心理科学进展 ›› 2021, Vol. 29 ›› Issue (8): 1450-1461.doi: 10.3724/SP.J.1042.2021.01450
收稿日期:
2020-08-08
发布日期:
2021-06-25
通讯作者:
朱俊萍
E-mail:2183502013@cnu.edu.cn
Received:
2020-08-08
Published:
2021-06-25
Contact:
ZHU Junping
E-mail:2183502013@cnu.edu.cn
摘要:
长时记忆在激活后首先会变得不稳定(去稳定过程), 继而会经历一个再巩固过程重新稳定下来以维持记忆的关联性。在再巩固期间给予电击、药理或行为训练以干预记忆再巩固, 可以更改原有记忆的强度或内容。这有望成为临床上治疗病理性记忆的一种方法。然而, 一些边界条件(记忆痕迹强、时间久远等)导致记忆在简单激活后不能去稳定, 不会经历再巩固过程, 使干预再巩固的方法无法发挥作用。动物实验表明, 通过药理学地调控参与记忆去稳定的分子的活动以促进记忆去稳定, 可以成功克服边界条件。可见, 边界条件不是绝对的。未来研究可进一步探索更多、更优的促进记忆去稳定并克服边界条件的方法, 提升干预记忆再巩固疗法的临床应用潜能。
中图分类号:
朱俊萍. (2021). 如何克服边界条件:来自记忆强度影响记忆去稳定的分子机制的启示. 心理科学进展 , 29(8), 1450-1461.
ZHU Junping. (2021). How to overcome boundary conditions: Implications from the molecular mechanism of memory strength as a constraint on destabilization. Advances in Psychological Science, 29(8), 1450-1461.
记忆类型 | 被试 | 给药位置 | 激活前给药 | 激活后干预 | 文献来源 |
---|---|---|---|---|---|
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | NMDAR拮抗剂 | 茴香霉素 | Mamou et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | NMDAR亚型GluN2B拮抗剂 | 茴香霉素 | Milton et al., |
成瘾记忆 | 小鼠 | 基底外侧杏仁核 | NMDAR亚型GluN2B拮抗剂 | 茴香霉素 | Yu et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | NMDAR亚型GluN2B拮抗剂 | 糖水 | Monti et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | AMPAR亚型GluA2内吞作用阻滞剂 | 茴香霉素 | Hong et al., |
恐惧记忆 | 小鼠 | 背侧海马 | LVGCCs抑制剂 | 茴香霉素 | Suzuki et al., |
空间记忆 | 小鼠 | 背侧海马 | LVGCCs抑制剂 | 茴香霉素 | Kim et al., |
恐惧记忆 | 大鼠 | 背侧海马 | LVGCCs抑制剂 | 行为干预 | Crestani et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | CaMKII抑制剂 | 茴香霉素 | Jarome et al., |
食欲记忆 | 大鼠 | 中脑腹侧被盖区 | GABAA/B激动剂或D2受体拮抗剂 | MK-801 | Reichelt et al., |
食欲记忆 | 大鼠 | 基底外侧杏仁核 | D1/D2受体拮抗剂 | 茴香霉素 | Merlo et al., |
物体再认记忆 | 大鼠 | 背侧海马 | D1/D5受体拮抗剂 | 茴香霉素 | Rossato et al., |
物体再认记忆 | 大鼠 | 嗅周皮层 | M受体拮抗剂 | MK-801 | Stiver et al., |
恐惧记忆 | 小鼠 | 腹腔 | β肾上腺素受体拮抗剂 | 茴香霉素 | Lim et al., |
表1 参与记忆去稳定的分子
记忆类型 | 被试 | 给药位置 | 激活前给药 | 激活后干预 | 文献来源 |
---|---|---|---|---|---|
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | NMDAR拮抗剂 | 茴香霉素 | Mamou et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | NMDAR亚型GluN2B拮抗剂 | 茴香霉素 | Milton et al., |
成瘾记忆 | 小鼠 | 基底外侧杏仁核 | NMDAR亚型GluN2B拮抗剂 | 茴香霉素 | Yu et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | NMDAR亚型GluN2B拮抗剂 | 糖水 | Monti et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | AMPAR亚型GluA2内吞作用阻滞剂 | 茴香霉素 | Hong et al., |
恐惧记忆 | 小鼠 | 背侧海马 | LVGCCs抑制剂 | 茴香霉素 | Suzuki et al., |
空间记忆 | 小鼠 | 背侧海马 | LVGCCs抑制剂 | 茴香霉素 | Kim et al., |
恐惧记忆 | 大鼠 | 背侧海马 | LVGCCs抑制剂 | 行为干预 | Crestani et al., |
恐惧记忆 | 大鼠 | 基底外侧杏仁核 | CaMKII抑制剂 | 茴香霉素 | Jarome et al., |
