心理科学进展 ›› 2023, Vol. 31 ›› Issue (10): 1873-1882.doi: 10.3724/SP.J.1042.2023.01873
收稿日期:
2023-02-02
出版日期:
2023-10-15
发布日期:
2023-07-25
通讯作者:
鲍敏, E-mail: 基金资助:
SONG Fangxing, WANG Jue, BAO Min()
Received:
2023-02-02
Online:
2023-10-15
Published:
2023-07-25
摘要:
在个体视觉系统的发展过程中, 视觉系统的结构与功能会受到视觉经验和内外部环境的影响而发生改变, 这被称为视觉可塑性。视觉可塑性在出生后的发育关键期内达到峰值。虽然成年期视皮层神经环路的结构功能趋于稳定, 但有越来越多的研究表明成年人视皮层中仍保留着一定程度的可塑性, 其中的典型代表就是眼优势的可塑性。最近十几年的研究发现, 短时程操控成年人的各种视觉输入信息, 乃至调节两眼间注意资源的分配, 都可以引起成年人眼优势发生偏移。然而, 两者调节眼优势的神经机制可能并不相同。视觉输入对成年人眼优势的调节可能主要反映了视觉皮层的稳态可塑性机制; 而注意对眼优势的影响则是一种高级加工对初级视觉皮层的反馈调节, 目前可以用拮抗神经元的适应机制来作解释。未来研究可以寻找更加直接的证据来支持这一解释, 此外也应重点关注注意与视觉输入之间会如何交互影响成年人眼优势。
中图分类号:
宋方兴, 王珏, 鲍敏. (2023). 从不平衡的视觉输入到不平衡的视觉注意:探寻短时程眼优势可塑性的神经机制. 心理科学进展 , 31(10), 1873-1882.
SONG Fangxing, WANG Jue, BAO Min. (2023). From imbalanced visual inputs to imbalanced visual attention: Seeking the neural mechanisms for short-term ocular dominance plasticity. Advances in Psychological Science, 31(10), 1873-1882.
图1 双眼竞争任务和双眼相位整合任务样例刺激。图a为双眼竞争任务的样例刺激, 是将两个不相容的图像刺激分别呈现给两只眼睛, 在一个时间点上, 被试可能会看到呈现给左眼的图像, 或是呈现给右眼的图像, 也可能会看到两者混合的图像。被试在任务中需要实时持续地报告当下看到的刺激, 以计算两眼刺激占据意识时长的相对长短, 从而分析得出被试眼优势的情况; 图b为双眼相位整合任务的样例刺激, 常用的刺激是两个水平朝向的光栅刺激, 其中呈现给一只眼的光栅相位是+22.5°, 呈现给另一只眼的光栅相位是-22.5°, 被试根据感知到的整合光栅, 将一条参考线上下移动到光栅中央最暗的部分。根据参考线的位置, 主试可以确定被试感知到的光栅所对应的相位大小, 进而判断哪只眼具有优势。
[1] |
Alsius, A., & Munhall, K. G. (2013). Detection of audiovisual speech correspondences without visual awareness. Psychological Science, 24(4), 423-431.
