心理科学进展 ›› 2022, Vol. 30 ›› Issue (2): 343-353.doi: 10.3724/SP.J.1042.2022.00343
李何慧1,2,3, 黄慧雅1,2, 董琳1,2, 罗跃嘉1,3,4, 陶伍海1,2()
收稿日期:
2021-04-15
出版日期:
2022-02-15
发布日期:
2021-12-24
通讯作者:
陶伍海
E-mail:taowh@szu.edu.cn
基金资助:
LI Hehui1,2,3, HUANG Huiya1,2, DONG Lin1,2, LUO Yuejia1,3,4, TAO Wuhai1,2()
Received:
2021-04-15
Online:
2022-02-15
Published:
2021-12-24
Contact:
TAO Wuhai
E-mail:taowh@szu.edu.cn
摘要:
发展性阅读障碍(下文简称为“阅读障碍”)不仅会影响个人的终身发展, 还会对社会造成沉重的经济负担, 深入探讨相关的神经机制, 对实现阅读障碍的早期预测和干预十分重要。以往关于阅读障碍神经机制的模型多集中于大脑, 近些年的研究发现, 阅读障碍也与小脑异常有关, 但到目前为止我们仍不清楚两者的关系。通过总结最新的研究进展, 我们发现小脑在阅读障碍中可能发挥着多种功能, 且小脑异常与阅读障碍可能互为因果。在此基础之上, 我们提出了“阅读中小脑与大脑的功能映射假说”, 旨在从一个全新的角度揭示小脑与阅读的关系, 以及两者与大脑的关系。相关内容对全面揭示阅读障碍的神经机制, 以及小脑在高级认知加工中的作用, 具有重要的启示意义。
中图分类号:
李何慧, 黄慧雅, 董琳, 罗跃嘉, 陶伍海. (2022). 发展性阅读障碍与小脑异常:小脑的功能和两者的因果关系. 心理科学进展 , 30(2), 343-353.
LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. (2022). Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two. Advances in Psychological Science, 30(2), 343-353.
[1] |
李何慧, 陶伍海, 彭聃龄, 丁国盛. (2017). 发展性阅读障碍与脑异常的因果关系: 研究范式及发现. 心理发展与教育, 33(5), 631-640. doi: 10.16187/j.cnki.issn1001-4918.2017.05.14
doi: 10.16187/j.cnki.issn1001-4918.2017.05.14 |
[2] | 刘丽, 何茵. (2018). 汉语发展性阅读障碍的认知神经机制研究及教育启示. 教育发展研究, 38(24), 64-72. |
[3] | 彭聃龄, 杨静. (2004). 小脑与发展性阅读障碍. 心理与行为研究, 2(1), 368-372. |
[4] |
赵婧, 张逸玮, 毕鸿燕. (2015). 汉语发展性阅读障碍缺陷的神经机制. 中华行为医学与脑科学杂志, 24(11), 1045-1048. doi: 10.3760/cma.j.issn.1674-6554.2015.11.023
doi: 10.3760/cma.j.issn.1674-6554.2015.11.023 |
[5] |
Ahissar, M., Lubin, Y., Putter-Katz, H., & Banai, K. (2006). Dyslexia and the failure to form a perceptual anchor. Nature neuroscience, 9(12), 1558-1564. https://doi.org/10.1038/nn1800
URL pmid: 17115044 |
[6] |
Alvarez, T. A., & Fiez, J. A. (2018). Current perspectives on the cerebellum and reading development. Neuroscience & Biobehavioral Reviews, 92, 55-66. https://doi.org/10.1016/j.neubiorev.2018.05.006
doi: 10.1016/j.neubiorev.2018.05.006 URL |
[7] |
Ashburn, S. M., Flowers, D. L., Napoliello, E. M., & Eden, G. F. (2020). Cerebellar function in children with and without dyslexia during single word processing. Human brain mapping, 41(1), 120-138. https://doi.org/10.1002/hbm.24792
doi: 10.1002/hbm.24792 URL pmid: 31597004 |
[8] |
Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208-215. https://doi.org/10.1016/j.tics.2010.02.001
doi: 10.1016/j.tics.2010.02.001 URL |
[9] |
Ashida, R., Cerminara, N. L., Edwards, R. J., Apps, R., & Brooks, J. C. (2019). Sensorimotor, language, and working memory representation within the human cerebellum. Human Brain Mapping, 40(16), 4732-4747. https://doi.org/10.1002/hbm.24733
doi: 10.1002/hbm.24733 URL pmid: 31361075 |
[10] |
Baillieux, H., Vandervliet, E. J., Manto, M., Parizel, P. M., de Deyn, P. P., & Marien, P. (2009). Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain and Language, 108(2), 122-132. https://doi.org/10.1016/j.bandl.2008.10.001
doi: 10.1016/j.bandl.2008.10.001 URL pmid: 18986695 |
[11] | Ben-Yehudah, G., & Fiez, J. A. (2008). Impact of cerebellar lesions on reading and phonological processing. Annals of the New York Academy of Sciences, 1145(1), 260-274. https://doi.org/10.1196/annals.1416.015 |