食欲记忆 | 大鼠 | 中脑腹侧被盖区 | GABAA/B激动剂或D2受体拮抗剂 | MK-801 | Reichelt et al., |
食欲记忆 | 大鼠 | 基底外侧杏仁核 | D1/D2受体拮抗剂 | 茴香霉素 | Merlo et al., |
物体再认记忆 | 大鼠 | 背侧海马 | D1/D5受体拮抗剂 | 茴香霉素 | Rossato et al., |
物体再认记忆 | 大鼠 | 嗅周皮层 | M受体拮抗剂 | MK-801 | Stiver et al., |
恐惧记忆 | 小鼠 | 腹腔 | β肾上腺素受体拮抗剂 | 茴香霉素 | Lim et al., |
[1] |
Brinley-Reed, M., & McDonald, A. J.(1999). Evidence that dopaminergic axons provide a dense innervation of specific neuronal subpopulations in the rat basolateral amygdala. Brain Research, 850(1-2),127-135. doi: 10.1016/s0006-8993(99)02112-5.
doi: 10.1016/S0006-8993(99)01726-6 URL |
[2] |
Bustos, S. G., Giachero, M., Maldonado, H., & Molina, V. A.(2010). Previous stress attenuates the susceptibility to Midazolam's disruptive effect on fear memory reconsolidation: Influence of pre-reactivation d-cycloserine administration. Neuropsychopharmacology, 35(5),1097-1108. doi: 10.1038/npp.2009.215.
doi: 10.1038/npp.2009.215 URL |
[3] | Bustos, S. G., Maldonado, H., & Molina, V. A.(2009). Disruptive effect of midazolam on fear memory reconsolidation: Decisive influence of reactivation time span and memory age. Neuropsychopharmacology, 34(2),44-457. doi: 10.1038/npp.2008.75. |
[4] |
Crestani, A. P., Boos, F. Z., Haubrich, J., Sierra, R. O., Santana, F., Molina, J. M.,... Quillfeldt, J. A.(2015). Memory reconsolidation may be disrupted by a distractor stimulus presented during reactivation. Scientific Reports, 5(1),13633. doi: 10.1038/srep13633.
doi: 10.1038/srep13633 URL |
[5] | Das, R. K., Gale, G., Hennessy, V., & Kamboj, S. K.(2018). A prediction error-driven retrieval procedure for destabilizing and rewriting maladaptive reward memories in hazardous drinkers. Journal of Visualized Experiments Jove, (131). doi: 10.3791/56097. |
[6] |
Espejo, P. J., Ortiz, V., Martijena, I. D., & Molina, V. A.(2016). Stress-induced resistance to the fear memory labilization/reconsolidation process. Involvement of the basolateral amygdala complex. Neuropharmacology, 109,349-356. doi: 10.1016/j.neuropharm.2016.06.033.
doi: 10.1016/j.neuropharm.2016.06.033 URL |
[7] | Espejo, P. J., Ortiz, V., Martijena, I. D., & Molina, V. A.(2017). GABAergic signaling within the basolateral amygdala complex modulates resistance to the labilization/reconsolidation process. Neurobiology of Learning & Memory, 144,166-173. doi: 10.1016/j.nlm.2017.06.004. |
[8] |
Ferrara, N. C., Jarome, T. J., Cullen, P. K., Orsi, S. A., Kwapis, J. L., Trask, S.,... Helmstetter, F. J.(2019). GluR2 endocytosis-dependent protein degradation in the amygdala mediates memory updating. Scientific Reports, 9(1),5180. doi: 10.1038/s41598-019-41526-1.