doi: 10.1177/0956797612457378 pmid: 23462756 |
[2] |
Bai, J., Dong, X., He, S., & Bao, M. (2017). Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination. Neuroscience, 352, 122-130. https://doi.org/10.1016/j.neuroscience.2017.03.053
doi: S0306-4522(17)30228-2 URL pmid: 28391010 |
[3] |
Bavelier, D., & Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147-163. https://doi.org/10.1016/j.neuron.2019.09.031
doi: S0896-6273(19)30833-5 URL pmid: 31600511 |
[4] |
Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychological Bulletin, 144(1), 77-110. https://doi.org/10.1037/bul0000130
doi: 10.1037/bul0000130 URL pmid: 29172564 |
[5] |
Binda, P., Kurzawski, J. W., Lunghi, C., Biagi, L., Tosetti, M., & Morrone, M. C. (2018). Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD. eLife, 7, e40014. https://doi.org/10.7554/eLife.40014
doi: 10.7554/eLife.40014 URL |
[6] |
Blake, R., & Logothetis, N. (2002). Visual competition. Nature Reviews Neuroscience, 3(1), 13-21. https://doi.org/10.1038/nrn701
doi: 10.1038/nrn701 URL pmid: 11823801 |
[7] | Chen, X., Chen, S., Kong, D., Wei, J., Mao, Y., Lin, W., ... Zhou, J. (2020). Action video gaming does not influence short-term ocular dominance plasticity in visually normal adults. eNeuro, 7(3). https://doi.org/10.1523/ENEURO.0006-20.2020 |
[8] | Chen, Y., Gao, Y., He, Z., Sun, Z., Mao, Y., Hess, R. F., ... Zhou, J. (2023). Internal neural states influence the short- term effect of monocular deprivation in human adults. eLife, 12. https://doi.org/10.7554/eLife.83815 |
[9] |
Dale, G., & Shawn Green, C. (2017). The changing face of video games and video gamers: Future directions in the scientific study of video game play and cognitive performance. Journal of Cognitive Enhancement, 1(3), 280-294. https://doi.org/10.1007/s41465-017-0015-6
doi: 10.1007/s41465-017-0015-6 URL |
[10] |
Finn, A. E., Baldwin, A. S., Reynaud, A., & Hess, R. F. (2019). Visual plasticity and exercise revisited: No evidence for a "cycling lane". Journal of Vision, 19(6), 21. https://doi.org/10.1167/19.6.21
doi: 10.1167/19.6.21 URL pmid: 31246227 |
[11] |
Hess, R. F. (1990). The Edridge-Green lecture vision at low light levels: Role of spatial, temporal and contrast filters. Ophthalmic and Physiological Optics, 10(4), 351-359. https://doi.org/https://doi.org/10.1111/j.1475-1313.1990.tb00881.x
URL pmid: 2263368 |
[12] |
Huang, C.-B., Zhou, J., Zhou, Y., & Lu, Z.-L. (2010). Contrast and phase combination in binocular vision. PLoS One, 5(12), e15075. https://doi.org/10.1371/journal.pone.0015075
doi: 10.1371/journal.pone.0015075 URL |
[13] |
Katyal, S., Engel, S. A., He, B., & He, S. (2016). Neurons that detect interocular conflict during binocular rivalry revealed with EEG. Journal of Vision, 16(3), 18. https://doi.org/10.1167/16.3.18
doi: 10.1167/16.3.18 URL pmid: 26891825 |
[14] |
Katyal, S., Vergeer, M., He, S., He, B., & Engel, S. A. (2018). Conflict-sensitive neurons gate interocular suppression in human visual cortex. Scientific Reports, 8(1), 1239. https://doi.org/10.1038/s41598-018-19809-w
doi: 10.1038/s41598-018-19809-w URL pmid: 29352155 |
[15] |