[12] |
Bennett, M., & Lagopoulos, J. (2015). Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: A comparison between Autism Spectrum Disorder, ADHD and dyslexia. International Journal of Developmental Neuroscience, 46(1), 132-143. https://doi.org/10.1016/j.ijdevneu.2015.02.007
doi: 10.1016/j.ijdevneu.2015.02.007 URL |
[13] |
Bishop, D. (2002). Cerebellar abnormalities in developmental dyslexia: Cause, correlate or consequence. Cortex, 38(4), 491-498. https://doi.org/10.1016/S0010-9452(08)70018-2
doi: 10.1016/S0010-9452(08)70018-2 URL |
[14] |
Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17(5), 241-254. https://doi.org/10.1016/j.tics.2013.03.003
doi: 10.1016/j.tics.2013.03.003 URL |
[15] | Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews Neuroscience, 1. https://doi.org/10.1038/s41583-018-0002-7 |
[16] | Bruckert, L., Borchers, L. R., Dodson, C. K., Marchman, V. A., Travis, K. E., Ben-Shachar, M., & Feldman, H. M. (2019). White matter plasticity in reading-related pathways differs in children born preterm and at term: A longitudinal analysis. Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00139 |
[17] |
Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80(3), 807-815. https://doi.org/10.1016/j.neuron.2013.10.044
doi: 10.1016/j.neuron.2013.10.044 URL pmid: 24183029 |
[18] | Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. American Journal of Physiology-Heart and Circulatory Physiology, 106(5), 2322-2345. https://doi.org/10.1152/jn.00339.2011 |
[19] |
Cao, F. (2016). Neuroimaging studies of reading in bilinguals. Bilingualism: Language and Cognition, 19(4), 683-688. https://doi.org/10.1017/S1366728915000656
doi: 10.1017/S1366728915000656 URL |
[20] |
Cattinelli, I., Borghese, N. A., Gallucci, M., & Paulesu, E. (2013). Reading the reading brain: A new meta-analysis of functional imaging data on reading. Journal of Neurolinguistics, 26(1), 214-238. https://doi.org/10.1016/j.jneuroling.2012.08.001
doi: 10.1016/j.jneuroling.2012.08.001 URL |
[21] | Cullum, A., Hodgetts, W. E., Milburn, T. F., & Cummine, J. (2019). Cerebellar activation during reading tasks: Exploring the dichotomy between motor vs. language functions in adults of varying reading proficiency. The Cerebellum, 1-17. https://doi.org/10.1007/s12311-019-01024-6 |
[22] |
Danelli, L., Berlingeri, M., Bottini, G., Ferri, F., Vacchi, L., Sberna, M., & Paulesu, E. (2013). Neural intersections of the phonological, visual magnocellular and motor/cerebellar systems in normal readers: Implications for imaging studies on dyslexia. Human Brain Mapping, 34(10), 2669-2687. https://doi.org/10.1002/hbm.22098
doi: 10.1002/hbm.22098 URL pmid: 22736513 |
[23] | Dehaene, S. (2009). Reading in the brain: The new science of how we read. New York: Penguin. |
[24] |
D'Mello, A. M., Centanni, T. M., Gabrieli, J. D., & Christodoulou, J. A. (2020). Cerebellar contributions to rapid semantic processing in reading. Brain and Language, 208, 104828. https://doi.org/10.1016/j.bandl.2020.104828
doi: 10.1016/j.bandl.2020.104828 URL pmid: 32688288 |