doi: 10.1038/s41598-019-41526-1 URL pmid: 30914678 |
[9] |
Forcato, C., Fernandez, R. S., & Pedreira, M. E.(2013). The role and dynamic of strengthening in the reconsolidation process in a human declarative memory: What decides the fate of recent and older memories? PLoS One, 8(4),e61688. doi: 10.1371/journal.pone.0061688.
doi: 10.1371/journal.pone.0061688 URL |
[10] | Gazarini, L., Stern, C. A., Piornedo, R. R., Takahashi, R. N., & Bertoglio, L. J.(2014). PTSD-like memory generated through enhanced noradrenergic activity is mitigated by a dual step pharmacological intervention targeting its reconsolidation. International Journal of Neuropsychopharmacology, 18(1). doi: 10.1093/ijnp/pyu026. |
[11] | Giustino, T. F., & Stephen, M.(2018). Noradrenergic modulation of fear conditioning and extinction. Frontiers in Behavioral Neuroence, 12,43. doi: 10.3389/fnbeh.2018.00043. |
[12] |
Gonzalez, H., Bloise, L., Maza, F. J., Molina, V. A., & Delorenzi, A.(2020). Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Research Bulletin, 157,108-118. doi: 10.1016/j.brainresbull.2020.01.014.
doi: S0361-9230(19)30839-1 URL pmid: 32017969 |
[13] |
Gotthard, G. H., & Gura, H.(2018). Visuospatial word search task only effective at disrupting declarative memory when prediction error is present during retrieval. Neurobiology of Learning and Memory, 156,80-85. doi: 10.1016/j.nlm.2018.11.003.
doi: 10.1016/j.nlm.2018.11.003 URL |
[14] |
Gotthard, G. H., Kenney, L., & Zucker, A.(2018). Reconsolidation of appetitive odor discrimination requires protein synthesis only when reactivation includes prediction error. Behavioral Neuroscience, 132(3),131-137. doi: 10.1037/bne0000242.
doi: 10.1037/bne0000242 URL |
[15] |
Hansen, N., & Manahan-Vaughan, D.(2014). Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex, 24(4),845-858. doi: 10.1093/cercor/bhs362.
doi: 10.1093/cercor/bhs362 URL pmid: 23183712 |
[16] | Haubrich, J., Bernabo, M., & Nader, K.(2020). Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. Elife, 9. doi: 10.7554/eLife.57010. |
[17] |
Holehonnur, R., Phensy, A. J., Kim, L. J., Milivojevic, M., Vuong, D., Daison, D. K.,... Ploski, J. E.(2016). Increasing the GluN2A/GluN2B ratio in neurons of the mouse basal and lateral amygdala inhibits the modification of an existing fear memory trace. Journal of Neuroscience, 36(36),9490-9504. doi: 10.1523/jneurosci.1743-16.2016.
doi: 10.1523/JNEUROSCI.1743-16.2016 URL pmid: 27605622 |
[18] | Hong, I., Kim, J., Kim, J., Lee, S., Ko, H. -G., Nader, K.,... Choi, S.(2014). AMPA receptor exchange underlies transient memory destabilization on retrieval. Proceedings of the National Academy of Sciences of the United States of America, 111(2),876-876. doi: 10.1073/pnas.1323623111. |
[19] |
Jarome, T. J., Ferrara, N. C., Kwapis, J. L., & Helmstetter, F. J.(2016). CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Neurobiology of Learning and Memory, 128,103-109. doi: 10.1016/j.nlm.2016.01.001.
doi: 10.1016/j.nlm.2016.01.001 URL |
[20] | Kaang, B. K., & Choi, J. H.(2012). Synaptic protein degradation in memory reorganization. Advances in Experimental Medicine and Biology, 970,221-240. doi: 10.1007/978-3-7091-0932-8_10. |
[21] |
Kim, R., Moki, R., & Kida, S.(2011). Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the morris water maze. Molecular Brain, 4(1),9. doi: 10.1186/1756-6606-4-9.