Keck, T., Toyoizumi, T., Chen, L., Doiron, B., Feldman, D. E., Fox, K., ... van Rossum, M. C. (2017). Integrating Hebbian and homeostatic plasticity: The current state of the field and future research directions. Philosophical Transactions of the Royal Society B-Biological Sciences, 372(1715), 20160413. https://doi.org/10.1098/rstb.2016.0158
doi: 10.1098/rstb.2016.0413 URL |
[16] |
Kurzawski, J. W., Lunghi, C., Biagi, L., Tosetti, M., Morrone, M. C., & Binda, P. (2022). Short-term plasticity in the human visual thalamus. eLife, 11, e74565. https://doi.org/10.7554/eLife.74565
doi: 10.7554/eLife.74565 URL |
[17] |
Lunghi, C., Berchicci, M., Morrone, M. C., & Di Russo, F. (2015). Short-term monocular deprivation alters early components of visual evoked potentials. The Journal of Physiology, 593(19), 4361-4372. https://doi.org/10.1113/JP270950
doi: 10.1113/JP270950 URL pmid: 26119530 |
[18] | Lunghi, C., Burr, D. C., & Morrone, C. (2011). Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Current Biology, 21(14), R538-R539. https://doi.org/10.1016/j.cub.2011.06.004 |
[19] |
Lunghi, C., Emir, U. E., Morrone, M. C., & Bridge, H. (2015). Short-term monocular deprivation alters GABA in the adult human visual cortex. Current Biology, 25(11), 1496-1501. https://doi.org/10.1016/j.cub.2015.04.021
doi: 10.1016/j.cub.2015.04.021 URL pmid: 26004760 |
[20] |
Lunghi, C., Morrone, M. C., & Alais, D. (2014). Auditory and tactile signals combine to influence vision during binocular rivalry. Journal of Neuroscience, 34(3), 784-792. https://doi.org/10.1523/JNEUROSCI.2732-13.2014
doi: 10.1523/JNEUROSCI.2732-13.2014 URL pmid: 24431437 |
[21] |
Lyu, L., He, S., Jiang, Y., Engel, S. A., & Bao, M. (2020). Natural-scene-based steady-state visual evoked potentials reveal effects of short-term monocular deprivation. Neuroscience, 435, 10-21. https://doi.org/10.1016/j.neuroscience.2020.03.039
doi: S0306-4522(20)30198-6 URL pmid: 32229234 |
[22] |
Maffei, A., Nelson, S. B., & Turrigiano, G. G. (2004). Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neuroscience, 7(12), 1353-1359. https://doi.org/10.1038/nn1351
URL pmid: 15543139 |
[23] |
Menicucci, D., Lunghi, C., Zaccaro, A., Morrone, M. C., & Gemignani, A. (2022). Mutual interaction between visual homeostatic plasticity and sleep in adult humans. eLife, 11, e70633. https://doi.org/10.7554/eLife.70633
doi: 10.7554/eLife.70633 URL |
[24] |
Min, S. H., Baldwin, A. S., & Hess, R. F. (2019). Ocular dominance plasticity: A binocular combination task finds no cumulative effect with repeated patching. Vision Research, 161, 36-42. https://doi.org/10.1016/j.visres.2019.05.007
doi: S0042-6989(19)30122-1 URL pmid: 31194984 |
[25] |
Min, S. H., Baldwin, A. S., Reynaud, A., & Hess, R. F. (2018). The shift in ocular dominance from short-term monocular deprivation exhibits no dependence on duration of deprivation. Scientific Reports, 8(1), 17083. https://doi.org/10.1038/s41598-018-35084-1
doi: 10.1038/s41598-018-35084-1 URL pmid: 30459412 |
[26] |
Neisser, U., & Becklen, R. (1975). Selective looking: Attending to visually specified events. Cognitive Psychology, 7(4), 480-494. https://doi.org/10.1016/0010-0285(75)90019-5
doi: 10.1016/0010-0285(75)90019-5 URL |
[27] |
