage, 145(Pt B),180-199. https://doi.org/10.1016/j.neuroimage.2016.06.038
doi: S1053-8119(16)30287-7 URL pmid: 27346545 |
[66] |
Sylvain, R., Gilbertson, H., & Carlson, J. M. (2020). Single session positive attention bias modification training enhances reward-related electrocortical responses in females. International Journal of Psychophysiology, 156, 10-17. https://doi.org/10.1016/j.ijpsycho.2020.07.002
doi: S0167-8760(20)30170-7 URL pmid: 32679221 |
[67] | Toyomaki, A., Hashimoto, N., Kako, Y., Murohashi, H., & Kusumi, I. (2017). Neural responses to feedback information produced by self-generated or other-generated decision-making and their impairment in schizophrenia. PLoS One, 12(8), 0183792. https://doi.org/10.1371/journal.pone.0183792 |
[68] |
Uher, R., Perlis, R. H., Henigsberg, N., Zobel, A., Rietschel, M., Mors, O., … McGuffin, P. (2012). Depression symptom dimensions as predictors of antidepressant treatment outcome: Replicable evidence for interest- activity symptoms. Psychological Medicine, 42(5), 967-980. https://doi.org/10.1017/S0033291711001905
doi: 10.1017/S0033291711001905 URL pmid: 21929846 |
[69] |
Umemoto, A., & Holroyd, C. B. (2017). Neural mechanisms of reward processing associated with depression-related personality traits. Clinical Neurophysiology, 128(7), 1184-1196. https://doi.org/10.1016/j.clinph.2017.03.049
doi: S1388-2457(17)30150-5 URL pmid: 28521266 |
[70] |
Vignapiano, A., Mucci, A., Ford, J., Montefusco, V., Plescia, G. M., Bucci, P., & Galderisi, S. (2016). Reward anticipation and trait anhedonia: An electrophysiological investigation in subjects with schizophrenia. Clinical Neurophysiology, 127(4), 2149-2160. https://doi.org/10.1016/j.clinph.2016.01.006
doi: 10.1016/j.clinph.2016.01.006 URL pmid: 26853737 |
[71] |
Vignapiano, A., Mucci, A., Merlotti, E., Giordano, G. M., Amodio, A., Palumbo, D., & Galderisi, S. (2018). Impact of reward and loss anticipation on cognitive control: An event-related potential study in subjects with schizophrenia and healthy controls. Clinical EEG and Neuroscience, 49(1), 46-54. https://doi.org/10.1177/1550059417745935
doi: 10.1177/1550059417745935 URL pmid: 29243531 |
[72] | Wang, S., Leri, F., & Rizvi, S. J. (2021). Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Progress in Neuro- Psychopharmacology & Biological Psychiatry, 110, 110289. https://doi.org/10.1016/j.pnpbp.2021.110289 |
[73] |
Wang, X., He, K., Chen, T., Shi, B., Yang, J., Geng, W., Zhang, L., Zhu, C., Ji, G., Tian, Y., Bai, T., Dong, Y., Luo, Y., Wang, K., & Yu, F. (2021). Therapeutic efficacy of connectivity-directed transcranial magnetic stimulation on anticipatory anhedonia. Depression and Anxiety, 38(9), 972-984. https://doi.org/10.1002/da.23188
doi: 10.1002/da.v38.9 URL |
[74] |
Wang, X., Wu, H., Huang, J., Gao, C., Yin, Y., Tang, X., & Peng, D. (2021). Reward mechanism of depressive episodes in bipolar disorder: Enhanced theta power in feedback-related negativity. Journal of Affective Disorders, 292, 217-222. https://doi.org/10.1016/j.jad.2021.05.057
doi: 10.1016/j.jad.2021.05.057 URL pmid: 34130186 |
[75] |