[25] | D'Mello, A. M., & Gabrieli, J. D. (2018). Cognitive neuroscience of dyslexia. Language, Speech, and Hearing Services in Schools, 49(4), 798-809. https://doi.org/10.1044/2018_LSHSS-DYSLC-18-0020 |
[26] |
D'Mello, A. M., Turkeltaub, P. E., & Stoodley, C. J. (2017). Cerebellar tDCS modulates neural circuits during semantic prediction: A combined tDCS-fMRI study. Journal of Neuroscience, 37(6), 1604-1613. https://doi.org/10.1523/JNEUROSCI.2818-16.2017
doi: 10.1523/JNEUROSCI.2818-16.2017 URL pmid: 28069925 |
[27] | Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732-739. https://doi.org/10.1016/S0959-4388(00)00153-7 |
[28] |
Feng, X., Li, L., Zhang, M. L., Yang, X. J., Tian, M. Y., Xie, W. Y., … Ding, G. S. (2017). Dyslexic children show atypical cerebellar activation and cerebro-cerebellar functional connectivity in orthographic and phonological processing. Cerebellum, 16(2), 496-507. https://doi.org/10.1007/s12311-016-0829-2
doi: 10.1007/s12311-016-0829-2 URL |
[29] |
Fernandez, V. G., Juranek, J., Romanowska-Pawliczek, A., Stuebing, K., Williams, V. J., & Fletcher, J. M. (2016). White matter integrity of cerebellar-cortical tracts in reading impaired children: A probabilistic tractography study. Brain and Language, 161, 45-56. https://doi.org/10.1016/j.bandl.2015.07.006
doi: S0093-934X(15)00151-0 URL pmid: 26307492 |
[30] |
Fernandez, V. G., Stuebing, K., Juranek, J., & Fletcher, J. M. (2013). Volumetric analysis of regional variability in the cerebellum of children with dyslexia. The Cerebellum, 12(6), 906-915. https://doi.org/10.1007/s12311-013-0504-9
doi: 10.1007/s12311-013-0504-9 URL |
[31] |
Frings, M., Dimitrova, A., Schorn, C. F., Elles, H.-G., Hein-Kropp, C., Gizewski, E. R., … Timmann, D. (2006). Cerebellar involvement in verb generation: An fMRI study. Neuroscience Letters, 409(1), 19-23. https://doi.org/10.1016/j.neulet.2006.08.058
doi: 10.1016/j.neulet.2006.08.058 URL |
[32] |
Gatti, D., van Vugt, F., & Vecchi, T. (2020). A causal role for the cerebellum in semantic integration: A transcranial magnetic stimulation study. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-75287-z
doi: 10.1038/s41598-019-56847-4 URL |
[33] |
Gatti, D., Vecchi, T., & Mazzoni, G. (2020). Cerebellum and semantic memory: A TMS study using the DRM paradigm. Cortex, 135, 78-91. https://doi.org/10.1016/j.cortex.2020.11.017
doi: 10.1016/j.cortex.2020.11.017 URL |
[34] | Greeley, B., Weber, R. C., Denyer, R., Ferris, J. K., Rubino, C., White, K., & Boyd, L. A. (2020). Aberrant cerebellar resting-state functional connectivity related to reading performance in struggling readers. Developmental Science, e13022. https://doi.org/10.1111/desc.13022 |
[35] |
Guell, X., Gabrieli, J. D., & Schmahmann, J. D. (2018). Triple representation of language, working memory, social and emotion processing in the cerebellum: Convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage, 172, 437-449. https://doi.org/10.1016/j.neuroimage.2018.01.082
doi: 10.1016/j.neuroimage.2018.01.082 URL |
[36] |