doi: 10.1186/1756-6606-4-9 URL |
[22] |
Klionsky, D. J.(2005). The molecular machinery of autophagy: Unanswered questions. Journal of Cell Science, 118(1),7-18. doi: 10.1242/jcs.01620.
doi: 10.1242/jcs.01620 URL |
[23] | Kwak, C., Choi, J. -H., Bakes, J. T., Lee, K., & Kaang, B. -K.(2012). Effect of intensity of unconditional stimulus on reconsolidation of contextual fear memory. Korean Journal of Physiology & Pharmacology, 16(5),293-296. doi: 10.4196/kjpp.2012.16.5.293. |
[24] |
Lee, J. L. C.(2009). Reconsolidation: Maintaining memory relevance. Trends in Neurosciences, 32(8),413-420. doi: 10.1016/j.tins.2009.05.002.
doi: 10.1016/j.tins.2009.05.002 URL |
[25] |
Lee, J. L. C., Milton, A. L., & Everitt, B. J.(2006). Reconsolidation and extinction of conditioned fear: Inhibition and potentiation. Journal of Neuroscience, 26(39),10051-10056. doi: 10.1523/JNEUROSCI.2466-06.2006.
doi: 10.1523/JNEUROSCI.2466-06.2006 URL |
[26] |
Lee, J. L. C., Nader, K., & Schiller, D.(2017). An update on memory reconsolidation updating. Trends in Cognitive Sciences, 21(7),531-545. doi: 10.1016/j.tics.2017.04.006.
doi: 10.1016/j.tics.2017.04.006 URL |
[27] |
Lee, S. -H., Choi, J. -H., Lee, N., Lee, H. -R., Kim, J. -I., Yu, N. -K.,... Kaang, B. -K.(2008). Synaptic protein degradation underlies destabilization of retrieved fear memory. Science, 319(5867),1253-1256. doi: 10.1126/science.1150541.
doi: 10.1126/science.1150541 URL |
[28] |
Lim, C. -S., Kim, J. -I., Kwak, C., Lee, J., Jang, E. H., Oh, J., & Kaang, B. -K.(2018). β-adrenergic signaling is required for the induction of a labile state during memory reconsolidation. Brain Research Bulletin, 141,50-57. doi: 10.1016/j.brainresbull.2018.04.011.
doi: 10.1016/j.brainresbull.2018.04.011 URL |
[29] |
Lussier, M. P., Nasu-Nishimura, Y., & Roche, K. W.(2011). Activity-dependent ubiquitination of the AMPA receptor subunit GluA2. Journal of Neuroscience, 31(8),3077-3081. doi: 10.1523/jneurosci.5944-10.2011.
doi: 10.1523/JNEUROSCI.5944-10.2011 URL pmid: 21414928 |
[30] |
Mamou, C. B., Gamache, K., & Nader, K.(2006). NMDA receptors are critical for unleashing consolidated auditory fear memories. Nature Neuroscience, 9(10),1237-1239. doi: 10.1038/nn1778.
doi: 10.1038/nn1778 URL |
[31] |
Massaly, N., Dahan, L., Baudonnat, M., Hovnanian, C., Rekik, K., Solinas, M.,... Frances, B.(2013). Involvement of protein degradation by the ubiquitin proteasome system in opiate addictive behaviors. Neuropsychopharmacology, 38(4),596-604. doi: 10.1038/npp.2012.217.
doi: 10.1038/npp.2012.217 URL |
[32] |
McGaugh, J. L.(2000). Memory--a century of consolidation. Science, 287(5451),248-251. doi: 10.1126/science.287.5451.248.
URL pmid: 10634773 |
[33] | Merlo, E., Ratano, P., Ilioi, E. C., Robbins, M. A., Everitt, B. J., & Milton, A. L.(2015). Amygdala dopamine receptors are required for the destabilization of a reconsolidating appetitive memory. eNeuro, 2(1). doi: 10.1523/ENEURO.0024-14.2015. |
[34] |
Milekic, M. H., & Alberini, C. M.(2002). Temporally graded requirement for protein synthesis following memory reactivation. Neuron, 36(3),521-525. doi: 10.1016/s0896-6273(02)00976-5.