Watts, A. T. M., Bachman, M. D., & Bernat, E. M. (2017). Expectancy effects in feedback processing are explained primarily by time-frequency delta not theta. Biological Psychology, 129, 242-252. https://doi.org/10.1016/j.biopsycho.2017.08.054
doi: S0301-0511(17)30210-7 URL pmid: 28865935 |
[76] |
Webb, C. A., Auerbach, R. P., Bondy, E., Stanton, C. H., Foti, D., & Pizzagalli, D. A. (2017). Abnormal neural responses to feedback in depressed adolescents. Journal of Abnormal Psychology, 126(1), 19-31. https://doi.org/10.1037/abn0000228
doi: 10.1037/abn0000228 URL pmid: 27935729 |
[77] |
Weinberg, A., Perlman, G., Kotov, R., & Hajcak, G. (2016). Depression and reduced neural response to emotional images: Distinction from anxiety, and importance of symptom dimensions and age of onset. Journal of Abnormal Psychology, 125(1), 26-39. https://doi.org/10.1037/abn0000118
doi: 10.1037/abn0000118 URL pmid: 26726817 |
[78] |
Weinberg, A., Riesel, A., & Proudfit, G. H. (2014). Show me the Money: The impact of actual rewards and losses on the feedback negativity. Brain and Cognition, 87(Suppl. C), 134-139. https://doi.org/10.1016/j.bandc.2014.03.015
doi: 10.1016/j.bandc.2014.03.015 URL |
[79] |
Weinberg, A., & Shankman, S. A. (2017). Blunted reward processing in remitted melancholic depression. Clinical Psychological Science, 5(1), 14-25. https://doi.org/10.1177/2167702616633158
doi: 10.1177/2167702616633158 URL pmid: 28451473 |
[80] | Zhang, D., Shen, J., Bi, R., Zhang, Y., Zhou, F., Feng, C., & Gu, R. (2020). Differentiating the abnormalities of social and monetary reward processing associated with depressive symptoms. Psychological Medicine. https://doi.org/10.1017/S0033291720003967 |
[81] |
Zhang, Y., Li, Q., Wang, Z., Liu, X., & Zheng, Y. (2017). Temporal dynamics of reward anticipation in the human brain. Biological Psychology, 128, 89-97. https://doi.org/10.1016/j.biopsycho.2017.07.011
doi: S0301-0511(17)30131-X URL pmid: 28735969 |
[1] | 方慧, 付辉建, 张慧君. 胜任需要挫败的“双刃剑”效应及干预策略:行为和认知神经科学视角[J]. 心理科学进展, 2022, 30(5): 1005-1017. |
[2] | 陈祥和, 李文秀, 刘波, 殷荣宾. 骨源性因子ucOCN在运动抗抑郁中的作用机制[J]. 心理科学进展, 2022, 30(2): 375-388. |
[3] | 朱传林, 刘电芝, 罗文波. 情绪体验影响估算策略运用的认知与脑机制[J]. 心理科学进展, 2022, 30(12): 2639-2649. |
[4] | 黄观澜, 周晓璐. 抑郁症患者的语言使用模式[J]. 心理科学进展, 2021, 29(5): 838-848. |
[5] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
[6] | 谢莹, 刘昱彤, 陈明亮, 梁安迪. 品牌消费旅程中消费者的认知心理过程——神经营销学视角[J]. 心理科学进展, 2021, 29(11): 2024-2042. |
[7] | 邸天琪, 黄昱静, 高军. 催产素对产后抑郁症患者母性行为的调节作用[J]. 心理科学进展, 2020, 28(3): 456-464. |
[8] | 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. 机器学习在抑郁症领域的应用[J]. 心理科学进展, 2020, 28(2): 266-274. |
[9] | 彭嘉熙, 赵鹿鸣, 方鹏, 曹云飞, 苗丹民, 肖玮. 睡眠剥夺对风险决策的影响机制探讨[J]. 心理科学进展, 2020, 28(11): 1789-1799. |
[10] | 区健新, 吴寅, 刘金婷, 李红. 计算精神病学:抑郁症研究和临床应用的新视角[J]. 心理科学进展, 2020, 28(1): 111-127. |
[11] | 钟慧, 赵松, 冯成志, 冯文锋. 闪光诱发弹开效应的神经机制[J]. 心理科学进展, 2019, 27(suppl.): 128-128. |
[12] | 张坤坤, 张珂烨, 张火垠, 罗文波. 面孔可信度加工的时间进程和影响因素[J]. 心理科学进展, 2019, 27(8): 1394-1403. |
[13] | 高见, 王鹏翀, 李占江. 认知行为治疗的生物学机制[J]. 心理科学进展, 2019, 27(3): 522-532. |
[14] | 魏柳青, 张学民. 多目标追踪的神经机制[J]. 心理科学进展, 2019, 27(12): 2007-2018. |
[15] | 屈青青, 刘维琳, 李兴珊. 汉语言语产生的语音加工单元——基于音位的研究[J]. 心理科学进展, 2018, 26(9): 1535-1544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||