Hancock, R., Richlan, F., & Hoeft, F. (2017). Possible roles for fronto-striatal circuits in reading disorder. Neuroscience & Biobehavioral Reviews, 72, 243-260. https://doi.org/10.1016/j.neubiorev.2016.10.025
doi: 10.1016/j.neubiorev.2016.10.025 URL |
[37] |
Holborow, P. L., & Berry, P. S. (1986). Hyperactivity and learning difficulties. Journal of Learning Disabilities, 19(7), 426-431. https://doi.org/10.1177/002221948601900713
URL pmid: 3746127 |
[38] |
Hosseini, S. H., Black, J. M., Soriano, T., Bugescu, N., Martinez, R., Raman, M. M., … Hoeft, F. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. Neuroimage, 71, 260-274. https://doi.org/10.1016/j.neuroimage.2013.01.013
doi: 10.1016/j.neuroimage.2013.01.013 URL pmid: 23333415 |
[39] |
Hung, Y.-H., Frost, S. J., Molfese, P., Malins, J. G., Landi, N., Mencl, W. E., … Pugh, K. R. (2019). Common neural basis of motor sequence learning and word recognition and its relation with individual differences in reading skill. Scientific Studies of Reading, 23(1), 89-100. https://doi.org/10.1080/10888438.2018.1451533
doi: 10.1080/10888438.2018.1451533 URL |
[40] |
Im, K., Raschle, N. M., Smith, S. A., Grant, P. E., & Gaab, N. (2015). Atypical sulcal pattern in children with developmental dyslexia and at-risk kindergarteners. Cerebral Cortex, 26(3), 1138-1148. https://doi.org/10.1093/cercor/bhu305
doi: 10.1093/cercor/bhu305 URL |
[41] |
Janacsek, K., Shattuck, K. F., Tagarelli, K. M., Lum, J. A., Turkeltaub, P. E., & Ullman, M. T. (2019). Sequence learning in the human brain: A functional neuroanatomical meta-analysis of serial reaction time studies. Neuroimage, 207, 116387. https://doi.org/10.1016/j.neuroimage.2019.116387
doi: 10.1016/j.neuroimage.2019.116387 URL |
[42] |
Jednorog, K., Gawron, N., Marchewka, A., Heim, S., & Grabowska, A. (2014). Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume. Brain Structure & Function, 219(5), 1697-1707. doi: 10.1007/s00429-013-0595-6
doi: 10.1007/s00429-013-0595-6 |
[43] |
Kasselimis, D., Margarity, M., & Vlachos, F. (2008). Cerebellar function, dyslexia and articulation speed. Child Neuropsychology, 14(4), 303-313. https://doi.org/10.1080/09297040701550138
doi: 10.1080/09297040701550138 URL pmid: 17934919 |
[44] |
Kibby, M. Y., Fancher, J. B., Markanen, R., & Hynd, G. W. (2008). A quantitative magnetic resonance imaging analysis of the cerebellar deficit hypothesis of dyslexia. Journal of Child Neurology, 23(4), 368-380. https://doi.org/10.1177/0883073807309235
doi: 10.1177/0883073807309235 URL |
[45] |
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., & Diedrichsen, J. (2019). Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nature Neuroscience, 22(8), 1371-1378. https://doi.org/10.1038/s41593-019-0436-x
doi: 10.1038/s41593-019-0436-x URL |
[46] |
Li, H., Booth, J. R., Feng, X., Wei, N., Zhang, M., Zhang, J., … Meng, X. (2020). Functional parcellation of the right cerebellar lobule VI in children with normal or impaired reading. Neuropsychologia, 148, 107630. https://doi.org/10.1016/j.neuropsychologia.2020.107630
doi: 10.1016/j.neuropsychologia.2020.107630 URL |
[47] |