Nguyen, B. N., Malavita, M., Carter, O. L., & McKendrick, A. M. (2021). Neuroplasticity in older adults revealed by temporary occlusion of one eye. Cortex, 143, 1-11. https://doi.org/10.1016/j.cortex.2021.07.004
doi: 10.1016/j.cortex.2021.07.004 URL pmid: 34365199 |
[28] |
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision, 15(6), 4. https://doi.org/10.1167/15.6.4
doi: 10.1167/15.6.4 URL pmid: 26024451 |
[29] |
Porac, C., & Coren, S. (1976). The dominant eye. Psychological Bulletin, 83(5), 880-897. https://doi.org/10.1037/0033-2909.83.5.880
URL pmid: 794902 |
[30] |
Purpura, K., Kaplan, E., & Shapley, R. M. (1988). Background light and the contrast gain of primate P and M retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4534-4537. https://doi.org/10.1073/pnas.85.12.4534
URL pmid: 3380804 |
[31] |
Ramamurthy, M., & Blaser, E. (2021). The ups and downs of sensory eye balance: Monocular deprivation has a biphasic effect on interocular dominance. Vision Research, 183, 53-60. https://doi.org/10.1016/j.visres.2021.01.010
doi: 10.1016/j.visres.2021.01.010 URL pmid: 33684826 |
[32] |
Said, C. P., & Heeger, D. J. (2013). A model of binocular rivalry and cross-orientation suppression. PLoS Computational Biology, 9(3), e1002991. https://doi.org/10.1371/journal.pcbi.1002991
doi: 10.1371/journal.pcbi.1002991 URL |
[33] |
Shapley, R., & Victor, J. D. (1979). The contrast gain control of the cat retina. Vision Research, 19(4), 431-434. https://doi.org/10.1016/0042-6989(79)90109-3
URL pmid: 473613 |
[34] |
Sheynin, Y., Chamoun, M., Baldwin, A. S., Rosa-Neto, P., Hess, R. F., & Vaucher, E. (2019). Cholinergic potentiation alters perceptual eye dominance plasticity induced by a few hours of monocular patching in adults. Frontiers in Neuroscience, 13, 22. https://doi.org/10.3389/fnins.2019.00022
doi: 10.3389/fnins.2019.00022 URL pmid: 30766471 |
[35] |
Song, F., Lyu, L., Zhao, J., & Bao, M. (2022). The role of eye-specific attention in ocular dominance plasticity. Cerebral Cortex. 33(4), 983-996. https://doi.org/10.1093/cercor/bhac116
doi: 10.1093/cercor/bhac116 URL |
[36] |
Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in Cognitive Sciences, 10(11), 502-511. https://doi.org/10.1016/j.tics.2006.09.003
URL pmid: 16997612 |
[37] |
Turrigiano, G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89-103. https://doi.org/10.1146/annurev-neuro-060909-153238
doi: 10.1146/annurev-neuro-060909-153238 URL pmid: 21438687 |
[38] |
Turrigiano, G. G. (1999). Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends in Neurosciences, 22(5), 221-227. https://doi.org/10.1016/s0166-2236(98)01341-1
doi: 10.1016/s0166-2236(98)01341-1 URL pmid: 10322495 |
[39] |
Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97-107. https://doi.org/10.1038/nrn1327
doi: 10.1038/nrn1327 URL pmid: 14735113 |
[40] |
Vidal, M., & Barres, V. (2014). Hearing (rivaling) lips and seeing voices: How audiovisual interactions modulate perceptual stabilization in binocular rivalry. Frontiers in Human Neuroscience, 8, 677. https://doi.org/10.3389/fnhum.2014.00677
doi: 10.3389/fnhum.2014.00677 URL pmid: 25237302 |
[41] |
Wang, M., McGraw, P., & Ledgeway, T. (2021). Attentional eye selection modulates sensory eye dominance. Vision Research, 188, 10-25. https://doi.org/10.1016/j.visres.2021.06.006