URL pmid: 12408853 |
[35] |
Milton, A. L., Lee, J. L. C., Butler, V. J., Gardner, R., & Everitt, B. J.(2008). Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. Journal of Neuroscience, 28(33),8230-8237. doi: 10.1523/JNEUROSCI.1723-08.2008.
doi: 10.1523/JNEUROSCI.1723-08.2008 URL pmid: 18701685 |
[36] |
Milton, A. L., Merlo, E., Ratano, P., Gregory, B. L., Dumbreck, J. K., & Everitt, B. J.(2013). Double dissociation of the requirement for GluN2B- and GluN2A-containing NMDA receptors in the destabilization and restabilization of a reconsolidating memory. Journal of Neuroscience, 33(3),1109-1115. doi: 10.1523/JNEUROSCI.3273-12.2013.
doi: 10.1523/JNEUROSCI.3273-12.2013 URL pmid: 23325248 |
[37] |
Misanin, J. R., Miller, R. R., & Lewis, D. J.(1968). Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science, 160(3827),554-555. doi: 10.1126/science.160.3827.554.
URL pmid: 5689415 |
[38] |
Monfils, M. -H., Cowansage, K. K., Klann, E., & LeDoux, J. E.(2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324(5929),951-955. doi: 10.1126/science.1167975.
doi: 10.1126/science.1167975 URL |
[39] | Monti, R. I. F., Giachero, M., Alfei, J. M., Bueno, A. M., Cuadra, G., & Molina, V. A.(2016). An appetitive experience after fear memory destabilization attenuates fear retention: Involvement GluN2B-NMDA receptors in the basolateral amygdala complex. Learning & Memory. 23(9),465-478. doi: 10.1101/lm.042564. |
[40] |
Nader, K., Schafe, G. E., & Le Doux, J. E.(2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406(6797),722-726. doi: 10.1038/35021052.
doi: 10.1038/35021052 URL |
[41] | Nedelsky, N. B., Todd, P. K., & Taylor, J. P.(2008). Autophagy and the ubiquitin-proteasome system: Collaborators in neuroprotection. BBA - Molecular Basis of Disease, 1782(12),691-699. doi: 10.1016/j.bbadis.2008.10.002. |
[42] | Ortiz, V., Giachero, M., Espejo, P. J., Molina, V. A., & Martijena, I. D.(2015). The effect of midazolam and propranolol on fear memory reconsolidation in ethanol- withdrawn rats: Influence of d-cycloserine. International Journal of Neuropsychopharmacology, 18(4). doi: 10.1093/ijnp/pyu082. |
[43] |
Ortiz, V., Molina, V. A., & Martijena, I. D.(2016). Effect of a positive reinforcing stimulus on fear memory reconsolidation in ethanol withdrawn rats: Influence of d-cycloserine. Behavioural Brain Research, 315,66-70. doi: 10.1016/j. bbr.2016.08.019.
doi: 10.1016/j.bbr.2016.08.019 URL |
[44] |
Rao-Ruiz, P., Rotaru, D. C., van der Loo, R. J., Mansvelder, H. D., Stiedl, O., Smit, A. B., & Spijker, S.(2011). Retrieval-specific endocytosis of GluA2-AMPARs underlies adaptive reconsolidation of contextual fear. Nature Neuroscience, 14(10),1302-1308. doi: 10.1038/nn.2907.
doi: 10.1038/nn.2907 URL |
[45] |
Reichelt, A. C., Exton-McGuinness, M. T., & Lee, J. L.(2013). Ventral tegmental dopamine dysregulation prevents appetitive memory destabilization. Journal of Neuroscience, 33(35),14205-14210. doi: 10.1523/JNEUROSCI.1614-13.2013.
doi: 10.1523/JNEUROSCI.1614-13.2013 URL pmid: 23986254 |
[46] | Reichelt, A. C., & Lee, J. L.(2013). Appetitive pavlovian goal-tracking memories reconsolidate only under specific conditions. Learning & Memory, 20(1),51-60. doi: 10.1101/lm.027482.112. |
[47] |
Ren, Z. Y., Liu, M. M., Xue, Y. X., Ding, Z. B., Xue, L. F., Zhai, S. D., & Lu, L.(2013). A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory. Neuropsychopharmacology, 38(5),778-790. doi: 10.1038/npp.2012.243.