Li, H., Kepinska, O., Caballero, J. N., Zekelman, L., Marks, R. A., Uchikoshi, Y., ... Hoeft, F. (2021). Decoding the role of the cerebellum in the early stages of reading acquisition. Cortex, 141, 262-279. https://doi.org/10.1016/j.cortex.2021.02.033
doi: 10.1016/j.cortex.2021.02.033 URL |
[48] |
Li, H., Marks, R. A., Liu, L., Zhang, J., Zhong, H., Feng, X., … Ding, G. (in preprint). The selective contribution of the right cerebellar lobule VI to reading. doi: 10.31234/osf.io/2fxvs
doi: 10.31234/osf.io/2fxvs |
[49] |
Li, H., Zhang, J., & Ding, G. (2021). Reading across writing systems: A meta-analysis of the neural correlates for first and second language reading. Bilingualism: Language and Cognition, 24(3), 1-12. doi: 10.1017/S136672892000070X
doi: 10.1017/S136672892000070X URL |
[50] |
Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., & Fiebach, C. J. (2012). Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: An ALE meta-analysis. PLoS ONE, 7(8), e43122. https://doi.org/10.1371/journal.pone.0043122
doi: 10.1371/journal.pone.0043122 URL |
[51] |
Livingston, E. M., Siegel, L. S., & Ribary, U. (2018). Developmental dyslexia: Emotional impact and consequences. Australian Journal of Learning Difficulties, 23(2), 107-135. https://doi.org/10.1080/19404158.2018.1479975
doi: 10.1080/19404158.2018.1479975 URL |
[52] | Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. Annals of the New York Academy of Sciences, 1145(1), 237-259. https://doi.org/10.1196/annals.1416.024 |
[53] | Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C. H., Beaton, A., Desmond, J., … Ziegler, W. (2014). Consensus paper: Language and the cerebellum: An ongoing enigma. The Cerebellum, 13(3), 386-410. https://doi.org/10.1007/s12311-013-0540-5 |
[54] |
McGrath, L. M., & Stoodley, C. J. (2019). Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies. Journal of Neurodevelopmental Disorders, 11(1), 31. https://doi.org/10.1186/s11689-019-9287-8
doi: 10.1186/s11689-019-9287-8 URL pmid: 31752659 |
[55] |
Meng, X. Z., You, H. L., Song, M. X., Desroches, A. S., Wang, Z. K., Wei, N., … Ding, G. S. (2016). Neural deficits in auditory phonological processing in Chinese children with English reading impairment. Bilingualism-Language and Cognition, 19(2), 331-346. https://doi.org/10.1017/S1366728915000073
doi: 10.1017/S1366728915000073 URL |
[56] |
Menghini, D., Hagberg, G. E., Caltagirone, C., Petrosini, L., & Vicari, S. (2006). Implicit learning deficits in dyslexic adults: An fMRI study. Neuroimage, 33(4), 1218-1226. https://doi.org/10.1016/j.neuroimage.2006.08.024
URL pmid: 17035046 |
[57] |
Nicolson, R. I., & Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47(1), 117-127. https://doi.org/10.1016/j.cortex.2009.08.016
doi: 10.1016/j.cortex.2009.08.016 URL |
[58] |
Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. The Lancet, 353(9165), 1662-1667. https://doi.org/10.1016/S0140-6736(98)09165-X
doi: 10.1016/S0140-6736(98)09165-X URL |
[59] |
Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24(9), 508-511. https://doi.org/10.1016/S0166-2236(00)01896-8
URL pmid: 11506881 |
[60] |