doi: 10.1016/j.visres.2021.06.006 URL pmid: 34280813 |
[42] |
Wang, Y., Yao, Z., He, Z., Zhou, J., & Hess, R. F. (2017). The cortical mechanisms underlying ocular dominance plasticity in adults are not orientationally selective. Neuroscience, 367, 121-126. https://doi.org/10.1016/j.neuroscience.2017.10.030
doi: S0306-4522(17)30758-3 URL pmid: 29111362 |
[43] |
Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26(6), 1003-1017. https://doi.org/10.1152/jn.1963.26.6.1003
doi: 10.1152/jn.1963.26.6.1003 URL |
[44] |
Wong, N. H. L., & Chang, D. H. F. (2018). Attentional advantages in video-game experts are not related to perceptual tendencies. Scientific Reports, 8(1), 5528. https://doi.org/10.1038/s41598-018-23819-z
doi: 10.1038/s41598-018-23819-z URL pmid: 29615743 |
[45] |
Yao, Z., He, Z., Wang, Y., Lu, F., Qu, J., Zhou, J., & Hess, R. F. (2017). Absolute not relative interocular luminance modulates sensory eye dominance plasticity in adults. Neuroscience, 367, 127-133. https://doi.org/10.1016/j.neuroscience.2017.10.029
doi: S0306-4522(17)30757-1 URL pmid: 29111363 |
[46] |
Zhou, J., Baker, D. H., Simard, M., Saint-Amour, D., & Hess, R. F. (2015). Short-term monocular patching boosts the patched eye's response in visual cortex. Restorative Neurology and Neuroscience, 33(3), 381-387. https://doi.org/10.3233/RNN-140472
doi: 10.3233/RNN-140472 URL pmid: 26410580 |
[47] | Zhou, J., Clavagnier, S., & Hess, R. F. (2013). Short-term monocular deprivation strengthens the patched eye's contribution to binocular combination. Journal of Vision, 13(5), 12. https://doi.org/10.1167/13.5.12 |
[48] |
Zhou, J., Reynaud, A., & Hess, R. F. (2014). Real-time modulation of perceptual eye dominance in humans. Proceedings of the Royal Society B-Biological Sciences, 281(1795), 20141717. https://doi.org/10.1098/rspb.2014.1717
doi: 10.1098/rspb.2014.1717 URL |
[1] | 刘一鸣, 罗浩诚, 傅世敏. 视觉意识是离散还是连续模式?基于注意瞬脱的整合性视角[J]. 心理科学进展, 2024, 32(2): 264-275. |
[2] | 孙猛, 刘泽军, 贾茜, 尚晨阳, 张钦. 情绪T2对抗注意瞬脱:理解情绪优先加工的窗口[J]. 心理科学进展, 2024, 32(1): 58-74. |
[3] | 张子霄, 何生, 张杰栋. 注意转移中的知觉抑制[J]. 心理科学进展, 2023, 31(suppl.): 18-18. |
[4] | 周攀, 刘小燕, 李天添, 王玲. 与位置相关的价值统计学习对注意的影响[J]. 心理科学进展, 2023, 31(suppl.): 51-51. |
[5] | 裴英名, 任衍具. 与工作记忆保持项目语义相关的干扰对搜索固定与变化目标的影响[J]. 心理科学进展, 2023, 31(suppl.): 75-75. |
[6] | 邱余波, 潘嘉蔚, 吴静岚, 高在峰. 通过社会注意线索转移工作记忆中的注意焦点[J]. 心理科学进展, 2023, 31(suppl.): 76-76. |
[7] | 祝松楠, 张琪. 刺激的不同呈现模式下显著干扰物的注意抑制机制[J]. 心理科学进展, 2023, 31(suppl.): 77-77. |
[8] | 谢燕, 曲折. 工作记忆容量对不同显著性干扰子的抑制功能的调控作用[J]. 心理科学进展, 2023, 31(suppl.): 78-78. |
[9] | 吴禧芊, 张西磊, 蒋毅, 王亮. 注意是无意识恐惧表达的必要条件:一项视觉ERP研究[J]. 心理科学进展, 2023, 31(suppl.): 79-79. |
[10] | 郑贵萍, 江镕, 孟明. 多目标追踪过程中刺激眼间切换的注意成本[J]. 心理科学进展, 2023, 31(suppl.): 80-80. |
[11] | 卢和和, 林子涵, 朱莎莎, 蒋柯. 情绪面孔识别的注意瞬脱效应[J]. 心理科学进展, 2023, 31(suppl.): 83-83. |
[12] | 肖芬妮, 孟迎芳. 目标探测促进知觉加工?视觉工作记忆中的注意促进效应[J]. 心理科学进展, 2023, 31(suppl.): 86-86. |
[13] | 李硕, 蒋毅, 王莹. 基于规律的注意偏向及其时间进程[J]. 心理科学进展, 2023, 31(suppl.): 89-89. |
[14] | 姜雯, 孟明. 注意基于双眼间交互作用的瞬脱效应[J]. 心理科学进展, 2023, 31(suppl.): 93-93. |
[15] | 张可心, 任衍具. 统计学习引导空间位置的注意抑制[J]. 心理科学进展, 2023, 31(suppl.): 94-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||