doi: 10.1038/npp.2012.243 URL |
[48] |
Robinson, M. J., & Franklin, K. B.(2010). Reconsolidation of a morphine place preference: Impact of the strength and age of memory on disruption by propranolol and midazolam. Behavioural Brain Research, 213(2),201-207. doi: 10.1016/j.bbr.2010.04.056.
doi: 10.1016/j.bbr.2010.04.056 URL pmid: 20457186 |
[49] |
Rossato, J. I., Kohler, C. A., Radiske, A., Lima, R. H., Bevilaqua, L. R., & Cammarota, M.(2015). State-dependent effect of dopamine D1/D5 receptors inactivation on memory destabilization and reconsolidation. Behavioural Brain Research, 285,194-199. doi: 10.1016/j.bbr.2014.09.009.
doi: 10.1016/j.bbr.2014.09.009 URL pmid: 25219363 |
[50] |
Schneider, A. M., & Sherman, W.(1968). Amnesia: A function of the temporal relation of footshock to electroconvulsive shock. Science, 159(3811),219-221. doi: 10.1126/science.159.3811.219.
URL pmid: 5688702 |
[51] |
Sevenster, D., Beckers, T., & Kindt, M.(2013). Prediction error governs pharmacologically induced amnesia for learned fear. Science, 339(6121),830-833. doi: 10.1126/science.1231357.
doi: 10.1126/science.1231357 URL pmid: 23413355 |
[52] |
Shehata, M., Abdou, K., Choko, K., Matsuo, M., Nishizono, H., & Inokuchi, K.(2018). Autophagy enhances memory erasure through synaptic destabilization. Journal of Neuroscience, 38(15),3809-3822. doi: 10.1523/JNEUROSCI.3505-17.2018.
doi: 10.1523/JNEUROSCI.3505-17.2018 URL |
[53] | Sinclair, A. H., & Barense, M. D.(2018). Surprise and destabilize: Prediction error influences episodic memory reconsolidation. Learning & Memory, 25(8),369-381. doi: 10.1101/lm.046912. |
[54] |
Sinclair, A. H., & Barense, M. D.(2019). Prediction error and memory reactivation: How incomplete reminders drive reconsolidation. Trends in Neuroscience, 42(10),727-739. doi: 10.1016/j.tins.2019.08.007.
doi: 10.1016/j.tins.2019.08.007 URL |
[55] | Stiver, M. L., Cloke, J. M., Nightingale, N., Rizos, J., Messer, W. S., & Winters, B. D.(2017). Linking muscarinic receptor activation to ups-mediated object memory destabilization: Implications for long-term memory modification and storage. Neurobiology of Learning & Memory, 145,151-164. doi: 10.1016/j.nlm.2017.10.007. |
[56] | Stiver, M. L., Jacklin, D. L., Mitchnick, K. A., Vicic, N., Carlin, J., O’Hara, M., & Winters, B. D.(2015). Cholinergic manipulations bidirectionally regulate object memory destabilization. Learning & Memory, 22(4),203-214. doi: 10.1101/lm.037713.114. |
[57] | Suzuki, A., Mukawa, T., Tsukagoshi, A., Frankland, P. W., & Kida, S.(2008). Activation of LVGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. Learning & Memory, 15(6),426-433. doi: 10.1101/lm.888808. |
[58] |
Takahashi, Y. K., Roesch, M. R., Stalnaker, T. A., Haney, R. Z., Calu, D. J., Taylor, A. R.,... Schoenbaum, G.(2009). The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron, 62(2),269-280. doi: 10.1016/j.neuron.2009.03.005.
doi: 10.1016/j.neuron.2009.03.005 URL pmid: 19409271 |
[59] |
Wang, S. -H., Alvares, L., & Nader, K.(2009). Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nature Neuroscience, 12(7),905-912. doi: 10.1038/nn.2350.