Norton, E. S., Beach, S. D., & Gabrieli, J. D. (2015). Neurobiology of dyslexia. Current Opinion in Neurobiology, 30, 73-78. https://doi.org/10.1016/j.conb.2014.09.007
doi: 10.1016/j.conb.2014.09.007 URL |
[61] |
Norton, E. S., Black, J. M., Stanley, L. M., Tanaka, H., Gabrieli, J. D. E., Sawyer, C., & Hoeft, F.. (2014). Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia, 61, 235-246. doi: 10.1016/j.neuropsychologia.2014.06.015
doi: 10.1016/j.neuropsychologia.2014.06.015 URL |
[62] |
Ozernov-Palchik, O., & Gaab, N. (2016a). Tackling the ‘dyslexia paradox’: Reading brain and behavior for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2), 156-176. https://doi.org/10.1002/wcs.1383
doi: 10.1002/wcs.1383 URL |
[63] | Ozernov-Palchik, O., & Gaab, N. (2016b). Tackling the early identification of dyslexia with the help of neuroimaging. Perspectives on Language and Literacy, 42(1), 11-17. |
[64] |
Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behavioural Brain Research, 226(2), 579-591. https://doi.org/10.1016/j.bbr.2011.09.044
doi: 10.1016/j.bbr.2011.09.044 URL |
[65] |
Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379(9830), 1997-2007. https://doi.org/10.1016/S0140-6736(12)60198-6
doi: 10.1016/S0140-6736(12)60198-6 URL |
[66] |
Qian, Y., & Bi, H.-Y. (2015). The effect of magnocellular- based visual-motor intervention on Chinese children with developmental dyslexia. Frontiers in Psychology, 6, 1529. https://doi.org/10.3389/fpsyg.2015.01529
doi: 10.3389/fpsyg.2015.01529 URL pmid: 26500587 |
[67] |
Raberger, T., & Wimmer, H. (2003). On the automaticity/ cerebellar deficit hypothesis of dyslexia: Balancing and continuous rapid naming in dyslexic and ADHD children. Neuropsychologia, 41(11), 1493-1497. https://doi.org/10.1016/S0028-3932(03)00078-2
URL pmid: 12849767 |
[68] |
Rack, J. P., Snowling, M. J., Hulme, C., & Gibbs, S. (2007). No evidence that an exercise-based treatment programme (DDAT) has specific benefits for children with reading difficulties. Dyslexia, 13(2), 97-104. https://doi.org/10.1002/dys.335
doi: 10.1002/(ISSN)1099-0909 URL |
[69] |
Ramnani, N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews Neuroscience, 7(7), 511-522. https://doi.org/10.1038/nrn1953
doi: 10.1038/nrn1953 URL |
[70] |
Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. Neuroimage, 57(3), 742-749. https://doi.org/10.1016/j.neuroimage.2010.09.055
doi: 10.1016/j.neuroimage.2010.09.055 URL pmid: 20884362 |
[71] |
Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences, 109(6), 2156-2161. https://doi.org/10.1073/pnas.1107721109
doi: 10.1073/pnas.1107721109 URL |
[72] |
Reynolds, D., Nicolson, R. I., & Hambly, H. (2003). Evaluation of an exercise-based treatment for children with reading difficulties. Dyslexia, 9(1), 48-71. https://doi.org/10.1002/dys.235
URL pmid: 12625376 |
[73] |
Richards, T., Grabowski, T., Boord, P., Yagle, K., Askren, M., Mestre, Z., … Nagy, W. (2015). Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia. Neuroimage: Clinical, 8, 408-421. https://doi.org/10.1016/j.nicl.2015.03.018
doi: 10.1016/j.nicl.2015.03.018 URL |
[74] |
Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055-3065. doi: 10.1002/hbm.22127
doi: 10.1002/hbm.22127 pmid: 22711189 |
[75] |
Richlan, F., Sturm, D., Schurz, M., Kronbichler, M., Ladurner, G., & Wimmer, H. (2010). A common left occipito-temporal dysfunction in developmental dyslexia and acquired letter-by-letter reading? PLoS One, 5(8), e12073. https://doi.org/10.1371/journal.pone.0012073.g001
doi: 10.1371/journal.pone.0012073 URL |
[76] |
Saygin, Z. M., Norton, E. S., Osher, D. E., Beach, S. D., Cyr, A. B., Ozernov-Palchik, O., … Gabrieli, J. D. (2013). Tracking the roots of reading ability: White matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. The Journal of Neuroscience, 33(33), 13251-13258. https://doi.org/10.1523/JNEUROSCI.4383-12.2013
doi: 10.1523/JNEUROSCI.4383-12.2013 URL |
[77] |
Schmahmann, J. D., Guell, X., Stoodley, C. J., & Halko, M. A. (2019). The theory and neuroscience of cerebellar cognition. Annual Review of Neuroscience, 42, 337-364. https://doi.org/10.1146/annurev-neuro-070918-050258
doi: 10.1146/annurev-neuro-070918-050258 URL pmid: 30939101 |
[78] |
Seitzman, B. A., Gratton, C., Marek, S., Raut, R. V., Dosenbach, N. U., Schlaggar, B. L., … Greene, D. J. (2020). A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. Neuroimage, 206, 116290. https://doi.org/10.1016/j.neuroimage.2019.116290
doi: 10.1016/j.neuroimage.2019.116290 URL |
[79] | Shaywitz, S. E., Fletcher, J. M., & Shaywitz, B. A. (1994). Issues in the definition and classification of attention deficit disorder. Topics in Language Disorders, 14(4), 1-25. https://doi.org/10.1097/00011363-199408000-00003 |
[80] |
Shaywitz, S. E., & Shaywitz, B. A. (2005). Dyslexia (specific reading disability). Biological Psychiatry, 57(11), 1301-1309. https://doi.org/10.1016/j.biopsych.2005.01.043
URL pmid: 15950002 |
[81] |
Specht, K., Hugdahl, K., Ofte, S., Nygård, M., Bjørnerud, A., Plante, E., & Helland, T. (2009). Brain activation on pre- reading tasks reveals at-risk status for dyslexia in 6-year- old children. Scandinavian Journal of Psychology, 50(1), 79-91. https://doi.org/10.1111/j.1467-9450.2008.00688.
doi: 10.1111/sjop.2009.50.issue-1 URL |
[82] | Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 8, 92. https://doi.org/10.3389/fnsys.2014.00092 |
[83] |
Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489-501. https://doi.org/10.1016/j.neuroimage.2008.08.039
doi: 10.1016/j.neuroimage.2008.08.039 URL |
[84] | Stoodley, C. J., & Schmahmann, J. D. (2018). Functional topography of the human cerebellum. Handbook of Clinical Neurology, 154, 59-70. https://doi.org/10.1016/B978-0-444-63956-1.00004-7 |
[85] |
Stoodley, C. J., & Stein, J. F. (2013). Cerebellar function in developmental dyslexia. The Cerebellum, 12(2), 267-276. https://doi.org/10.1007/s12311-012-0407-1
doi: 10.1007/s12311-012-0407-1 URL |
[86] |
Stoodley, C. J., Valera, E. M., & Schmahmann, J. D. (2012). Functional topography of the cerebellum for motor and cognitive tasks: An fMRI study. Neuroimage, 59(2), 1560-1570. https://doi.org/10.1016/j.neuroimage.2011.08.065
doi: 10.1016/j.neuroimage.2011.08.065 URL |
[87] |
Travis, K. E., Leitner, Y., Feldman, H. M., & Ben-Shachar, M. (2015). Cerebellar white matter pathways are associated with reading skills in children and adolescents. Human Brain Mapping, 36(4), 1536-1553. https://doi: 10.1002/ hbm.22721
doi: 10.1002/ hbm.22721 URL |
[88] |
Tan, L. H., Laird, A. R., Li, K., & Fox, P. T. (2005). Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta-analysis. Human Brain Mapping, 25(1), 83-91. https://doi.org/10.1002/hbm.20134
doi: 10.1002/(ISSN)1097-0193 URL |
[89] |
Valera, E. M., Faraone, S. V., Murray, K. E., & Seidman, L. J. (2007). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61(12), 1361-1369. https://doi.org/10.1016/j.biopsych.2006.06.011
URL pmid: 16950217 |
[90] |
Vandermosten, M., Vanderauwera, J., Theys, C., de Vos, A., Vanvooren, S., Sunaert, S., … Ghesquière, P. (2015). A DTI tractography study in pre-readers at risk for dyslexia. Developmental Cognitive Neuroscience, 14, 8-15. https://doi.org/10.1016/j.dcn.2015.05.006
doi: 10.1016/j.dcn.2015.05.006 URL pmid: 26048528 |
[91] |
Yang, Y., Bi, H.-Y., Long, Z.-Y., & Tao, S. (2013). Evidence for cerebellar dysfunction in Chinese children with developmental dyslexia: An fMRI study. International Journal of Neuroscience, 123(5), 300-310. https://doi.org/10.3109/00207454.2012.756484
doi: 10.3109/00207454.2012.756484 URL pmid: 23227882 |
[92] |
Zeffiro, T., & Eden, G. (2001). The cerebellum and dyslexia: Perpetrator or innocent bystander? Trends in Neurosciences, 24(9), 512-513. doi: 10.1016/s0166-2236(00)01898-1
doi: 10.1016/s0166-2236(00)01898-1 |
[93] |
Zhao, J., Qian, Y., Bi, H.-Y., & Coltheart, M. (2014). The visual magnocellular-dorsal dysfunction in Chinese children with developmental dyslexia impedes Chinese character recognition. Scientific Reports, 4, 7068. https://doi.org/10.1038/srep07068
doi: 10.1038/srep07068 URL |
[1] | 崔楠, 王久菊, 赵婧. 注意缺陷多动障碍-发展性阅读障碍共患儿童的干预效果及其内在机理[J]. 心理科学进展, 2023, 31(4): 622-630. |
[2] | 王润洲, 毕鸿燕. 发展性阅读障碍视听时间整合缺陷可能的机制:视听时间再校准能力受损[J]. 心理科学进展, 2022, 30(12): 2764-2776. |
[3] | 王润洲, 毕鸿燕. 发展性阅读障碍的听觉时间加工缺陷[J]. 心理科学进展, 2021, 29(7): 1231-1238. |
[4] | 任筱宇, 赵婧, 毕鸿燕. 动作视频游戏对发展性阅读障碍者阅读技能的影响及其内在机制[J]. 心理科学进展, 2021, 29(6): 1000-1009. |
[5] | 卫垌圻, 曹慧, 毕鸿燕, 杨炀. 发展性阅读障碍书写加工缺陷及其神经机制[J]. 心理科学进展, 2020, 28(1): 75-84. |
[6] | 吴迪, 顾晶金, 李明, 张淼, 张明, 赵科, 傅小兰. 动作的主动控制感与因果关系的主动控制感:主动动作时间压缩效应的产生机制[J]. 心理科学进展, 2019, 27(5): 804-810. |
[7] | 季雨竹, 毕鸿燕. 发展性阅读障碍的噪音抑制缺陷[J]. 心理科学进展, 2019, 27(2): 201-208. |
[8] | 赵婧. 发展性阅读障碍的视觉注意广度技能[J]. 心理科学进展, 2019, 27(1): 20-26. |
[9] | 黄晨, 赵婧. 发展性阅读障碍的视觉空间注意加工能力[J]. 心理科学进展, 2018, 26(1): 72-80. |
[10] | 孟泽龙, 赵婧, 毕鸿燕. 汉语发展性阅读障碍儿童的视觉大细胞通路功能探究:一项ERPs研究[J]. 心理科学进展, 2017, 25(suppl.): 2-2. |
[11] | 冯小霞;李乐;丁国盛. 发展性阅读障碍的脑区连接异常[J]. 心理科学进展, 2016, 24(12): 1864-1872. |
[12] | 姜永志. 西方心理学理论分类体系的反思与建构[J]. 心理科学进展, 2014, 22(2): 348-356. |
[13] | 夏志超;洪恬;张林军;舒华. 脑干诱发电位在言语感知研究中的应用[J]. 心理科学进展, 2014, 22(1): 14-26. |
[14] | 苏萌萌;张玉平;史冰洁;舒华. 发展性阅读障碍的遗传关联分析[J]. 心理科学进展, 2012, 20(8): 1259-1267. |
[15] | 王正科;孙乐勇;简洁;孟祥芝. 英语发展性阅读障碍的训练程序[J]. 心理科学进展, 2007, 15(5): 802-809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||