doi: 10.1038/nn.2350 URL |
[60] | Winters, B. D., Tucci, M. C., & DaCosta-Furtado, M.(2009). Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learning & Memory, 16(9),545-553. doi: 10.1101/lm.1509909. |
[61] |
Xue, Y. X., Luo, Y. X., Wu, P., Shi, H. S., Xue, L. F., Chen, C.,... Lu, L.(2012). A memory retrieval-extinction procedure to prevent drug craving and relapse. Science, 336(6078),241-245. doi: 10.1126/science.1215070.
doi: 10.1126/science.1215070 URL |
[62] |
Yang, K., Trepanier, C., Sidhu, B., Xie, Y. F., Li, H., Lei, G.,... Macdonald, J. F.(2012). Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases. Embo Journal, 31(4),805-816. doi: 10.1038/emboj.2011.453.
doi: 10.1038/emboj.2011.453 URL pmid: 22187052 |
[63] | Yu, Y. J., Huang, C. H., Chang, C. H., & Gean, P. W.(2016). Involvement of protein phosphatases in the destabilization of methamphetamine-associated contextual memory. Learning & Memory, 23(9),486-493. doi: 10.1101/lm.039941. |
[64] |
Zhang, J. J., Haubrich, J., Bernabo, M., Finnie, P. S. B., & Nader, K.(2018). Limits on lability: Boundaries of reconsolidation and the relationship to metaplasticity. Neurobiology of Learning and Memory, 154,78-86. doi: 10.1016/j.nlm.2018.02.018.
doi: S1074-7427(18)30040-6 URL pmid: 29474957 |
[1] | 郭玉冬, 欧琪雯, 段锦云. 领导者对员工主动行为的心理与行为反应[J]. 心理科学进展, 2022, 30(5): 1158-1167. |
[2] | 加锁锁, 郭理, 蔡子君, 毛日佑. 组织中绩效压力的双刃剑效应[J]. 心理科学进展, 2022, 30(12): 2846-2856. |
[3] | 陈伟, 李俊娇, 林小裔, 张晓霞, 郑希付. 行为干预情绪记忆再巩固:从实验室到临床转化[J]. 心理科学进展, 2020, 28(2): 240-251. |
[4] | 刘鹏, 申鸿魁. 对人类不良记忆的修饰:来自记忆再巩固的证据[J]. 心理科学进展, 2019, 27(8): 1417-1426. |
[5] | 王宏蕾, 孙健敏. 授权型领导的负面效应:理论机制与边界条件[J]. 心理科学进展, 2019, 27(5): 858-870. |
[6] | 曹杨婧文, 李俊娇, 陈伟, 杨勇, 胡琰健, 郑希付. 条件性恐惧记忆消退的提取干预范式及其作用的神经机制[J]. 心理科学进展, 2019, 27(2): 268-277. |
[7] | 冯彩玲. 工作场所领导愤怒的有效性及其作用机制[J]. 心理科学进展, 2019, 27(11): 1917-1928. |
[8] | 廖化化; 颜爱民. 权变视角下的情绪劳动:调节变量及其作用机制[J]. 心理科学进展, 2017, 25(3): 500-510. |
[9] | 谢和平; 王福兴; 王玉鑫; 安婧. 越难读意味着学得越好?学习过程中的不流畅效应[J]. 心理科学进展, 2016, 24(7): 1077-1090. |
[10] | 孙健敏; 王宏蕾. 高绩效工作系统负面影响的潜在机制[J]. 心理科学进展, 2016, 24(7): 1091-1106. |
[11] | 王福兴;谢和平;李卉. 视觉单通道还是视听双通道?——通道效应的元分析[J]. 心理科学进展, 2016, 24(3): 335-350. |
[12] | 王震;许灏颖;杜晨朵. 领导学研究中的下行传递效应:表现、机制与条件[J]. 心理科学进展, 2015, 23(6): 1079-1094. |
[13] | 曾祥星;杜娟;王凯欣;郑希付. 记忆再巩固的时间动态性及其生物学机制[J]. 心理科学进展, 2015, 23(4): 582-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||